1
|
Zhong L, Wang Q, Kou Z, Gan L, Yang Z, Pan J, Huang L, Chen Y. The combination of FLCWK with 5-FU inhibits colon cancer and multidrug resistance by activating PXR to suppress the IL-6/STAT3 pathway. J Cell Mol Med 2024; 28:e70185. [PMID: 39495702 PMCID: PMC11534069 DOI: 10.1111/jcmm.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
5-fluorouracil (5-FU) is a preferred chemotherapeutic agent for the treatment of colon cancer. Nonetheless, its clinical effectiveness is frequently hampered by suboptimal therapeutic outcomes and the emergence of drug resistance. Therefore, there exists a pressing demand for novel therapeutic agents to circumvent chemoresistance. The pregnane X receptor (PXR) exerts a pivotal regulatory influence on the proliferation, invasion, and chemoresistance mechanisms in colon cancer. Activation of PXR drives up the transcription of the multidrug resistance gene (MDR1), thus prompting the expression of P-glycoprotein (P-gp) responsible for conferring tumour resistance. This study scrutinized the potential of Fengliao Changweikang (FLCWK) in augmenting the efficacy of 5-FU in the management of colon cancer. To this end, we engineered colon cancer cells with varied levels of PXR expression via lentiviral transfection, subsequently validating the findings in nude mice. By means of MTT assays, flow cytometry apoptosis analysis, Western blotting and immunofluorescence, we probed into the prospective impacts of FLCWK and 5-FU on cellular viability and resistance. Our results revealed that while upregulation of PXR amplified the therapeutic benefits in colon cancer treatment, it concurrently heightened resistance levels. FLCWK demonstrated a capacity to reduce P-gp expression, with the combined administration of FLCWK and 5-FU effectively reversing resistance mechanisms. Furthermore, activation of PXR was found to impede the IL-6/STAT3 signalling pathway. In an effort to mimic the development of colon cancer, we established an azomethane oxide (AOM)/ dextran sodium sulfate (DSS) mouse model, showing that FLCWK bolstered the inhibitory effects of 5-FU, impeding the progression of colon cancer. In summation, our findings point towards the potential of FLCWK in the treatment of colon cancer, particularly in strengthening the therapeutic efficacy of 5-FU in the prevention and control of the disease.
Collapse
Affiliation(s)
- Lifan Zhong
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Qianru Wang
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Zhixiong Kou
- Department of Key Specialist OfficeSanya Hospital of Traditional Chinese MedicineSanyaChina
| | - Lianfang Gan
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Zhaoxin Yang
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Junhua Pan
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Ling Huang
- Center for Pharmacovigilance of Hainan ProvinceHainan Medical Products AdministrationHaikouChina
| | - Yunqiang Chen
- Department of Rehabilitation therapeuticsThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
2
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00358-4. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. We explore their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, we introduce available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discuss the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Shi T, Fan QY, Liu SB, Zhang SY. Pregnane X receptor (PXR) deficiency promotes hepatocarcinogenesis via induction of Akr1c18 expression and prostaglandin F 2α (PGF 2α) levels. Biochem Pharmacol 2024; 225:116309. [PMID: 38788959 DOI: 10.1016/j.bcp.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, plays a critical role in the metabolism of endogenous and exogenous substances in the liver. Here, we investigate whether PXR plays a role in pathogenesis of HCC. We show that liver tumors were developed in diethylnitrosamine (DEN)-treated in PXR knockout (KO) mice. Hepatic levels of prostaglandin F2α (PGF2α) and aldo-keto reductase family 1 member C18 (Akr1c18), a prostaglandin synthase of catalyzing reduction of PGH2 to PGF2α, were significantly elevated in DEN-treated PXR KO mice. Hepatic mRNA levels of alpha fetoprotein (AFP), cyclin D1 (Ccnd1), fibroblast growth factor 21 (FGF21), and inflammatory cytokine interleukin 6 (IL-6) were significantly increased in DEN-treated PXR KO mice. Other members of Akr1c family, liver metabolizing enzymes including Cyp1a2, Cyp2b10 and Cyp3a11, and bile acid synthesis enzyme Cyp7a1 mRNA levels were significantly decreased in DEN-treated PXR KO mice. Our findings revealed that PXR deficiency promoted DEN-induced HCC in mice via induction of Akr1c18 expression and PGF2α levels and the increased PGF2α levels synthetized by Akr1c18 enhanced hepatocytes proliferation and induced inflammatory cytokine production, which accelerated liver tumor development after DEN treatment, suggesting that PXR deficiency may create a microenvironment that is more prone to DEN-induced liver tumors and targeting PXR and Akr1c18 to reduce PGF2α biosynthesis may be a potential and novel therapeutic strategy for HCC.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Diethylnitrosamine/toxicity
- Dinoprost/metabolism
- Dinoprost/biosynthesis
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Pregnane X Receptor/metabolism
- Pregnane X Receptor/genetics
Collapse
Affiliation(s)
- Tong Shi
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiao-Ying Fan
