1
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
2
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Veshkini A, Kühn C, Dengler F, Bachmann L, Liermann W, Helm C, Ulrich R, Delling C, Hammon HM. Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: impacts on epithelial barriers and transcellular transport systems. Front Cell Infect Microbiol 2024; 14:1495309. [PMID: 39703373 PMCID: PMC11656319 DOI: 10.3389/fcimb.2024.1495309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cryptosporidium parvum (C. parvum) is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment. Methods At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with C. parvum oocysts (in-house strain LE-01-Cp-15). On day 8 after infection, calves were slaughtered and jejunum mucosa samples were taken. The RNA was extracted from collected samples and subjected to sequencing. Differentially expressed genes (DEG) between the infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05 and used for gene ontology (GO) and pathway enrichment analysis in Cytoscape (v3.9.1). Results and discussion To study the pathophysiology of infectious diarrhea on intestinal permeability, 459 genes related to epithelial cell barrier integrity and paracellular and transmembrane transport systems were selected from 12,908 identified genes in mucus. Among, there were 61 increased and 109 decreased gene transcripts belonged to adhesion molecules (e.g. ADGRD1 and VCAM1), ATP-binding cassette (ABC, e.g. ABCC2 and ABCD1) and solute carrier (SLC, e.g. SLC28A2 and SLC38A3) transporters, and ion channels (e.g. KCNJ15). Our results suggest deregulation of cellular junctions and thus a possibly increased intestinal permeability, whereas deregulation of ABC and SLC transporters and ion channels may influence the absorption/secretion of amino acids, carbohydrates, fats, and organic compounds, as well as acid-based balance and osmotic hemostasis. Besides pathogen-induced gene expression alterations, part of the DEG may have been triggered or consequently affected by inflammatory mechanisms. The study provided a deeper understanding of the pathophysiology of infectious diarrhea in neonatal calves and the host-pathogen interactions at the transcript level. For further studies with a particular focus on the transport system, these results could lead to a new approach to elucidating pathophysiological regulatory mechanisms.
Collapse
Affiliation(s)
- Arash Veshkini
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| | - Franziska Dengler
- Institute of Animal Sciences, University of Hohenheim, Hohenheim, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Neubrandenburg, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christiane Helm
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Reiner Ulrich
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Cora Delling
- Institute of Veterinary Parasitology, Leipzig University, Leipzig, Germany
| | - Harald M. Hammon
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Hlozkova K, Vasylkivska M, Boufersaoui A, Marzullo B, Kolarik M, Alquezar-Artieda N, Shaikh M, Alaei NF, Zaliova M, Zwyrtkova M, Bakardijeva-Mihaylova V, Alberich-Jorda M, Trka J, Tennant DA, Starkova J. Rewired glutamate metabolism diminishes cytostatic action of L-asparaginase. Cancer Lett 2024; 605:217242. [PMID: 39270769 DOI: 10.1016/j.canlet.2024.217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
Collapse
Affiliation(s)
- Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic.
| | - Maryna Vasylkivska
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matus Kolarik
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Mehak Shaikh
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nadia Fatemeh Alaei
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Violeta Bakardijeva-Mihaylova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
5
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
6
|
Sak M, Chariker JH, Park JW, Rouchka EC. Gene Expression and Alternative Splicing Analysis in a Large-Scale Multiple Sclerosis Study. Int J Mol Sci 2024; 25:11957. [PMID: 39596026 PMCID: PMC11593658 DOI: 10.3390/ijms252211957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. We utilized a publicly available RNA-seq dataset (GSE138614) consisting of the post-mortem white matter tissues of five donors without any neurological disorders and ten MS patient donors. We investigated gene expression levels correlated with tissue inflammation and alternative splicing to identify possible pathological isoforms in MS tissues. We identified RNA-binding motifs, differentially expressed RNA-binding proteins, and single-nucleotide polymorphisms (SNPs) to unravel possible mechanisms of alternative splicing. Genes with expression changes that were positively correlated with tissue inflammation were enriched in the immune system and receptor interaction pathways. Genes showing a negative correlation were enriched in nervous system development and in metabolic pathways. A comparison of normal-appearing white matter (NAWM) and active or chronic active lesions within the same donors identified genes playing roles in immunity, white matter injury repair, and remyelination. We identified exon skipping events and spontaneous SNPs in membrane-associated ring-CH-type finger-1 (MARCHF1), UDP glycosyltransferase-8 (UGT8), and other genes important in autoimmunity and neurodegeneration. Overall, we identified unique genes, pathways, and novel splicing events that can be further investigated as potential novel drug targets for MS treatment.
