1
|
Ruminski PG, Rettig MP, DiPersio JF. Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells. Biomolecules 2024; 14:1003. [PMID: 39199390 PMCID: PMC11353233 DOI: 10.3390/biom14081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA
| |
Collapse
|
2
|
Vasconcelos D, Chaves B, Albuquerque A, Andrade L, Henriques A, Sartori G, Savino W, Caffarena E, Martins-Da-Silva JH. Development of New Potential Inhibitors of β1 Integrins through In Silico Methods-Screening and Computational Validation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070932. [PMID: 35888022 PMCID: PMC9325263 DOI: 10.3390/life12070932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Integrins are transmembrane receptors that play a critical role in many biological processes which can be therapeutically modulated using integrin blockers, such as peptidomimetic ligands. This work aimed to develop new potential β1 integrin antagonists using modeled receptors based on the aligned crystallographic structures and docked with three lead compounds (BIO1211, BIO5192, and TCS2314), widely known as α4β1 antagonists. Lead-compound complex optimization was performed by keeping intact the carboxylate moiety of the ligand, adding substituents in two other regions of the molecule to increase the affinity with the target. Additionally, pharmacokinetic predictions were performed for the ten best ligands generated, with the lowest docking interaction energy obtained for α4β1 and BIO5192. Results revealed an essential salt bridge between the BIO5192 carboxylate group and the Mg2+ MIDAS ion of the integrin. We then generated more than 200 new BIO5192 derivatives, some with a greater predicted affinity to α4β1. Furthermore, the significance of retaining the pyrrolidine core of the ligand and increasing the therapeutic potential of the new compounds is emphasized. Finally, one novel molecule (1592) was identified as a potential drug candidate, with appropriate pharmacokinetic profiles, similar dynamic behavior at the integrin interaction site compared with BIO5192, and a higher predicted affinity to VLA-4.
Collapse
Affiliation(s)
- Disraeli Vasconcelos
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Beatriz Chaves
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Aline Albuquerque
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Luca Andrade
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Andrielly Henriques
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Geraldo Sartori
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Wilson Savino
- Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisa em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-222, Brazil;
| | - João Herminio Martins-Da-Silva
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
3
|
Patel SA, Dalela D, Fan AC, Lloyd MR, Zhang TY. Niche-directed therapy in acute myeloid leukemia: optimization of stem cell competition for niche occupancy. Leuk Lymphoma 2021; 63:10-18. [PMID: 34407733 DOI: 10.1080/10428194.2021.1966779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of stem cell origin that contributes to significant morbidity and mortality. The long-term prognosis remains dismal given the high likelihood for primary refractory or relapsed disease. An essential component of relapse is resurgence from the bone marrow. To date, the murine hematopoietic stem cell (HSC) niche has been clearly defined, but the human HSC niche is less well understood. The design of niche-based targeted therapies for AML must account for which cellular subsets compete for stem cell occupancy within respective bone marrow microenvironments. In this review, we highlight the principles of stem cell niche biology and discuss translational insights into the AML microenvironment as of 2021. Optimization of competition for niche occupancy is important for the elimination of measurable residual disease (MRD). Some of these novel therapeutics are in the pharmacologic pipeline for AML and may be especially useful in the setting of MRD.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Disha Dalela
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy C Fan
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxwell R Lloyd
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tian Y Zhang
- Department of Medicine, Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Mouse IgG3 binding to macrophage-like cells is prevented by deglycosylation of the antibody or by Accutase treatment of the cells. Sci Rep 2021; 11:10295. [PMID: 33986441 PMCID: PMC8119965 DOI: 10.1038/s41598-021-89705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.
Collapse
|
5
|
Alahmari B, Cooper ML, Vij K, Ritchey J, Ruminski P, Gao F, Choi J, DiPersio JF. Selective targeting of α4β1 integrin attenuates murine graft versus host disease. Leukemia 2020; 34:3100-3104. [PMID: 32152466 DOI: 10.1038/s41375-020-0786-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Bader Alahmari
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew L Cooper
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kiran Vij
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Julie Ritchey
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peter Ruminski
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jaebok Choi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - John F DiPersio
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Lichnog C, Klabunde S, Becker E, Fuh F, Tripal P, Atreya R, Klenske E, Erickson R, Chiu H, Reed C, Chung S, Neufert C, Atreya I, McBride J, Neurath MF, Zundler S. Cellular Mechanisms of Etrolizumab Treatment in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:39. [PMID: 30774593 PMCID: PMC6367223 DOI: 10.3389/fphar.2019.00039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-integrin therapy is a new frontline strategy in the treatment of inflammatory bowel diseases (IBD). The anti-β7 integrin antibody etrolizumab is currently being investigated for safety and efficacy in Crohn’s disease (CD) and ulcerative colitis (UC) in several phase III trials. Mechanistically, etrolizumab is known to block β7 integrin ligand binding and reduces intestinal trafficking of β7-expressing cells. Etrolizumab blocks β7 integrin ligand binding and reduces β7-positive lymphocyte migration and retention in the inflamed gut mucosa, but the exact mechanisms by which this inhibition occurs are not fully understood. Methods: Cellular effects of etrolizumab or etrolizumab surrogate antibody (etrolizumab-s) were investigated in cell culture models and analyzed by flow cytometry, fluorescence microscopy, ImageStream®, stimulated emission depletion (STED) microscopy and functional dynamic in vitro adhesion assays. Moreover, effects on α4β7 integrin were compared with the pharmacodynamically similar antibody vedolizumab. Results: As demonstrated by several different approaches, etrolizumab and etrolizumab-s treatment led to internalization of β7 integrin. This resulted in impaired dynamic adhesion to MAdCAM-1. Internalized β7 integrin localized in endosomes and re-expression of β7 was dependent on de novo protein synthesis. In vitro etrolizumab treatment did not lead to cellular activation or cytokine secretion and did not induce cytotoxicity. Internalization of α4β7 integrin was increased with etrolizumab compared with vedolizumab. Discussion: Our data suggest that etrolizumab does not elicit secondary effector functions on the single cell level. Integrin internalization may be an important mechanism of action of etrolizumab, which might explain some but not all immunological effects observed with etrolizumab.
Collapse
Affiliation(s)
- Charlotte Lichnog
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sha Klabunde
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Emily Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Franklin Fuh
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Entcho Klenske
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Rich Erickson
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Henry Chiu
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, United States
| | - Chae Reed
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Shan Chung
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Jacqueline McBride
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
7
|
Sens C, Huck K, Pettera S, Uebel S, Wabnitz G, Moser M, Nakchbandi IA. Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins. J Biol Chem 2017; 292:7745-7760. [PMID: 28325836 DOI: 10.1074/jbc.m116.739987] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Fibronectin is a multidomain protein secreted by various cell types. It forms a network of fibers within the extracellular matrix and impacts intracellular processes by binding to various molecules, primarily integrin receptors on the cells. Both the presence of several isoforms and the ability of the various domains and isoforms to bind to a variety of integrins result in a wide range of effects. In vivo findings suggest that fibronectin isoforms produced by the osteoblasts enhance their differentiation. Here we report that the isoform characterized by the presence of extradomain A activates α4β1 integrin and augments osteoblast differentiation. In addition, the isoform containing extradomain B enhances the binding of fibronectin through the RGD sequence to β3-containing integrin, resulting in increased mineralization by and differentiation of osteoblasts. Our study thus reveals novel functions for two fibronectin isoforms and the mediating receptors in osteoblast differentiation.
Collapse
Affiliation(s)
- Carla Sens
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and.,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katrin Huck
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and.,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Pettera
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Stephan Uebel
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Guido Wabnitz
- the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Moser
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Inaam A Nakchbandi
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and .,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 2017; 127:843-856. [PMID: 28134626 PMCID: PMC5330728 DOI: 10.1172/jci88720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region-specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS.
Collapse
Affiliation(s)
- Brian P. Daniels
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Harsha Jujjavarapu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard R. Green
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - James P. White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen M. Lazear
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael S. Diamond
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S. Klein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Domingues MJ, Nilsson SK, Cao B. New agents in HSC mobilization. Int J Hematol 2016; 105:141-152. [PMID: 27905003 DOI: 10.1007/s12185-016-2156-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Mobilized peripheral blood (PB) is the most common source of hematopoietic stem cells (HSC) for autologous transplantation. Granulocyte colony stimulating factor (G-CSF) is the most commonly used mobilization agent, yet despite its widespread use, a considerable number of patients still fail to mobilize. Recently, a greater understanding of the interactions that regulate HSC homeostasis in the bone marrow (BM) microenvironment has enabled the development of new molecules that mobilize HSC through specific inhibition, modulation or perturbation of these interactions. AMD3100 (plerixafor), a small molecule that selectively inhibits the chemokine receptor CXCR4 is approved for mobilization in combination with G-CSF in patients with Non-Hodgkin's lymphoma and multiple myeloma. Nevertheless, identifying mobilization strategies that not only enhance HSC number, but are rapid and generate an optimal "mobilized product" for improved transplant outcomes remains an area of clinical importance. In recent times, new agents based on recombinant proteins, peptides and small molecules have been identified as potential candidates for therapeutic HSC mobilization. In this review, we describe the most recent developments in HSC mobilization agents and their potential impact in HSC transplantation.
Collapse
Affiliation(s)
- Mélanie J Domingues
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Susan K Nilsson
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Benjamin Cao
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia. .,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Cao B, Zhang Z, Grassinger J, Williams B, Heazlewood CK, Churches QI, James SA, Li S, Papayannopoulou T, Nilsson SK. Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist. Nat Commun 2016; 7:11007. [PMID: 26975966 PMCID: PMC4796355 DOI: 10.1038/ncomms11007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9β1/α4β1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ−/− model, demonstrated by a significant increase in PB CD34+ cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9β1/α4β1 within the endosteal niche. These results support using dual α9β1/α4β1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications. Mobilizing haematopoietic stem cells to the peripheral blood has largely replaced bone marrow transplants as a strategy in the clinic. Here, Cao et al. report the use of an α9β1/α4β1 integrin antagonist to induce rapid mobilization of blood stem cells from the bone marrow in a humanized mouse model.
Collapse
Affiliation(s)
- Benjamin Cao
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Zhen Zhang
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Jochen Grassinger
- University Hospital Regensberg, Department of Hematology and Oncology, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Brenda Williams
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Quentin I Churches
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Simon A James
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Songhui Li
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Thalia Papayannopoulou
- Department of Medicine/Hematology, University of Washington Seattle, 1705 NE Pacific, Box 357710, Seattle, Washington 98195-7710, USA
| | - Susan K Nilsson
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Foster K, Lassailly F, Anjos-Afonso F, Currie E, Rouault-Pierre K, Bonnet D. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche. Stem Cell Reports 2015; 5:690-701. [PMID: 26455414 PMCID: PMC4649139 DOI: 10.1016/j.stemcr.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs) and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC) counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.
Collapse
Affiliation(s)
- Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Erin Currie
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK.
| |
Collapse
|
13
|
Häusler D, Nessler S, Kruse N, Brück W, Metz I. Natalizumab analogon therapy is effective in a B cell-dependent multiple sclerosis model. Neuropathol Appl Neurobiol 2015; 41:814-31. [PMID: 25641089 DOI: 10.1111/nan.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
AIMS Natalizumab is a humanized monoclonal antibody specific for CD49d receptors of integrins. It inhibits the entry of inflammatory cells into the central nervous system and is approved for the treatment of relapsing-remitting multiple sclerosis (MS). Several lines of evidence indicate an involvement of B cells and plasma cells in MS pathogenesis. However, treatment with the natalizumab analogon PS/2 immunoglobulin G (IgG) has so far only been investigated in T cell-mediated animal models of MS. Due to the importance of B lineage cells in the pathogenesis of MS, the objective of the present study has thus been to analyse the effects of PS/2 IgG in a mouse model of MS with T and B cell cooperation (OSE mice). METHODS OSE mice were treated with the natalizumab analogon PS/2 IgG either at disease onset or after peak of disease. Treatment was also performed with PS/2 F(ab')2 fragments. RESULTS PS/2 IgG treatment improved the clinical outcome and decreased spinal cord demyelination and immune cell infiltration if given early in the disease course. Treatment increased blood leukocytes and resulted in a partial internalization of CD49d in T and B cells. The therapeutic effects of PS/2 IgG injections were independent of the Fc fragment as F(ab')2 injections were equally beneficial. In contrast, PS/2 IgG was not effective when given late in the disease course. CONCLUSIONS Results indicate that natalizumab may also be beneficial in MS with B cell-driven immunopathogenesis.
Collapse
Affiliation(s)
- Darius Häusler
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Stefan Nessler
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Niels Kruse
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| |
Collapse
|
14
|
Wyant T, Yang L, Fedyk E. In vitro assessment of the effects of vedolizumab binding on peripheral blood lymphocytes. MAbs 2015; 5:842-50. [PMID: 24492340 DOI: 10.4161/mabs.26392] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vedolizumab (VDZ) is a humanized monoclonal antibody in development for the treatment of inflammatory bowel disease. VDZ binds to the α4β7 integrin complex and inhibits its binding to mucosal addressin cell adhesion molecule-1 (MAdCAM-1), thus preventing lymphocyte extravasation to gut mucosal tissues. To understand whether VDZ has additional effects that may affect its overall safety as a therapeutic molecule, we examined other potential actions of VDZ. In vitro assays with human peripheral blood lymphocytes demonstrated that VDZ fails to elicit cytotoxicity, lymphocyte activation, and cytokine production from memory T lymphocytes and does not interfere with the suppressive ability of regulatory T cells. Furthermore, we demonstrated that VDZ induces internalization of α4β7 and that the integrin is rapidly re-expressed and fully functional after VDZ withdrawal. These studies provide insight into the mechanisms underlying the observed safety profile of VDZ in clinical trials.
Collapse
Affiliation(s)
| | - Lili Yang
- Takeda Cambridge US; Cambridge, MA USA
| | - Eric Fedyk
- Takeda Pharmaceuticals Inc., International; Deerfield, IL USA
| |
Collapse
|
15
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
16
|
Sugiura T, Kageyama S, Andou A, Miyazawa T, Ejima C, Nakayama A, Dohi T, Eda H. Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. J Crohns Colitis 2013; 7:e533-42. [PMID: 23623333 DOI: 10.1016/j.crohns.2013.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Inhibition of lymphocyte trafficking by treatment with an anti-α4 integrin antibody has been clinically validated as a therapeutic approach for inflammatory bowel disease (IBD), and the orally effective 'anti-α4 integrin therapy' may be more convenient in clinical practice. The aim of this study was to investigate the pharmacological profile and anti-inflammatory effect of a novel, orally active small molecule α4 integrin antagonist, AJM300. METHODS The binding specificity/potency of HCA2969 (the active metabolite of AJM300) were investigated in vitro. The pharmacodynamics for α4 integrin antagonism of AJM300 was investigated in mice. The anti-inflammatory effect of AJM300 fed in a diet and the anti-α4 integrin monoclonal antibody was evaluated in a mouse colitis model induced by transfer of IL-10 deficient T cells. RESULTS HCA2969 selectively inhibited the in vitro binding of α4 integrin (α4β7/α4β1) to the cell adhesion molecules. Oral treatment with AJM300 dose-dependently inhibited lymphocyte homing to Peyer's patches and increased the peripheral lymphocyte count in the same dose range. AJM300 dose-dependently prevented the development of experimental colitis in mice. A significant inhibition of colon weight increase was accompanied by inhibition of T-cell infiltration into the lamina propria of colon. The maximum efficacy of AJM300 (1% diet) was comparable to that achieved by the saturated α4 integrin blockade with antibody. CONCLUSIONS Oral treatment with the selective small molecule α4 integrin antagonist (AJM300) prevented the development of colitis and its efficacy was comparable to that of the anti-α4 integrin antibody.
Collapse
|
17
|
Smith JL, Rossiter KI, Semko CM, Xu YZ, Quincy DA, Jagodzinski J, Dappen MS, Konradi AW, Vandevert C, Garrido C, Mao W, San Pablo FB, Wipke B, Dofiles L, Wadsworth A, Peterson E, Lorenzana C, Simmonds S, Messersmith EK, Bard F, Pleiss MA, Yednock TA. PEG conjugates of potent α4 integrin inhibitors, maintaining sustained levels and bioactivity in vivo, following subcutaneous administration. Bioorg Med Chem Lett 2013; 23:4117-9. [PMID: 23743283 DOI: 10.1016/j.bmcl.2013.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022]
Abstract
Mitsunobu reactions were employed to link t-butyl esters of α4 integrin inhibitors at each of the termini of a three-arm, 40 kDa, branched PEG. Cleavage of the t-butyl esters using HCO2H provided easily isolated PEG derivatives, which are potent α4 integrin inhibitors, and which achieve sustained levels and bioactivity in vivo, following subcutaneous administration to rats.
Collapse
Affiliation(s)
- Jenifer L Smith
- Elan Pharmaceuticals, 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vanderslice P, Biediger RJ, Woodside DG, Brown WS, Khounlo S, Warier ND, Gundlach CW, Caivano AR, Bornmann WG, Maxwell DS, McIntyre BW, Willerson JT, Dixon RAF. Small molecule agonist of very late antigen-4 (VLA-4) integrin induces progenitor cell adhesion. J Biol Chem 2013; 288:19414-28. [PMID: 23703610 DOI: 10.1074/jbc.m113.479634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the integrin family of cell adhesion receptors on progenitor cells may be a viable approach to enhance the effects of stem cell-based therapies by improving cell retention and engraftment. Here, we describe the synthesis and characterization of the first small molecule agonist identified for the integrin α4β1 (also known as very late antigen-4 or VLA-4). The agonist, THI0019, was generated via two structural modifications to a previously identified α4β1 antagonist. THI0019 greatly enhanced the adhesion of cultured cell lines and primary progenitor cells to α4β1 ligands VCAM-1 and CS1 under both static and flow conditions. Furthermore, THI0019 facilitated the rolling and spreading of cells on VCAM-1 and the migration of cells toward SDF-1α. Molecular modeling predicted that the compound binds at the α/β subunit interface overlapping the ligand-binding site thus indicating that the compound must be displaced upon ligand binding. In support of this model, an analog of THI0019 modified to contain a photoreactive group was used to demonstrate that when cross-linked to the integrin, the compound behaves as an antagonist instead of an agonist. In addition, THI0019 showed cross-reactivity with the related integrin α4β7 as well as α5β1 and αLβ2. When cross-linked to αLβ2, the photoreactive analog of THI0019 remained an agonist, consistent with it binding at the α/β subunit interface and not at the ligand-binding site in the inserted ("I") domain of the αL subunit. Co-administering progenitor cells with a compound such as THI0019 may provide a mechanism for enhancing stem cell therapy.
Collapse
Affiliation(s)
- Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute at St. Luke's Episcopal Hospital, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1029] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
20
|
Bao F, Omana V, Brown A, Weaver LC. The systemic inflammatory response after spinal cord injury in the rat is decreased by α4β1 integrin blockade. J Neurotrauma 2012; 29:1626-37. [PMID: 22150233 DOI: 10.1089/neu.2011.2190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Abstract The systemic inflammatory response syndrome (SIRS) follows spinal cord injury (SCI) and causes damage to the lungs, kidney, and liver due to an influx of inflammatory cells from the circulation. After SCI in rats, the SIRS develops within 12 h and is sustained for at least 3 days. We have previously shown that blockade of CD11d/CD18 integrin reduces inflammation-driven secondary damage to the spinal cord. This treatment reduces the SIRS after SCI. In another study we found that blockade of α4β1 integrin limited secondary cord damage more effectively than blockade of CD11d/CD18. Therefore we considered it important to assess the effects of anti-α4β1 treatment on the SIRS in the lung, kidney, and liver after SCI. An anti-α4 antibody was given IV at 2 h after SCI at the fourth thoracic segment and the effects on the organs were evaluated at 24 h post-injury. The migration of neutrophils into the lungs and liver was markedly reduced and all three organs contained fewer macrophages. In the lungs and liver, the activation of the oxidative enzymes myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and gp91(phox), the production of free radicals, lipid peroxidation, and cell death were substantially and similarly reduced. Treatment effects were less robust in the kidney. Overall, the efficacy of the anti-α4β1 treatment did not differ greatly from that of the anti-CD11d antibody, although details of the results differed. The SIRS after SCI impedes recovery, and attenuation of the SIRS with an anti-integrin treatment is an important, clinically-relevant finding.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Team, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012; 26:34-53. [PMID: 21886173 PMCID: PMC3514440 DOI: 10.1038/leu.2011.197] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/31/2011] [Accepted: 05/23/2011] [Indexed: 12/29/2022]
Abstract
Successful hematopoietic stem cell transplant requires the infusion of a sufficient number of hematopoietic stem/progenitor cells (HSPCs) that are capable of homing to the bone marrow cavity and regenerating durable trilineage hematopoiesis in a timely manner. Stem cells harvested from peripheral blood are the most commonly used graft source in HSCT. Although granulocyte colony-stimulating factor (G-CSF) is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients. Both the chemokine receptor CXCR4 and the integrin α(4)β(1) (very late antigen 4 (VLA-4)) have important roles in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of CXCR4 or VLA-4 with their ligands results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the development of small-molecule CXCR4 and VLA-4 inhibitors and how they may improve the utility and convenience of peripheral blood stem cell transplantation.
Collapse
Affiliation(s)
- M P Rettig
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
22
|
Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Brown A, Dekaban GA, Weaver LC. Human spinal cord injury causes specific increases in surface expression of β integrins on leukocytes. J Neurotrauma 2011; 28:269-80. [PMID: 21142687 DOI: 10.1089/neu.2010.1618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) activates circulating leukocytes that migrate into the injured cord and bystander organs using adhesion molecule-mediated mechanisms. These cells cause oxidative damage, resulting in secondary injury to the spinal cord, as well as injury to bystander organs. This study was designed to examine, over a 6-h to 2-week period, changes in adhesion molecule surface expression on human peripheral leukocytes after SCI (9 subjects), using as controls 10 uninjured subjects and 6 general trauma patients (trauma controls, TC). Both the percentage of cells expressing a given adhesion molecule and the average level of its expression was quantified for both circulating neutrophils and monocytes. The percentage of neutrophils and monocytes expressing the selectin CD62L was unchanged in TC and SCI patients after injury compared to uninjured subjects. Concurrently, the amount of surface CD62L on neutrophils was decreased in SCI and TC subjects, and on monocytes after SCI. The percentage of neutrophils expressing α4 decreased in TC, but not in SCI, subjects. Likewise, the percentage of neutrophils and monocytes expressing CD11d decreased markedly in TC subjects, but not after SCI. In contrast, the mean surface expression of α4 and CD11d by neutrophils and monocytes increased after SCI compared with uninjured and TC subjects. The percentage of cells and surface expression of CD11b were similar in neutrophils of all three groups, whereas CD11b surface expression increased after SCI in monocytes. In summary, unlike changes found after general trauma, the proinflammatory stimulation induced by SCI increases the surface expression of adhesion molecules on circulating neutrophils and monocytes before they infiltrate the injured spinal cord and multiple organs of patients. Integrins may be excellent targets for anti-inflammatory treatment after human SCI.
Collapse
Affiliation(s)
- Feng Bao
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 2010; 115:829-44. [DOI: 10.1111/j.1471-4159.2010.06982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Potent in vivo suppression of inflammation by selectively targeting the high affinity conformation of integrin α4β1. Biochem Biophys Res Commun 2010; 400:619-24. [PMID: 20807504 DOI: 10.1016/j.bbrc.2010.08.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023]
Abstract
The development of antagonists to the α4 integrin family of cell adhesion molecules has been an active area of pharmaceutical research to treat inflammatory and autoimmune diseases. Presently being tested in human clinical trials are compounds selective for α4β1 (VLA-4) as well as several dual antagonists that inhibit both α4β1 and α4β7. The value of a dual versus a selective small molecule antagonist as well as the consequences of inhibiting different affinity states of the α4 integrins have been debated in the literature. Here, we characterize TBC3486, a N,N-disubstituted amide, which represents a unique structural class of non-peptidic, small molecule VLA-4 antagonists. Using a variety of adhesion assay formats as well as flow cytometry experiments using mAbs specific for certain activation-dependent integrin epitopes we demonstrate that TBC3486 preferentially targets the high affinity conformation of α4β1 and behaves as a ligand mimetic. The antagonist is capable of blocking integrin-dependent T-cell co-activation in vitro as well as proves to be efficacious in vivo at low doses in two animal models of allergic inflammation. These data suggest that a small molecule α4 integrin antagonist selective for α4β1 over α4β7 and, specifically, selective for the high affinity conformation of α4β1 may prove to be an effective therapy for multiple inflammatory diseases in humans.
Collapse
|
25
|
Anti-alpha4beta1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes. Inflamm Res 2010; 59:647-57. [PMID: 20213330 DOI: 10.1007/s00011-010-0177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/11/2010] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE A compelling strategy for treatment of spinal cord injury is the blockade of integrin-mediated leukocyte extravasation using a monoclonal antibody (mAb) against the alpha4 subunit of the alpha4beta1-integrin. However, little is known with respect to neutrophil function following anti-alpha4 mAb treatment. This study assessed the effects of anti-alpha4 mAb binding on neutrophil activation [reactive oxygen species (ROS) production], function (phagocytic activity) and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization. METHODS Resting, primed or stimulated rat neutrophils were incubated ex vivo with anti-alpha4 mAb or isotype-control antibody. ROS production, phagocytic activity, and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization were determined by flow cytometry using dihydrorhodamine (DHR1,2,3), fluorescent microspheres, and indirect immunolabeling, respectively. RESULTS Brief (0.5 h) incubation of resting, primed or activated neutrophils with anti-alpha4 mAb had no effect on ROS production and did not change neutrophil phagocytic activity. However, prolonged incubation (2 h), assessed only in resting neutrophils, increased ROS production. The anti-alpha4-mAb/alpha4beta1-integrin-complex was internalized after 1 h of anti-alpha4 mAb treatment and remained internalized up to 6 h. CONCLUSION Neutrophil ROS production and phagocytic function remain unaltered after brief anti-alpha4 mAb exposure, demonstrating that use of this mAb as a treatment should not adversely affect important beneficial roles of these cells.
Collapse
|
26
|
Zubia A, Mendoza L, Vivanco S, Aldaba E, Carrascal T, Lecea B, Arrieta A, Zimmerman T, Vidal-Vanaclocha F, Cossio FP. Application of stereocontrolled stepwise [3+2] cycloadditions to the preparation of inhibitors of alpha4beta1-integrin-mediated hepatic melanoma metastasis. Angew Chem Int Ed Engl 2010; 44:2903-7. [PMID: 15827972 DOI: 10.1002/anie.200462497] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aizpea Zubia
- Facultad de Química-Kimika Fakultatea, Universidad del País Vasco-Euskal Herriko Unibertsitatea, P. O. Box 1072, 20080 San Sebastián-Donostia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fleming JC, Bao F, Chen Y, Hamilton EF, Gonzalez-Lara LE, Foster PJ, Weaver LC. Timing and duration of anti-alpha4beta1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. J Neurosurg Spine 2009; 11:575-87. [PMID: 19929361 DOI: 10.3171/2009.6.spine08915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT After spinal cord injury (SCI) leukocytes infiltrate the injured cord, causing significant damage and further impairment of functional recovery. The leukocyte integrin alpha4beta1 is crucial for their entry. The authors previously demonstrated that an anti-alpha4 monoclonal antibody (mAb) treatment attenuates leukocyte infiltration, improves motor and autonomic function, and reduces neuropathic pain when administered at 2 hours and 24 hours after SCI. METHODS The authors conducted 2 preclinical studies: the first determined effects of treatment commencing at 6 hours, a clinically relevant time after injury, and the second examined effects of long-lasting treatment (28 days) on neurological recovery after SCI, as current clinically used anti-inflammatory monoclonal antibodies have such longevity. In the first study (timing study), rats were treated with anti-alpha4 or control mAb (intravenously) at 6 hours and 48 hours after moderate (35 g) thoracic compression SCI. Effects on intraspinal inflammation and oxidative injury were assessed at 3 and 7 days after SCI; motor function and pain were examined for 6 weeks. In the second study (duration study), anti-alpha4 mAb was administered starting 2 hours after SCI and subsequently every 3 days for 4 weeks (total of 8 doses), using a schedule of decreasing doses to resemble the pharmacodynamics of long-lasting antibodies used clinically. Motor function and pain were examined for 6 weeks. Lesions were assessed for tissue sparing and inflammation at 6 weeks by histological examination and MR imaging. RESULTS Anti-alpha4 mAb treatment at 6 hours and 48 hours after SCI (timing study) significantly decreased neutrophil and monocyte/macrophage influx at 3 days by 36% and 20%, respectively, but had no effect by at 7 days after SCI. Antibody treatment significantly reduced intraspinal myeloperoxidase activity by 48% and lipid peroxidation by 27% at 3 days post-injury. The treatment did not improve locomotor function but reduced mechanical allodynia elicited from the trunk and hind paw by ~50% at 3-6 weeks after SCI. In contrast, long-term mAb treatment commencing at 2 hours after SCI (duration study) significantly improved locomotor function at 2-6 weeks after SCI, (mean BBB scores +/- SE: treated rats, 8.3 +/- 0.16; controls, 7.3 +/- 0.2 at 6 weeks). At 3-6 weeks, mAb treatment decreased mechanical allodynia elicited from the trunk and hind paw by ~55%. This recovery correlated with 30% more myelin-containing white matter in treated rats than controls at 6 weeks. The lesion cavity was smaller in the treated rats when assessed by both histological (-37%) and imaging (-50%) methods. The accumulation of ED1-immunoreactive microglia/macrophages at the lesion was similar in treated and control rats. CONCLUSIONS Although delayed treatment reduced intraspinal inflammation and pain, motor function was not improved, revealing decreased efficacy at the more clinically feasibly treatment onset. Long-term anti-alpha4 mAb treatment starting 2 hours after SCI improved neurological outcomes, with tissue sparing near the lesion and no impairment of the late immune response to injury. These findings reveal no disadvantage of long-lasting immunosuppression by the treatment but show that efficacy depends upon very early delivery.
Collapse
Affiliation(s)
- Jennifer C Fleming
- Spinal Cord Injury Laboratory, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Reger TS, Zunic J, Stock N, Wang B, Smith ND, Munoz B, Green MD, Gardner MF, James JP, Chen W, Alves K, Si Q, Treonze KM, Lingham RB, Mumford RA. Heterocycle-substituted proline dipeptides as potent VLA-4 antagonists. Bioorg Med Chem Lett 2009; 20:1173-6. [PMID: 20022493 DOI: 10.1016/j.bmcl.2009.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/17/2022]
Abstract
A variety of N-linked tertiary amines and heteroarylamines were examined at the 4-position of sulfonylated proline dipeptides in order to improve VLA-4 receptor off-rates and overcome the issue of CYP3A4 time-dependent inhibition of ester prodrugs. A tight-binding inhibitor 5j with a long off-rate provided sustained receptor occupancy despite poor oral pharmacokinetics.
Collapse
Affiliation(s)
- Thomas S Reger
- Department of Medicinal Chemistry, Merck Research Laboratories, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Venkatraman S, Lebsack AD, Alves K, Gardner MF, James J, Lingham RB, Maniar S, Mumford RA, Si Q, Stock N, Treonze KM, Wang B, Zunic J, Munoz B. Discovery of N-{N-[(3-cyanobenzene) sulfonyl]-4(R)-(3,3-difluoropiperidin-1-yl)-(l)-prolyl}-4-[(3′,5′-dichloro-isonicotinoyl) amino]-(l)-phenylalanine (MK-0617), a highly potent and orally active VLA-4 antagonist. Bioorg Med Chem Lett 2009; 19:5803-6. [DOI: 10.1016/j.bmcl.2009.07.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/26/2022]
|
30
|
BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114:1340-3. [PMID: 19571319 DOI: 10.1182/blood-2008-10-184721] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Here we show that interruption of the VCAM-1/VLA-4 axis with a small molecule inhibitor of VLA-4, BIO5192, results in a 30-fold increase in mobilization of murine hematopoietic stem and progenitors (HSPCs) over basal levels. An additive affect on HSPC mobilization (3-fold) was observed when plerixafor (AMD3100), a small molecule inhibitor of the CXCR-4/SDF-1 axis, was combined with BIO5192. Furthermore, the combination of granulocyte colony-stimulating factor (G-CSF), BIO5192, and plerixafor enhanced mobilization by 17-fold compared with G-CSF alone. HSPCs mobilized by BIO5192 or the combination of BIO5192 and plerixafor mobilized long-term repopulating cells, which successfully engraft and expand in a multilineage fashion in secondary transplantation recipients. Splenectomy resulted in a dramatic enhancement of G-CSF-induced mobilization while decreasing both plerixafor- and BIO5192-induced mobilization of HSPCs. These data provide evidence for the utility of small molecule inhibitors of VLA-4 either alone or in combination with G-CSF or AMD3100 for mobilization of hematopoietic stem and progenitor cells.
Collapse
|
31
|
Lin LS, Lanza T, Jewell JP, Liu P, Jones C, Kieczykowski GR, Treonze K, Si Q, Manior S, Koo G, Tong X, Wang J, Schuelke A, Pivnichny J, Wang R, Raab C, Vincent S, Davies P, MacCoss M, Mumford RA, Hagmann WK. Discovery of N-{N-[(3-Cyanophenyl)sulfonyl]-4(R)-cyclobutylamino-(l)-prolyl}-4-[(3′,5′-dichloroisonicotinoyl)amino]-(l)-phenylalanine (MK-0668), an Extremely Potent and Orally Active Antagonist of Very Late Antigen-4. J Med Chem 2009; 52:3449-52. [DOI: 10.1021/jm900257b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linus S. Lin
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Thomas Lanza
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - James P. Jewell
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Ping Liu
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Carrie Jones
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Gerard R. Kieczykowski
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Kelly Treonze
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Qian Si
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Salony Manior
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Gloria Koo
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Xinchun Tong
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Junying Wang
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Anne Schuelke
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - James Pivnichny
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Regina Wang
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Conrad Raab
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Stella Vincent
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Philip Davies
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Malcolm MacCoss
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Richard A. Mumford
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| | - William K. Hagmann
- Departments of Medicinal Chemistry, Immunology and Rheumatology, and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey 07065
| |
Collapse
|
32
|
Treonze KM, Alves K, Fischer P, Hagmann WK, Hora D, Kulick A, Vakerich K, Smith ND, Lingham RB, Maniar S, Reger TS, Zunic J, Munoz B, Prasit P, Nicholson D, Si Q, Judd K, Nicolich S, Kellerhouse P, Thompson D, Mumford RA. Characterization of alpha(4)beta(1) (CD49d/CD29) on equine leukocytes: potential utility of a potent alpha(4)beta(1) (CD49d/CD29) receptor antagonist in the treatment of equine heaves (recurrent airway obstruction). Vet Immunol Immunopathol 2009; 130:79-87. [PMID: 19250687 DOI: 10.1016/j.vetimm.2009.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to characterize the alpha(4)beta(1) receptor (CD49d/CD29, very late antigen-4, VLA-4) on circulating equine leukocytes and to evaluate the intrinsic potency of an alpha(4)beta(1) receptor antagonist (Compound B) in the horse. Ultimately, these studies would allow us to determine the suitability of treating recurrent airway obstruction (RAO; heaves) affected horses by blocking the cellular recruitment of lymphocytes and neutrophils into the lung. The data demonstrates the alpha(4)beta(1) integrin is present on horse lymphocytes and neutrophils (fluorescence-assisted cell sorter, FACS) and can bind low molecular weight alpha(4)beta(1) antagonists (Compounds A and B) with high affinity. K(D) values for the binding of Compound A to non-activated alpha(4)beta(1) on isolated horse PBMCs (peripheral blood mononuclear cells) and activated neutrophils were 17 pM and 27 pM, respectively. Compound B was identified as a suitable antagonist for performing a series of in vivo experiments. Compound B was found to possess excellent potency in horse whole blood, possessing IC(50) and IC(90) values of 39 pM and 172 pM, respectively. This represents a 3.9-fold molar excess of drug over the alpha(4)beta(1) concentration in blood. Following oral administration of Compound B (5 mg/kg) to beagle dogs and rhesus monkeys, rapid and sustained alpha(4)beta(1) receptor occupancy (>80%) was achieved and maintained for a period of 24 h. When Compound B was administered intravenously to the horse, by either a slow or rapid infusion at a dose of 0.3 mg/kg, receptor blockade of >80% was observed out to 24 h with a concomitant leukocytosis. We believe that Compound B possesses suitable intrinsic and pharmacological properties to be evaluated clinically in horses affected by RAO.
Collapse
Affiliation(s)
- Kelly M Treonze
- Department of Immunology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci U S A 2009; 106:1920-5. [PMID: 19179279 DOI: 10.1073/pnas.0808909106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T cells are the main target of anti-alpha(4)-antibody blockade. We demonstrate that beta(1)-integrin expression on encephalitogenic T cells is critical for EAE development, and we therefore exclude alpha(4)beta(7) as a target integrin of the antibody treatment. T cells lacking beta(1) integrin are unable to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of alpha(4)beta(1) integrins.
Collapse
|
34
|
Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009; 114:1331-9. [PMID: 19141863 DOI: 10.1182/blood-2008-10-184754] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current evidence suggests that hematopoietic stem/progenitor cell (HSPC) mobilization by granulocyte colony-stimulating factor (G-CSF) is mediated by induction of bone marrow proteases, attenuation of adhesion molecule function, and disruption of CXCL12/CXCR4 signaling in the bone marrow. The relative importance and extent to which these pathways overlap or function independently are uncertain. Despite evidence of protease activation in the bone marrow, HSPC mobilization by G-CSF or the chemokine Grobeta was abrogated in CXCR4(-/-) bone marrow chimeras. In contrast, HSPC mobilization by a VLA-4 antagonist was intact. To determine whether other mobilizing cytokines disrupt CXCR4 signaling, we characterized CXCR4 and CXCL12 expression after HSPC mobilization with Flt3 ligand (Flt3L) and stem cell factor (SCF). Indeed, treatment with Flt3L or SCF resulted in a marked decrease in CXCL12 expression in the bone marrow and a loss of surface expression of CXCR4 on HSPCs. RNA in situ and sorting experiments suggested that the decreased CXCL12 expression is secondary to a loss of osteoblast lineage cells. Collectively, these data suggest that disruption of CXCR4 signaling and attenuation of VLA-4 function are independent mechanisms of mobilization by G-CSF. Loss of CXCL12 expression by osteoblast appears to be a common and key step in cytokine-induced mobilization.
Collapse
|
35
|
Bao F, Chen Y, Schneider KA, Weaver LC. An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury. Exp Neurol 2008; 214:160-7. [PMID: 18926823 DOI: 10.1016/j.expneurol.2008.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 11/19/2022]
Abstract
Our previous studies have shown that treatment with an alpha4beta1 integrin blocking antibody after spinal cord injury (SCI) in rats decreases intraspinal inflammation and oxidative damage, improving neurological function. Here, we studied effects of a high affinity small molecule alpha4beta1 inhibitor, BIO5192. First, rats were treated intravenously with BIO5192 (10 mg/kg) or with vehicle (controls) to assess effects of integrin blockade for 24 h or 72 h after thoracic clip-compression SCI. BIO5192 treatment significantly decreased the MPO enzymatic activity (neutrophil infiltration) and ED-1 expression (macrophage density) by 40% and 38% at 24 h and by 52% and 25% at 72 h post injury, respectively. In cord homogenates, BIO5192 treatment decreased expression of the oxidative enzymes gp91(phox), inducible nitric oxide and cyclooxygenase-2 by approximately 40% at both times of analysis. Free radical concentration decreased by 30% and lipid peroxidation decreased by 34% and 46%, respectively, at 24 h and 72 h after SCI. Next, after blockade by BIO5192 for 72 h, neurological outcomes were analyzed for 1-6 weeks after SCI. Motor function significantly improved when assessed by an open-field test. Treated rats planter placed their hind paws and/or dorsal stepped, with weight support, whereas controls only swept their hindlimbs. BIO5192 treatment also decreased mechanical allodynia elicited from the trunk and hind paw by up to 35%. This improved function correlated with decreased lesion size and spared myelin-containing white matter. The neurological improvement offered by this neuroprotective strategy supports the potential for an anti-integrin treatment for SCI.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Laboratory, BioTherapeutics Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, PO Box 5015, 100 Perth Drive, London, Ontario Canada.
| | | | | | | |
Collapse
|
36
|
Fleming JC, Bao F, Chen Y, Hamilton EF, Relton JK, Weaver LC. Alpha4beta1 integrin blockade after spinal cord injury decreases damage and improves neurological function. Exp Neurol 2008; 214:147-59. [PMID: 19038604 DOI: 10.1016/j.expneurol.2008.04.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/24/2008] [Accepted: 04/08/2008] [Indexed: 11/26/2022]
Abstract
The extent of disability caused by spinal cord injury (SCI) relates to secondary tissue destruction arising partly from an intraspinal influx of neutrophils and monocyte/macrophages after the initial injury. The integrin alpha4beta1, expressed by these leukocytes, is a key to their activation and migration into/within tissue. Therefore, blocking this integrin's functions may afford significant neuroprotection. Rats were treated intravenously with a blocking monoclonal antibody (mAb) to the alpha4 subunit of alpha4beta1 at 2 and 24 h after thoracic clip-compression SCI. Anti-alpha4beta1 treatment significantly decreased neutrophil and monocyte/macrophage influx at 3 d by 47% and 53%, respectively, and decreased neutrophil influx by 61% at 7 d after SCI. Anti-alpha4beta1 treatment also significantly reduced oxidative activity in injured cord homogenates at 3 d. For example, myeloperoxidase activity decreased by 38%, inducible nitric oxide by 44%, dichlorofluorescein (marking free radicals) by 33% and lipid peroxidation (malondialdehyde) by 42%. At 2-8 weeks after SCI, motor function improved by up to 2 points on an open-field locomotor scale. Treated rats supported weight with their hind paws instead of sweeping. At 2-4 weeks after SCI, anti-alpha4beta1 treatment decreased blood pressure responses during autonomic dysreflexia by as much as 43% and, at 2-8 weeks, decreased mechanical allodynia elicited from the trunk and hind paw by up to 54% and 40%, respectively. This improved functional recovery correlated with spared myelin-containing white matter and >10-fold more bulbospinal serotonergic axons below the injury than were in controls. The significant neurological improvement offered by this neuroprotective strategy underscores the potential for an anti-integrin treatment for SCI.
Collapse
Affiliation(s)
- Jennifer C Fleming
- Spinal Cord Injury Laboratory, BioTherapeutics Research Group, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada N6A 5K8
| | | | | | | | | | | |
Collapse
|
37
|
The N-terminal domain of Nogo-A inhibits cell adhesion and axonal outgrowth by an integrin-specific mechanism. J Neurosci 2008; 28:1262-9. [PMID: 18234903 DOI: 10.1523/jneurosci.1068-07.2008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelin-derived Nogo-A protein limits axonal growth after CNS injury. One domain binds to the Nogo-66 receptor to inhibit axonal outgrowth, whereas a second domain, Amino-Nogo, inhibits axonal outgrowth and cell adhesion through unknown mechanisms. Here, we show that Amino-Nogo inhibition depends strictly on the composition of the extracellular matrix, suggesting that Amino-Nogo inhibits the function of certain integrins. Amino-Nogo inhibition can be partially overcome by antibodies that activate integrin beta1 or by the addition of Mn2+, an integrin activator. Furthermore, Amino-Nogo reduces focal adhesion kinase activation by fibronectin. Analysis of various cell lines reveals that alpha(v)beta3, alpha5, and alpha4 integrins are sensitive to Amino-Nogo, but alpha6 integrin is not. Both alpha(v) and alpha5 integrins have widespread expression in adult brain and are found in axonal growth cones. Thus, inhibition of integrin signaling by Amino-Nogo contributes to the failure of CNS axon regeneration.
Collapse
|
38
|
Parmley LA, Elkins ND, Fini MA, Liu YE, Repine JE, Wright RM. Alpha-4/beta-1 and alpha-L/beta-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury. Br J Pharmacol 2007; 152:915-29. [PMID: 17828290 PMCID: PMC2078224 DOI: 10.1038/sj.bjp.0707443] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Injury to the alveolar epithelium is a critical feature of acute lung injury (ALI). Using a cytokine model of ALI we demonstrated previously that newly recruited mononuclear phagocytes (MNP) contributed to lung inflammation and injury. We hypothesized that cytokines delivered into the alveolar airspace would have multiple effects on the lung that may contribute to lung injury. EXPERIMENTAL APPROACH Intratracheal cytokine insufflation and leukocyte adoptive transfer in vivo were combined with in vitro analyses of lung epithelial cell-MNP adhesion and injury. Lung inflammatory injury was assessed by histology, leukocyte infiltration, and release of LDH and RAGE. KEY RESULTS Cytokine insufflation was associated with apparent MNP-epithelial adhesion, up-regulation of alveolar ICAM-1 and VCAM-1, and the release of LDH and RAGE into the bronchoalveolar lavage. Insufflation of small molecule integrin antagonists suppressed adhesion of MNP and modulated release of LDH and RAGE. Adoptive transfer of MNP purified from cytokine insufflated lungs into leukopenic rats demonstrated the requirement of MNP for release of LDH that was not induced by cytokine alone. Corroboration that disrupting the ICAM/LFA1 interaction or the VCAM/VLA4 interaction blocked MNP-epithelial cell interaction and injury was obtained in vitro using both blocking monoclonal antibodies and the small molecule integrin antagonists, BIO5192 and XVA143. CONCLUSIONS AND IMPLICATIONS MNP recruited following cytokine insufflation contributed to lung injury. Further, integrin antagonists reduced alveolar epithelial cell injury induced during lung inflammation. Intratracheal delivery of small molecule antagonsists of leukocyte-epithelial adhesion that prevent lung injury may have significant clinical utility.
Collapse
Affiliation(s)
- L A Parmley
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
| | - N D Elkins
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
| | - M A Fini
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
| | - Y-E Liu
- Department of Biochemistry, Princeton University Princeton, NJ, USA
| | - J E Repine
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
| | - R M Wright
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
- Author for correspondence:
| |
Collapse
|
39
|
Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006; 34:1010-20. [PMID: 16863907 DOI: 10.1016/j.exphem.2006.04.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 11/29/2022]
Abstract
Chemokines direct the movement of leukocytes, including hematopoietic stem and progenitor cells, and can mobilize hematopoietic cells from marrow to peripheral blood where they can be used for transplantation. In this review, we will discuss the stem cell mobilizing activities and mechanisms of action of GRObeta, a CXC chemokine ligand for the CXCR2 receptor. GRObeta rapidly mobilizes short- and long-term repopulating cells in mice and/or monkeys and synergistically enhances mobilization responses when combined with the widely used clinical mobilizer, granulocyte colony-stimulating factor (G-CSF). The hematopoietic graft mobilized by GRObeta contains significantly more CD34(neg), Sca-1+, c-kit+, lineage(neg) (SKL) cells than the graft mobilized by G-CSF. In mice, stem cells mobilized by GRObeta demonstrate a competitive advantage upon long-term repopulation analysis and restore neutrophil and platelet counts significantly faster than cells mobilized by G-CSF. Even greater advantage in repopulation and restoration of hematopoiesis are observed with stem cells mobilized by the combination of GRObeta and G-CSF. GRObeta-mobilized SKL cells demonstrate enhanced adherence to vascular cell adhesion molecule-1 and VCAM(pos) endothelial cells and home more efficiently to bone marrow in vivo. The marrow homing ability of GRObeta-mobilized cells is less dependent on the CXCR4/SDF-1 axis than cells mobilized by G-CSF. The mechanism of mobilization by GRObeta requires active matrix metalloproteinase-9 (MMP-9), which results from release of pro-MMP-9 from peripheral blood, and marrow neutrophils, which alters the stoichiometry between pro-MMP-9 and its inhibitor tissue inhibitor of metalloproteinase-1, resulting in MMP-9 activation. The efficacy and rapid action of GRObeta and lack of proinflammatory activity make it an attractive agent to supplement mobilization by G-CSF. In addition, GRObeta may also have clinical mobilizing efficacy on its own, reducing the overall time and costs associated with peripheral blood stem cell transplantation.
Collapse
Affiliation(s)
- Louis M Pelus
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, IN 46202 USA.
| | | |
Collapse
|
40
|
Gong Y, Barbay JK, Dyatkin AB, Miskowski TA, Kimball ES, Prouty SM, Fisher MC, Santulli RJ, Schneider CR, Wallace NH, Ballentine SA, Hageman WE, Masucci JA, Maryanoff BE, Damiano BP, Andrade-Gordon P, Hlasta DJ, Hornby PJ, He W. Synthesis and biological evaluation of novel pyridazinone-based alpha4 integrin receptor antagonists. J Med Chem 2006; 49:3402-11. [PMID: 16722660 DOI: 10.1021/jm060031q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel series of pyridazinone-functionalized phenylalanine analogues was prepared and evaluated for inhibition of cellular adhesion mediated by alpha4beta1/VCAM-1 and alpha4beta7/MAdCAM-1 interactions. Concise syntheses were developed and applied for exploration of structure-activity relationships pertaining to the pyridazinone ring as well as the N-acyl phenylalanine scaffold. Potent dual antagonists of alpha4beta1 and alpha4beta7 were generated from an amide subseries; antagonists selective for alpha4beta7 were identified from urea and carbamate-based subseries. The pharmacokinetic properties of selected members of the series have been determined in rats and demonstrate that the use of ester prodrugs and alterations to the amide linkage can lead to improved oral bioavailability in this series. An alpha4beta7-selective member of the carbamate subseries (36c), upon oral administration, demonstrated in vivo efficacy in the mouse DSS colitis model.
Collapse
Affiliation(s)
- Yong Gong
- Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dyatkin AB, Gong Y, Miskowski TA, Kimball ES, Prouty SM, Fisher MC, Santulli RJ, Schneider CR, Wallace NH, Hornby PJ, Diamond C, Kinney WA, Maryanoff BE, Damiano BP, He W. Aza-bicyclic amino acid carboxamides as α4β1/α4β7 integrin receptor antagonists. Bioorg Med Chem 2005; 13:6693-702. [PMID: 16112583 DOI: 10.1016/j.bmc.2005.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 01/11/2023]
Abstract
A series of N-carboxy, N-alkyl, and N-carboxamido azabicyclo[2.2.2]octane carboxamides were prepared and assayed for inhibition of alpha4beta1-VCAM-1 and alpha4beta7-MAdCAM-1 interactions. Potency and alpha4beta1/alpha4beta7 selectivity were sensitive to the substituent R1-R3 in the structures 6, 7, and 8. Several compounds demonstrated low nanomolar balanced alpha4beta1/alpha4beta7 in vitro activity. Two compounds were selected for in vivo leukocytosis studies and demonstrated increases in circulating lymphocytes up to 250% over control.
Collapse
Affiliation(s)
- Alexey B Dyatkin
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, LLC., Spring House, PA 19477-0776, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Macchiarulo A, Costantino G, Meniconi M, Pleban K, Ecker G, Bellocchi D, Pellicciari R. Insights into phenylalanine derivatives recognition of VLA-4 integrin: from a pharmacophoric study to 3D-QSAR and molecular docking analyses. ACTA ACUST UNITED AC 2005; 44:1829-39. [PMID: 15446843 DOI: 10.1021/ci049914l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The very late antigen-4 (VLA-4), also known as integrin alpha4beta1, is expressed on monocytes, T- and B-lympohocytes, basophils, and eosinophils and is involved in the massive recruitment of granulocytes in different pathological conditions such as multiple sclerosis and asthma. VLA-4 interacts with its endogenous ligand VCAM-1 during chronic inflammation, and blockade of VLA-4 /VCAM-1 interaction is a potential target for immunosuppression. Two classes of VLA-4 antagonists have so far been reported: beta-amino acid derivatives containing a diaryl urea moiety (BIO-1211) and phenylalanine derivatives (TR-14035). With the aim of clarifying the structural basis responsible for VLA-4 recognition by phenylalanine derivatives, we developed a combined computational study on a set of 128 antagonists available through the literature. Our computational approach is composed of three parts. (i) A VCAM-1 based pharmacophore was constructed with a restricted number of phenylalanine derivatives to identify the region of the protein that resembles synthetic antagonists. The pharmacophore was instrumental in constructing an alignment of a set of 128 compounds. This alignment was exploited to build a pseudoreceptor model with the RECEPTOR program. (ii) 3D-QSAR analysis was carried out on the computed electrostatic and steric interaction energies with the pseudoreceptor surface. The 3D-QSAR analysis yielded a predictive model able to explain much of the variance of the 128 antagonists. (iii) A homology modeling study of the headpiece of VLA-4 based on the crystal structure of alphavbeta3 was performed. Docking experiments of TR-14035 into the binding site of VLA-4 aided the interpretation of the 3D-QSAR model. The obtained results will be fruitful for the design of new potent and selective antagonists of VLA-4.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06127 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Multiple sclerosis (MS) is both a complex and chronic neurological disease of the CNS. This poses unique challenges for drug discovery in terms of delineating specific targets related to disease mechanisms and developing safe and effective molecules for clinical application. Preclinical animal models of MS provide the necessary test bed for evaluating the effects of novel therapeutic strategies. Because the clinical manifestations and pathological consequences of disease vary dramatically from individual to individual, as well as treatment response to existing therapies, this creates a significant research endeavor in terms of translating preclinical methodologies to the clinical domain. Potentially exciting treatments have emerged in the form of natalizumab (Tysabri), an alpha4 integrin antagonist, and more recently FTY720, a sphinogosine-1 phosphate receptor modulator, providing a compelling proof-of-principle from bench to bedside. However, further research is required to discharge safety concerns associated with these therapeutic avenues. Future prospects in the guise of disease-modifying therapies that target the inflammatory and neurodegenerative components of disease have come to the forefront of preclinical research with the sole aim of reducing the underlying irreversible progressive disability of MS. Significant progress with novel therapies will be made by implementing biomarker strategies that extrapolate robustly from animal models to the divergent patient populations of MS. The future therapeutic options for MS will depend on improvements in understanding the precise factors involved in disease onset and progression and subsequently the development of oral therapeutics that translate sustained benefit from the preclinical context into clinical reality.
Collapse
Affiliation(s)
- David J Virley
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Harlow, Essex CM19 5AW, United Kingdom.
| |
Collapse
|
44
|
Zubia A, Mendoza L, Vivanco S, Aldaba E, Carrascal T, Lecea B, Arrieta A, Zimmerman T, Vidal-Vanaclocha F, Cossío FP. Application of Stereocontrolled Stepwise [3+2] Cycloadditions to the Preparation of Inhibitors of α4β1-Integrin-Mediated Hepatic Melanoma Metastasis. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Brakebusch C. Commentary 5. Exp Dermatol 2005. [DOI: 10.1111/j.0906-6705.2005.0323c.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Pepinsky RB, Lee WC, Cornebise M, Gill A, Wortham K, Chen LL, