1
|
Shao Y, Yin X, Kang D, Shen B, Zhu Z, Li X, Li H, Xie L, Wang G, Liang Y. An integrated strategy for the quantitative analysis of endogenous proteins: A case of gender-dependent expression of P450 enzymes in rat liver microsome. Talanta 2017; 170:514-522. [DOI: 10.1016/j.talanta.2017.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
|
2
|
Optimized proteomic analysis of rat liver microsomes using dual enzyme digestion with 2D-LC–MS/MS. J Proteomics 2013; 82:166-78. [DOI: 10.1016/j.jprot.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 12/23/2022]
|
3
|
Spanakis M, Vizirianakis IS, Batzias G, Niopas I. Pharmacokinetic interaction between losartan and Rhodiola rosea in rabbits. Pharmacology 2013; 91:112-6. [PMID: 23327826 DOI: 10.1159/000345929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
AIM The study investigates the potential interaction of the herbal medicinal product of Rhodiola rosea on the pharmacokinetics of losartan and its active metabolite EXP3174 after concurrent oral administration to rabbits. MATERIALS AND METHODS We conducted a randomized, single-dose, two-treatment, two-period, two-sequence, cross-over pharmacokinetic study on 6 healthy female New Zealand rabbits, after concurrent oral administration of losartan (5 mg/kg) and the herbal medicinal product of R. rosea (50 mg/kg). Quantification of losartan and its main active metabolite EXP3174 was achieved using a validated HPCL/UV method. Pharmacokinetic and statistical analysis was performed using the EquivTest/PK software. OBSERVATIONS Administration of the herbal medicinal product of R. rosea resulted in a statistically significant increase of the following pharmacokinetic parameters for losartan: the maximum plasma concentration (C(max)), the area under the curve (AUC) and the apparent total body clearance (CL/F). An almost 2-fold increase in the AUC of losartan was observed after concurrent administration of the herbal medicinal product of R. rosea. No statistically significant alteration was observed in the pharmacokinetic parameters of the active metabolite of losartan EXP3174. CONCLUSION The data of this study suggest that R. rosea significantly alters the pharmacokinetic properties of losartan after concurrent oral administration to rabbits. A study in humans should be conducted to assess the clinical significance of a possible herb-drug interaction between the herbal medicinal products of R. rosea and drugs such as losartan, which are substrates of both CYPs and P-gp.
Collapse
Affiliation(s)
- M Spanakis
- Department of Pharmacognosy and Pharmacology, School of Pharmacy, Thessaloniki, Greece
| | | | | | | |
Collapse
|
4
|
Moskaleva NE, Zgoda VG. [Current methods of cytochrome p450 analysis]. BIOMEDITSINSKAIA KHIMIIA 2012; 58:617-634. [PMID: 23350195 DOI: 10.18097/pbmc20125806617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Current review describes recent approaches of cytochrome P450 concentration and activity evaluation. Special attention paid to modem methods of proteomic analysis such as electrophoresis and chromato-mass-spectrometry. Methods of targeted proteomic applicable for quantitative and qualitative study of P450s in biological samples as well as methods for the enzyme activity measurements are reviewed. Finally, data on correlation between certain P450 isoform content and its specific enzymatic activities were described and discussed in the review.
Collapse
|
5
|
Karlstädt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek V, Holzhütter HG. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC SYSTEMS BIOLOGY 2012; 6:114. [PMID: 22929619 PMCID: PMC3568067 DOI: 10.1186/1752-0509-6-114] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/16/2012] [Indexed: 02/08/2023]
Abstract
Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.
Collapse
Affiliation(s)
- Anja Karlstädt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1/Virchowweg 6, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Huang HJ, Tsai ML, Chen YW, Chen SH. Quantitative shot-gun proteomics and MS-based activity assay for revealing gender differences in enzyme contents for rat liver microsome. J Proteomics 2011; 74:2734-44. [PMID: 21300189 DOI: 10.1016/j.jprot.2011.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/17/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
Abstract
Liver microsomes are subcellular fractions that contain many metabolizing enzymes for drugs and endogeneous compounds. Some of these enzymes are regulated by sex hormonal control and exhibit sex-dependent expression pattern and metabolizing speed. Studying these enzymes, however, are complicated by the presence of isoforms such as cytochrome P450 (CYP450), which families share more than 50% amino acid identities. In this study, we applied quantitative shot-gun proteomics approach coupled with stable-isotope dimethyl labeling, two-dimensional reversed-phase peptide separation and tandem mass spectrometry (MS) to explore the gender-dependent expression of rat liver microsomal proteins. A total of 391 proteins were identified and quantified by this approach, and 56% of quantified proteins were enzymes. Although shot-gun approach is rarely used for identifying protein isoforms, we identified 53 isoforms by at least one unique peptide including 21 isoforms of CYP450s. Moreover, by quantitative and statistics assessment, we were able to classify them into 28 male dominant enzymes including CYP2C12 CYP2C11, CYP2C13, CYP2B3, CYP2C11, CYP2C70 and CYP3A2 which are known to be male specific, 21 female dominant enzymes including CYP2A1, CYP2C7, CYP2C12, CYP2D26, alcohol dehydrogenase 1, carboxylesterase 3, glutathione S-transferase, liver carboxylesterase 4, UDP-glucuronosyltransferase 2B1, and glyceraldehyde-3-phosphate dehydrogenase which are known to be female specific; and 125 sex-independent enzymes. However, most of the sex specificities revealed from this study, such as the male specificity of CYP2D1, were novel and not yet reported. We then conducted a mass spectrometry-multiple reaction mode (MS-MRM) based enzyme activity method to determine the catalyzing rate of CYP2D1 in male and female liver microsomes using carteolol as its specific substrate. The reaction rate catalyzed by CYP2D1 in female rats was determined to differ significantly with the rate in male rats. Moreover, the ratio (female/male) of reaction rate (0.68) was found to correlate with their relative protein abundance (0.72). This study revealed novel sex dependences of many rat liver enzymes and also demonstrated a unique MS-based analytical platform that could identify novel iso-enzymes and further quantify their abundance and enzyme activity.
Collapse
Affiliation(s)
- Hung-Jen Huang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
7
|
Getie-Kebtie M, Lazarev A, Eichelberger M, Alterman M. Label-free mass spectrometry-based relative quantification of proteins separated by one-dimensional gel electrophoresis. Anal Biochem 2011; 409:202-12. [DOI: 10.1016/j.ab.2010.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 02/04/2023]
|
8
|
Lisitsa AV, Petushkova NA, Thiele H, Moshkovskii SA, Zgoda VG, Karuzina II, Chernobrovkin AL, Skipenko OG, Archakov AI. Application of slicing of one-dimensional gels with subsequent slice-by-slice mass spectrometry for the proteomic profiling of human liver cytochromes P450. J Proteome Res 2010; 9:95-103. [PMID: 19722723 DOI: 10.1021/pr900262z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sequential thin slicing of one-dimensional electrophoresis gels followed by slice-by-slice mass spectrometry to allow protein identification was used to produce a proteomic map for cytochromes P450. Parallel MALDI-TOF-MS and LC-MS/MS analyses were performed. Combination of the two MS methods increased the quality of protein identification. We have proposed an efficient approach to obtain a comprehensive profile of drug-metabolizing enzymes in the liver that can be used to differentiate between polymorphic variants of cytochromes P450.
Collapse
Affiliation(s)
- Andrey V Lisitsa
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wörner M, Melchior K, Delmotte N, Hwang KH, Monostory K, Huber CG, Bernhardt R. Shotgun proteomic analysis of the microsomal fraction of eukaryotic cells using a two-dimensional reversed-phase×ion-pair reversed-phase HPLC setup. J Sep Sci 2009; 32:1165-74. [DOI: 10.1002/jssc.200800619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Dail MB, Shack LA, Chambers JE, Burgess SC. Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci 2008; 106:556-69. [PMID: 18796496 PMCID: PMC2581678 DOI: 10.1093/toxsci/kfn198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/10/2008] [Indexed: 12/14/2022] Open
Abstract
A global proteomics approach was applied to model the hepatic response elicited by the toxicologically well-characterized xenobiotic phenobarbital (PB), a prototypical inducer of hepatic xenobiotic metabolizing enzymes and a well-known nongenotoxic liver carcinogen in rats. Differential detergent fractionation two-dimensional liquid chromatography electrospray ionization tandem mass spectrometry and systems biology modeling were used to identify alterations in toxicologically relevant hepatic molecular functions and biological processes in the livers of rats following a 5-day exposure to PB at 80 mg/kg/day or a vehicle control. Of the 3342 proteins identified, expression of 121 (3.6% of the total proteins) was significantly increased and 127 (3.8%) significantly decreased in the PB group compared to controls. The greatest increase was seen for cytochrome P450 (CYP) 2B2 (167-fold). All proteins with statistically significant differences from control were then analyzed using both Gene Ontology (GO) and Ingenuity Pathways Analysis (IPA, 5.0 IPA-Tox) for cellular location, function, network connectivity, and possible disease processes, especially as they relate to CYP-mediated metabolism and nongenotoxic carcinogenesis mechanisms. The GO results suggested that PB's mechanism of nongenotoxic carcinogenesis involves both increased xenobiotic metabolism, especially induction of the 2B subfamily of CYP enzymes, and increased cell cycle activity. Apoptosis, however, also increased, perhaps, as an attempt to counter the rising cancer threat. Of the IPA-mapped proteins, 41 have functions which are procarcinogenic and 14 anticarcinogenic according to the hypothesized nongenotoxic mechanism of imbalance between apoptosis and cellular proliferation. Twenty-two additional IPA nodes can be classified as procarcinogenic by the competing theory of increased metabolism resulting in the formation of reactive oxygen species. Since the systems biology modeling corresponded well to PB effects previously elucidated via more traditional methods, the global proteomic approach is proposed as a new screening methodology that can be incorporated into future toxicological studies.
Collapse
Affiliation(s)
- Mary B. Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - L. Allen Shack
- Department of Basic Sciences, College of Veterinary Medicine
| | - Janice E. Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - Shane C. Burgess
- Department of Basic Sciences, College of Veterinary Medicine
- Mississippi Agriculture and Forestry Experiment Station
- Institute for Digital Biology
- Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
11
|
Rezen T, Contreras JA, Rozman D. Functional Genomics Approaches to Studies of the Cytochrome P450 Superfamily. Drug Metab Rev 2008; 39:389-99. [PMID: 17786628 DOI: 10.1080/03602530701498760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Functional genomics approaches are widely implemented in current research and have found application in many areas of biology. This review will present research fields, novel findings and new tools developed in the cytochrome P450 field using the functional genomics techniques. The most widely used method is microarray technology, which has already greatly contributed to the understanding of the cytochromes P450 function and expression. Several focused CYP microarrays have been developed for genotyping, toxicogenomics and studies of CYP function of many different organisms. Our contribution to the CYP field by development of Steroltalk microarrays to study the cross-talk of cholesterol homeostasis and drug metabolism is also presented.
Collapse
Affiliation(s)
- Tadeja Rezen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
12
|
Redlich G, Zanger UM, Riedmaier S, Bache N, Giessing ABM, Eisenacher M, Stephan C, Meyer HE, Jensen ON, Marcus K. Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 2008; 7:4678-88. [PMID: 18828626 DOI: 10.1021/pr800231w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based on sequence homology. In the present work, we demonstrate the performance of a mass spectrometry-based strategy to simultaneously detect and differentiate distinct human Cytochrome P450 (CYP) isoforms including the highly similar CYP3A4, CYP3A5, CYP3A7, as well as CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP4F2, CYP4F3, CYP4F11, CYP4F12. Compared to commonly used immunodetection methods, mass spectrometry overcomes limitations such as low antibody specificity and offers high multiplexing possibilities. Furthermore, CYP phosphorylation, which may affect various biochemical and enzymatic properties of these enzymes, is still poorly analyzed, especially in human tissues. Using titanium dioxide resin combined with tandem mass spectrometry for phosphopeptide enrichment and sequencing, we discovered eight human P450 phosphorylation sites, seven of which were novel. The data from surgical human liver samples establish that the isoforms CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C8, CYP2D6, CYP3A4, CYP3A7, and CYP8B1 are phosphorylated in vivo. These results will aid in further investigation of the functional significance of protein phosphorylation for this important group of enzymes.
Collapse
Affiliation(s)
- Gorden Redlich
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr. 150, ZKF, D-44801 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Getie-Kebtie M, Franke P, Aksamit R, Alterman MA. Experimental Evaluation of Protein Identification by an LC/MALDI/On-Target Digestion Approach. J Proteome Res 2008; 7:3697-707. [DOI: 10.1021/pr800258k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melkamu Getie-Kebtie
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Peter Franke
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Robert Aksamit
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Michail A. Alterman
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Zgoda V, Tikhonova O, Viglinskaya A, Serebriakova M, Lisitsa A, Archakov A. Proteomic profiles of induced hepatotoxicity at the subcellular level. Proteomics 2006; 6:4662-70. [PMID: 16897686 DOI: 10.1002/pmic.200600342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study proteomes of liver samples were analyzed after administration of phenobarbital (PB) or 3-methylcholantrene (3-MC) to mice. Liver cell homogenates were subfractionated by differential ultracentrifugation into cytosol and microsomes, which were subjected to 2-DE to generate the proteomic maps of these fractions. 2-DE yielded 1100 and 800 protein spots for microsomes and cytosol, respectively. General trends of the fraction-specific alterations after 3-MC or PB treatment were evaluated using the Student's t-test and the principal component analysis (PCA). According to the PCA-derived data, the microsomal changes after 3-MC and PB treatment were quite similar. However, in the case of the cytosol data, the specificities of 3-MC- and PB-induced responses could be clearly distinguished from each other. Protein spots, whose expression levels differed from control, were identified by MALDI-TOF PMF. Proteomic studies such as those reported herein can be useful in identifying the molecular-based toxicity of lead drug candidates.
Collapse
Affiliation(s)
- Victor Zgoda
- V.N. Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Kanaeva IP, Petushkova NA, Lisitsa AV, Lokhov PG, Zgoda VG, Karuzina II, Archakov AI. Proteomic and biochemical analysis of the mouse liver microsomes. Toxicol In Vitro 2005; 19:805-12. [PMID: 15908171 DOI: 10.1016/j.tiv.2005.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 02/11/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
The efficiency of the proteomic approach for the revelation of proteins, including components of the liver microsomal monooxygenase system (cytochromes b5 and P450) was demonstrated. The liver microsomes and their ghosts (i.e. membranes devoid of "ballast" proteins) were prepared from the control and phenobarbital-treated mice. Microsomes and their ghosts were characterized using the conventional biochemical assay and analysed by one- and two-dimensional electrophoresis (1-DE and 2-DE, respectively) coupled with MALDI-TOF peptide mass fingerprinting procedure. Catalytic activity of cytochromes P450 was measured using specific fluorogenic substrates for CYP1A, CYP2A, CYP2B and CYP2C families. The protein composition of control and phenobarbital-induced ghosts was analysed. The proteomic 2D-based protein separation method enabled us to reveal up to 1005 proteins, the majority of them being soluble. Among the 34 identified proteins, the cytochrome b5-like protein was revealed; however, cytochromes P450 appeared to be undetectable under 2-DE separation conditions. The separation of microsomal ghosts proteins by 1-DE, followed by mass-spectrometric analysis of bands from the 45 to 66 kDa gel range made it possible to identify hydrophobic proteins including cytochromes P450 (CYP2A4 and CYP2A5) and dimethylaniline monooxygenase. The high O-deethylation rate of 7-ethoxycoumarin-a substrate for rodent CYPs 2A and 2B, in particular for CYP2A5-was observed, in agreement with the results of mass-spectrometric identification. Collectively, the data obtained indicate that a combination of enzyme activity assays and various protein separation techniques coupled with mass-spectrometric protein identification allows a more comprehensive insight into the machinery of the cellular detoxifying system.
Collapse
Affiliation(s)
- I P Kanaeva
- V.N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121, Pogodinskaya St., 10, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Alterman MA, Kornilayev B, Duzhak T, Yakovlev D. QUANTITATIVE ANALYSIS OF CYTOCHROME P450 ISOZYMES BY MEANS OF UNIQUE ISOZYME-SPECIFIC TRYPTIC PEPTIDES: A PROTEOMIC APPROACH. Drug Metab Dispos 2005; 33:1399-407. [PMID: 15951447 DOI: 10.1124/dmd.105.004812] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry method has been developed to quantitate cytochrome P450 (P450) isozymes based on their unique isozyme-specific tryptic peptides. It was shown that the molar ratio of P450 isozyme-specific peptides is linearly proportional to the mass peak area ratio of corresponding peptides not only in simple two-peptide mixtures, but also in complex digest mixtures. This approach is applicable both to in-gel (as shown for CYP2B1 and CYP2B2) and in-solution digests (as shown for CYP1A2, CYP2E1, and CYP2C19) and does not require introduction of stable isotopes or labeling with isotope-coded affinity tagging. The relative and absolute quantitation can be performed after developing corresponding calibration curves with synthesized P450 isozyme-specific peptide standards. The absolute quantitation of human P450 isozymes was performed by using CYP2B2 isozyme-specific peptide (1306.7 Da) as the universal internal standard. The utility of this approach was demonstrated for two highly homologous (>97%) rat liver CYP2B1 and CYP2B2 and three human P450 isozymes belonging to two different families and three different subfamilies: CYP1A2, CYP2E1, and CYP2C19. In summary, we have demonstrated that MALDI TOF-based peptide mass fingerprinting of different cytochrome P450 isozymes can provide not only qualitative but quantitative data, too.
Collapse
Affiliation(s)
- Michail A Alterman
- Biochemical Research Service Laboratory/Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS 66047-3761, USA.
| | | | | | | |
Collapse
|
17
|
Nisar S, Lane CS, Wilderspin AF, Welham KJ, Griffiths WJ, Patterson LH. A PROTEOMIC APPROACH TO THE IDENTIFICATION OF CYTOCHROME P450 ISOFORMS IN MALE AND FEMALE RAT LIVER BY NANOSCALE LIQUID CHROMATOGRAPHY-ELECTROSPRAY IONIZATION-TANDEM MASS SPECTROMETRY. Drug Metab Dispos 2004; 32:382-6. [PMID: 15039290 DOI: 10.1124/dmd.32.4.382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanoscale reversed-phase liquid chromatography (LC) combined with electrospray ionization-tandem mass spectrometry (ESI-MS/MS) has been used as a method for the direct identification of multiple cytochrome P450 (P450) isoforms found in male and female rat liver. In this targeted proteomic approach, rat liver microsomes were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel tryptic digestion of the proteins present in the 48- to 62-kDa bands. The resultant peptides were extracted and analyzed by LC-ESI-MS/MS. P450 identifications were made by searching the MS/MS data against a rat protein database containing 21,576 entries including 47 P450s using Sequest software (Thermo Electron, Hemel Hempstead, UK). Twenty-four P450 isoforms from the subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A, 4F, CYP17, and CYP19 were positively identified in rat liver.
Collapse
Affiliation(s)
- S Nisar
- Department of Pharmaceutical & Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:905-916. [PMID: 12938112 DOI: 10.1002/jms.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
19
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447285 DOI: 10.1002/cfg.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|