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shi-Biao Liu
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shu-Yun Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Golonka RM, Yeoh BS, Saha P, Tian Y, Chiang JYL, Patterson AD, Gewirtz AT, Joe B, Vijay-Kumar M. Sex Dimorphic Effects of Bile Acid Metabolism in Liver Cancer in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:719-735. [PMID: 38262588 PMCID: PMC10966305 DOI: 10.1016/j.jcmgh.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a male-dominant disease, but targeted sex hormone therapies have not been successful. Bile acids are a potential liver carcinogen and are biomolecules with hormone-like effects. A few studies highlight their potential sex dimorphism in physiology and disease. We hypothesized that bile acids could be a potential molecular signature that explains sex disparity in HCC. METHODS & RESULTS We used the farnesoid X receptor knockout (FxrKO) mouse model to study bile acid-dependent HCC. Temporal tracking of circulating bile acids determined more than 80% of FxrKO females developed spontaneous cholemia (ie, serum total bile acids ≥40 μmol/L) as early as 8 weeks old. Opposingly, FxrKO males were highly resistant to cholemia, with ∼23% incidence even when 26 weeks old. However, FxrKO males demonstrated higher levels of deoxycholate than females. Compared with males, FxrKO females had more severe cholestatic liver injury and further aberrancies in bile acid metabolism. Yet, FxrKO females expressed more detoxification transcripts and had greater renal excretion of bile acids. Intervention with CYP7A1 (rate limiting enzyme for bile acid biosynthesis) deficiency or taurine supplementation either completely or partially normalized bile acid levels and liver injury in FxrKO females. Despite higher cholemia prevalence in FxrKO females, their tumor burden was less compared with FxrKO males. An exception to this sex-dimorphic pattern was found in a subset of male and female FxrKO mice born with congenital cholemia due to portosystemic shunt, where both sexes had comparable robust HCC. CONCLUSIONS Our study highlights bile acids as sex-dimorphic metabolites in HCC except in the case of portosystemic shunt.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
| |
Collapse
|
5
|
Gutmann M, Stimpfl E, Langmann G, Koudelka H, Mir-Karner B, Grasl-Kraupp B. Differentiated and non-differentiated HepaRG™ cells: A possible in-vitro model system for early hepatocarcinogenesis and non-genotoxic carcinogens. Toxicol Lett 2023; 390:15-24. [PMID: 37890683 DOI: 10.1016/j.toxlet.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Many xenobiotics are non-genotoxic carcinogens (NGC) in rodent liver. Their mode of action (MoA) and health risks for humans are unclear and no in-vitro tests are available to predict NGC. Human HepaRG™ cells in the differentiated (d-HepaRG) and non-differentiated state (nd-HepaRG) were studied as new approach methodology (NAM) for NGC. Cell-biological assays were performed with d-/nd-HepaRG and human hepatoma/hepatocarcinoma cell lines to characterize the benign/malignant phenotype. Reaction of d-/nd-HepaRG to several liver growth factors and NGC (phenobarbital, PB; cyproterone acetate, CPA; WY-14643) was compared to unaltered and premalignant rat hepatocytes in ex-vivo culture. Enzyme induction by NGC was checked by RT-qPCR/oligo-arrays. Growth, anchorage-independency, migration, clonogenicity, and in-vivo tumorigenicity of nd-HepaRG ranged between benign d-HepaRG and malignant hepatoma/hepatocarcinoma cells. All growth factors elevated DNA replication of d-/nd-HepaRG cells, similarly to unaltered/premalignant rat hepatocytes. NGC induced their prototypical enzymes in the rat and human cells, but elicited a growth response only in the unaltered/premalignant rat hepatocytes and not in human d-/nd-HepaRG cells. To conclude, a benign/premalignant phenotype of d-/nd-HepaRG cells and a reactivity towards several hepatic growth factors and NGC, as known from human hepatocytes, are essential components for an in-vitro model for early stage human hepatocarcinogenesis.The potential value as new approach methodology (NAM) for NGC is discussed.
Collapse
Affiliation(s)
- Michael Gutmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emily Stimpfl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gregor Langmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Helga Koudelka
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Birgit Mir-Karner
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Pandiri AR, Auerbach SS, Stevens JL, Blomme EAG. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver. Toxicol Pathol 2023; 51:470-481. [PMID: 38288963 PMCID: PMC11014763 DOI: 10.1177/01926233241227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.
Collapse
Affiliation(s)
- Arun R Pandiri
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | |
Collapse
|
7
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
8
|
Sato T, Shizu R, Miura Y, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Development of a strategy to identify and evaluate direct and indirect activators of constitutive androstane receptor in rats. Food Chem Toxicol 2022; 170:113510. [DOI: 10.1016/j.fct.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
9
|
Zhong XB, Lai Y. Special Section on Drug Metabolism and Regulation-Editorial. Drug Metab Dispos 2022; 50:998-999. [PMID: 35817440 DOI: 10.1124/dmd.122.000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
|