Collapse
Affiliation(s)
- Müge Sak
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (M.S.); (J.H.C.)
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (M.S.); (J.H.C.)
| | - Juw Won Park
- Brown Cancer Center Bioinformatics Core, Center for Integrative Environmental Health Sciences Biostatistics and Informatics Facility Core, Department of Medicine, University of Louisville, Louisville, KY 40292, USA;
| | - Eric Christian Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
7
|
Zhang X, Wen X, Si Y, Li D, Yang C, Wang L, Song L. Regulation Mechanisms of the Glutamate Transporter in the Response of Pacific Oyster upon High-Temperature Stress. Int J Mol Sci 2024; 25:11342. [PMID: 39518895 PMCID: PMC11545548 DOI: 10.3390/ijms252111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Glutamate transporters (GLTs) are integral to the glutamatergic system, modulating glutamate homeostasis to enhance resilience and resistance against environmental stress. There are six GLTs identified in the Pacific oyster (Crassostrea gigas), which were categorized into two subfamilies: excitatory amino acid transporters (CgEAATs) and vesicular glutamate transporters (CgVGLUTs). The CgEAATs harbor a GltP domain, while CgVGLUTs feature an MFS domain, both with conserved sequence and structural characteristics. The expression of CgGLTs is elevated during the planktonic larval stage compared to the fertilized egg stage and is constitutively expressed in various tissues of adult oysters, suggesting its critical role in both larval development and the physiological processes of adult oysters. Transcriptomic analysis revealed diverse expression patterns of GLTs in oyster gills after 7 days of high-temperature stress, with CgEAAT3 showing a significant upregulation. A KEGG pathway enrichment analysis identified glutathione metabolism and ferroptosis as prominently enriched pathways. At 48 h after high-temperature stress, the expression levels of Glutathione Peroxidase 4 (CgGPX4) and CgEAAT3, along with elevated Fe content in the gills, significantly increased. Moreover, the RNAi-mediated the inhibition of CgEAAT3 expression under high-temperature stress, resulting in a significant reduction in CgGPX4 expression and a further increase in Fe accumulation in oyster gills. These results indicate that CgEAAT3 contributes to the regulation of ferroptosis and redox homeostasis by modulating CgGPX4 expression. This study provides new insights into the adaptive mechanisms of bivalves to environmental stress.
Collapse
Affiliation(s)
- Xueshu Zhang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xue Wen
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yiran Si
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Deliang Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
8
|
Porozhan Y, Carstensen M, Thouroude S, Costallat M, Rachez C, Batsché E, Petersen T, Christensen T, Muchardt C. Defective Integrator activity shapes the transcriptome of patients with multiple sclerosis. Life Sci Alliance 2024; 7:e202402586. [PMID: 39029934 PMCID: PMC11259605 DOI: 10.26508/lsa.202402586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.
Collapse
Affiliation(s)
- Yevheniia Porozhan
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Forum, Aarhus, Denmark
| | - Sandrine Thouroude
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mickael Costallat
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Christophe Rachez
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Eric Batsché
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Muchardt
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Song K, Li Y, Yang K, Lu T, Wang M, Wang Z, Liu C, Yu M, Wang M, Cheng Z, Pan M, Hu G. Regulatory Effects of SLC7A2-CPB2 on Lymphangiogenesis: A New Approach to Suppress Lymphatic Metastasis in HNSCC. Cancer Med 2024; 13:e70273. [PMID: 39382373 PMCID: PMC11468304 DOI: 10.1002/cam4.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is a critical factor affecting the outcomes of head and neck squamous cell carcinoma (HNSCC) and the main reason for treatment failure. This study was designed to examine the effects of the key genes involved in the LNM of HNSCC. METHODS Tissue samples (HNSCC) were examined by transcriptome sequencing, and the core genes associated with LNM were detected via bioinformatics analysis. The functions of these core genes were then validated using the TCGA biological database and their effects on the propagation, invasion, and metastasis of HNSCC cells were evaluated through cell culture experiments. Moreover, the effect of core gene expression on the LNM capability of HNSCC was confirmed via a footpad xenograft mice model. RESULTS In the findings, a key gene involved in the LNM of HNSCC was identified as SLC7A2. It was correlated with adverse clinical prognosis and expressed with low expression in HNSCC tissues. As shown in cell culture experiments, FaDu and SCC15 cell growth, invasion, and migration were inhibited when SLC7A2 was overexpressed. Further, cell apoptosis was stimulated, and lymphangiogenesis was suppressed through the downregulation of CPB2 expression. Animal studies demonstrated that the growth and LNM of HNSCC cells were inhibited by SLC7A2 overexpression. CONCLUSION It is concluded that SLC7A2 is involved in HNSCC lymphatic metastasis by controlling CPB2 function. The results are anticipated to offer new directions for the effective treatment of HNSCC.
Collapse
Affiliation(s)
- Kai Song
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of OtorhinolaryngologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yanshi Li
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Kai Yang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tao Lu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Min Wang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhihai Wang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chuan Liu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming Yu
- Department of OtorhinolaryngologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Mengna Wang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhaobo Cheng
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Min Pan
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Guohua Hu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
11
|
Li D, Yang K, Li J, Xu X, Gong L, Yue S, Wei H, Yue Z, Wu Y, Yin S. Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord. J Neuroinflammation 2024; 21:213. [PMID: 39217340 PMCID: PMC11365210 DOI: 10.1186/s12974-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP), which results from injury or lesion of the somatosensory nervous system, is intimately associated with glial cells. The roles of microglia and astrocytes in NP have been broadly described, while studies on oligodendrocytes have largely focused on axonal myelination. The mechanisms of oligodendrocytes and their interactions with other glial cells in NP development remain uncertain. METHODS To explore the function of the interaction of the three glial cells and their interactions on myelin development in NP, we evaluated changes in NP and myelin morphology after a chronic constriction injury (CCI) model in mice, and used single-cell sequencing to reveal the subpopulations characteristics of oligodendrocytes, microglia, and astrocytes in the spinal cord tissues, as well as their relationship with myelin lesions; the proliferation and differentiation trajectories of oligodendrocyte subpopulations were also revealed using pseudotime cell trajectory and RNA velocity analysis. In addition, we identified chemokine ligand-receptor pairs between glial cells by cellular communication and verified them using immunofluorescence. RESULTS Our study showed that NP peaked on day 7 after CCI in mice, a time at which myelin lesions were present in both the spinal cord and sciatic nerve. Oligodendrocytes, microglia, and astrocytes subpopulations in spinal cord tissue were heterogeneous after CCI and all were involved in suppressing the process of immune defense and myelin production. In addition, the differentiation trajectory of oligodendrocytes involved a unidirectional lattice process of OPC-1-Oligo-9, which was arrested at the Oligo-2 stage under the influence of microglia and astrocytes. And the CADM1-CADM1, NRP1-VEGFA interactions between glial cells are enhanced after CCI and they had a key role in myelin lesions and demyelination. CONCLUSIONS Our study reveals the close relationship between the differentiation block of oligodendrocytes after CCI and their interaction with microglia and astrocytes-mediated myelin lesions and NP. CADM1/CADM1 and NRP-1/VEGFA may serve as potential therapeutic targets for use in the treatment of NP.
Collapse
Affiliation(s)
- Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kaihong Yang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Jinlu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lanlan Gong
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zhenyu Yue
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Yikun Wu
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Sen Yin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
12
|
Sak M, Chariker JH, Park JW, Rouchka EC. Gene expression and alternative splicing analysis in a large-scale Multiple Sclerosis study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312099. [PMID: 39185521 PMCID: PMC11343266 DOI: 10.1101/2024.08.16.24312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. Understanding molecular mechanisms underlying MS is crucial to providing insights into disease pathways, identifying potential biomarkers for early diagnosis, and revealing novel therapeutic targets for improved patient outcomes. Methods We utilized publicly available RNA-seq data (GSE138614) from post-mortem white matter tissues of five donors without any neurological disorder and ten MS patient donors. This data was interrogated for differential gene expression, alternative splicing and single nucleotide variants as well as for functional enrichments in the resulting datasets. Results A comparison of non-MS white matter (WM) to MS samples yielded differentially expressed genes involved in adaptive immune response, cell communication, and developmental processes. Genes with expression changes positively correlated with tissue inflammation were enriched in the immune system and receptor interaction pathways. Negatively correlated genes were enriched in neurogenesis, nervous system development, and metabolic pathways. Alternatively spliced transcripts between WM and MS lesions included genes that play roles in neurogenesis, myelination, and oligodendrocyte differentiation, such as brain enriched myelin associated protein (BCAS1), discs large MAGUK scaffold protein 1 (DLG1), KH domain containing RNA binding (QKI), and myelin basic protein (MBP). Our approach to comparing normal appearing WM (NAWM) and active lesion (AL) from one donor and NAWM and chronic active (CA) tissues from two donors, showed that different IgH and IgK gene subfamilies were differentially expressed. We also identified pathways involved in white matter injury repair and remyelination in these tissues. Differentially spliced genes between these lesions were involved in axon and dendrite structure stability. We also identified exon skipping events and spontaneous single nucleotide polymorphisms in membrane associated ring-CH-type finger 1 (MARCHF1), UDP glycosyltransferase 8 (UGT8), and other genes important in autoimmunity and neurodegeneration. Conclusion Overall, we identified unique genes, pathways, and novel splicing events affecting disease progression that can be further investigated as potential novel drug targets for MS treatment.
Collapse
Affiliation(s)
- Müge Sak
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Julia H. Chariker
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Juw Won Park
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States of America
- Brown Cancer Center Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Center for Integrative Environmental Health Sciences Biostatistics and Informatics Facility Core, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky 40202, United States of America
| |
Collapse
|
13
|
Donovan MG, Eduthan NP, Smith KP, Britton EC, Lyford HR, Araya P, Granrath RE, Waugh KA, Enriquez Estrada B, Rachubinski AL, Sullivan KD, Galbraith MD, Espinosa JM. Variegated overexpression of chromosome 21 genes reveals molecular and immune subtypes of Down syndrome. Nat Commun 2024; 15:5473. [PMID: 38942750 PMCID: PMC11213896 DOI: 10.1038/s41467-024-49781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.
Collapse
Affiliation(s)
- Micah G Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Neetha P Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Eleanor C Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
14
|
Diotallevi A, Bruno F, Castelli G, Persico G, Buffi G, Ceccarelli M, Ligi D, Mannello F, Vitale F, Magnani M, Galluzzi L. Transcriptional signatures in human macrophage-like cells infected by Leishmania infantum, Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 2024; 18:e0012085. [PMID: 38578804 PMCID: PMC11023634 DOI: 10.1371/journal.pntd.0012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/17/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
15
|
Guo G, Zhou Z, Chen S, Cheng J, Wang Y, Lan T, Ye Y. Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC. Recent Pat Anticancer Drug Discov 2024; 19:530-542. [PMID: 37807645 DOI: 10.2174/0115748928255417230924191157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC). MATERIALS AND METHODS The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the "Consesus- ClusterPlus" R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset. RESULTS According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset. CONCLUSION The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.
Collapse
Affiliation(s)
- Guoxiang Guo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
| | - Zhifeng Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Shuping Chen
- Laboratory of Immuno- Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Jiaqing Cheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yang Wang
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Fujian Province, China
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| |
Collapse
|
16
|
Aaes TL, Burgoa Cardás J, Ravichandran KS. Defining solute carrier transporter signatures of murine immune cell subsets. Front Immunol 2023; 14:1276196. [PMID: 38077407 PMCID: PMC10704505 DOI: 10.3389/fimmu.2023.1276196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.
Collapse
Affiliation(s)
- Tania Løve Aaes
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Javier Burgoa Cardás
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kodi S. Ravichandran
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Antony IR, Wong BHS, Kelleher D, Verma NK. Maladaptive T-Cell Metabolic Fitness in Autoimmune Diseases. Cells 2023; 12:2541. [PMID: 37947619 PMCID: PMC10650071 DOI: 10.3390/cells12212541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Immune surveillance and adaptive immune responses, involving continuously circulating and tissue-resident T-lymphocytes, provide host defense against infectious agents and possible malignant transformation while avoiding autoimmune tissue damage. Activation, migration, and deployment of T-cells to affected tissue sites are crucial for mounting an adaptive immune response. An effective adaptive immune defense depends on the ability of T-cells to dynamically reprogram their metabolic requirements in response to environmental cues. Inability of the T-cells to adapt to specific metabolic demands may skew cells to become either hyporesponsive (creating immunocompromised conditions) or hyperactive (causing autoimmune tissue destruction). Here, we review maladaptive T-cell metabolic fitness that can cause autoimmune diseases and discuss how T-cell metabolic programs can potentially be modulated to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Irene Rose Antony
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Vellore Institute of Technology, Vellore 632014, India; (I.R.A.); (B.H.S.W.); (D.K.)
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech-NTU), Nanyang Technological University, Singapore 637335, Singapore
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
18
|
Sanahuja I, Fernandez-Alacid L, Torrecillas S, Ruiz A, Vallejos-Vidal E, Firmino JP, Reyes-Lopez FE, Tort L, Tovar-Ramirez D, Ibarz A, Gisbert E. Dietary Debaryomyces hansenii promotes skin and skin mucus defensive capacities in a marine fish model. Front Immunol 2023; 14:1247199. [PMID: 37711618 PMCID: PMC10499179 DOI: 10.3389/fimmu.2023.1247199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Laura Fernandez-Alacid
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Silvia Torrecillas
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Joana P. Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | | | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Antoni Ibarz
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| |
Collapse
|
19
|
Xu M, Zhou H, Hu P, Pan Y, Wang S, Liu L, Liu X. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front Immunol 2023; 14:1084531. [PMID: 36911691 PMCID: PMC9992203 DOI: 10.3389/fimmu.2023.1084531] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, but existing therapeutics are limited. Therefore, novel molecular pathways that contribute to DN therapy and diagnostics are urgently needed. Methods Based on the Gene Expression Omnibus (GEO) database and Limma R package, we identified differentially expressed genes of DN and downloaded oxidative stress-related genes based on the Genecard database. Then, immune and oxidative stress-related hub genes were screened by combined WGCNA, machine learning, and protein-protein interaction (PPI) networks and validated by external validation sets. We conducted ROC analysis to assess the diagnostic efficacy of hub genes. The correlation of hub genes with clinical characteristics was analyzed by the Nephroseq v5 database. To understand the cellular clustering of hub genes in DN, we performed single nucleus RNA sequencing through the KIT database. Results Ultimately, we screened three hub genes, namely CD36, ITGB2, and SLC1A3, which were all up-regulated. According to ROC analysis, all three demonstrated excellent diagnostic efficacy. Correlation analysis revealed that the expression of hub genes was significantly correlated with the deterioration of renal function, and the results of single nucleus RNA sequencing showed that hub genes were mainly clustered in endothelial cells and leukocyte clusters. Conclusion By combining three machine learning algorithms with WGCNA analysis, this research identified three hub genes that could serve as novel targets for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Hu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Yahya DN, Guad RM, Wu YS, Gan SH, Gopinath SCB, Zakariah HA, Rashid RA, Sim MS. SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis. J Pers Med 2023; 13:jpm13020270. [PMID: 36836504 PMCID: PMC9964684 DOI: 10.3390/jpm13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
SLC1A2 is a gene encoded for the excitatory amino acid transporter 2 which is responsible for glutamate reuptake from the synaptic cleft in the central nervous system. Recent studies have suggested that polymorphisms on glutamate transporters can affect drug dependence, leading to the development of neurological diseases and psychiatric disorders. Our study investigated the association of rs4755404 single nucleotide polymorphism (SNP) of the SLC1A2 gene with methamphetamine (METH) dependence and METH-induced psychosis and mania in a Malaysian population. The rs4755404 gene polymorphism was genotyped in METH-dependent male subjects (n = 285) and male control subjects (n = 251). The subjects consisted of the four ethnic groups in Malaysia (Malay, Chinese, Kadazan-Dusun, and Bajau). Interestingly, there was a significant association between rs4755404 polymorphism and METH-induced psychosis in the pooled METH-dependent subjects in terms of genotype frequency (p = 0.041). However, there was no significant association between rs4755404 polymorphism and METH dependence. Also, the rs455404 polymorphism was not significantly associated with METH-induced mania for both genotype frequencies and allele frequencies in the METH-dependent subjects, regardless of stratification into the different ethnicities. Our study suggests that the SLC1A2 rs4755404 gene polymorphism confers some susceptibility to METH-induced psychosis, especially for those who carry the GG homozygous genotype.
Collapse
Affiliation(s)
- Dayang Nooreffazleen Yahya
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (R.M.G.); (M.S.S.)
| | - Yuan-Seng Wu
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Hasif Adli Zakariah
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rusdi Abdul Rashid
- Department of Psychological Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (R.M.G.); (M.S.S.)
| |
Collapse
|
21
|
Jiang S, Zou J, Dong J, Shi H, Chen J, Li Y, Duan X, Li W. Lower SLC7A2 expression is associated with enhanced multidrug resistance, less immune infiltrates and worse prognosis of NSCLC. Cell Commun Signal 2023; 21:9. [PMID: 36639771 PMCID: PMC9838041 DOI: 10.1186/s12964-022-01023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Solute carrier family 7 member 2 (SLC7A2), a cationic amino acid transporter, is lowly expressed in ovarian and hepatocellular cancers, which is associated with their worse prognosis. However, its roles in the prognosis, drug resistance and immune infiltration in non-small-cell lung cancer (NSCLC) are unclear. METHODS We chose SLC7A2 from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells, then bioinformatics, cell lines construction, RT-qPCR, and CCK8 were performed to investigate SLC7A2 role. RESULT We analyzed the 223 differentially expressed genes (DEGs) from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells and found that SLC7A2 expression was down-regulated in NSCLC. Lower SLC7A2 expression was associated with worse recurrence-free survival (RFS) in NSCLC. SLC7A2 silencing enhanced the proliferation of NSCLC cells and their insensitivity to paclitaxel, cisplatin, and gemcitabine in vitro. Activation of AMPK has up-regulated SLC7A2 expression and enhanced the sensitivity of NSCLC cells to anti-tumor drugs, which could be attributed to E2F1's regulation. In addition, the levels of SLC7A2 expression were correlated to the numbers of infiltrated neutrophils, macrophages, dendritic cells and their marker genes, like CD86, HLA-DPA1 and ITGAM. CONCLUSIONS SLC7A2 may act as a tumor suppressor to modulate drug sensitivity, immune infiltration and survival in NSCLC. Video abstract.
Collapse
Affiliation(s)
- Shanshan Jiang
- grid.440288.20000 0004 1758 0451Institute of Hematological Research, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, 71000 Shaanxi China
| | - Junrong Zou
- grid.452437.3The First Affiliated Hospital of Gan’nan Medical University, Ganzhou, China
| | - Jianyu Dong
- grid.416466.70000 0004 1757 959XBreast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huimian Shi
- Yiling Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Jie Chen
- grid.440288.20000 0004 1758 0451Department of Pathology, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, 71000 Shaanxi China
| | - Yan Li
- grid.440288.20000 0004 1758 0451Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xianglong Duan
- grid.440288.20000 0004 1758 0451Second Department of General Surgery, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, 71000 Shaanxi China ,grid.440588.50000 0001 0307 1240Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China ,grid.440288.20000 0004 1758 0451Second Department of General Surgery, Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wensheng Li
- grid.440588.50000 0001 0307 1240Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China ,grid.440288.20000 0004 1758 0451Department of Pathology, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, 71000 Shaanxi China
| |
Collapse
|
22
|
Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022; 10:1090765. [PMID: 36601540 PMCID: PMC9806183 DOI: 10.3389/fcell.2022.1090765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca 2+) is an important second messenger in charge of many critical processes in the central nervous system (CNS), including membrane excitability, neurotransmission, learning, memory, cell proliferation, and apoptosis. In this way, the voltage-gated calcium channels (VGCCs) act as a key supply for Ca2+ entry into the cytoplasm and organelles. Importantly, the dysregulation of these channels has been reported in many neurological diseases of young-onset, with associated genetic factors, such as migraine, multiple sclerosis, and Huntington's disease. Notably, the literature has pointed to the role of N-type Ca2+ channels (NTCCs) in controlling a variety of processes, including pain, inflammation, and excitotoxicity. Moreover, several Ca2+ channel blockers that are used for therapeutic purposes have been shown to act on the N-type channels. Therefore, this review provides an overview of the NTCCs in neurological disorders focusing mainly on Huntington's disease, multiple sclerosis, and migraine. It will discuss possible strategies to generate novel therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alessandra Hubner De Souza
- Post-Graduate Program of Health Sciences, Faculdade de Ciências Médicas de, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| | - Juliana Figueira
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nancy Scardua Binda
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Pharmacology Departament, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Faculty Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| |
Collapse
|
23
|
Lai Y, Zhong XB. Special Section on New Era of Transporter Science: Unraveling the Functional Role of Orphan Transporters–Editorial. Drug Metab Dispos 2022. [DOI: 10.1124/dmd.122.001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Kuang W, Yang J, Liu Z, Zeng J, Xia X, Chen X, Zhong S, Huang R. Catechin Mediates Ferroptosis to Exert an Anti-Inflammatory Effect on RAW 264.7 Cells. Foods 2022; 11:foods11111572. [PMID: 35681322 PMCID: PMC9180002 DOI: 10.3390/foods11111572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Catechin possesses a potential anti-inflammatory activity, but its anti-inflammatory mechanism is still unclear. Herein, the analysis of network pharmacology showed that catechin might mediate ferroptosis on macrophages to exhibit a significant anti-inflammatory effect on RAW264.7. The metabolomics further indicated that catechin might influence ferroptosis by activating two pathways of cysteine and methionine metabolism and glutathione metabolism, and inhibiting the pathway of ferroptosis to promote the reduction of l-methionine-s-oxide and s-glutathionyl-l-cysteine, and the reduction and synthesis of γ-glutamylcysteine. Furthermore, related proteins (MSRA, CDR, GSR and GCL) in three metabolic pathways and ferroptosis-related proteins (GPX4 and SLC7A11) might be relevant to catechin through molecular docking. Thus, we speculate that catechin plays an anti-inflammatory effect through mediating ferroptosis on RAW264.7, which still needs further focus on the detailed molecular mechanism.
Collapse
Affiliation(s)
- Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Zhiyuan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (W.K.); (J.Y.); (Z.L.); (J.Z.); (X.X.); (X.C.)
- Correspondence:
| |
Collapse
|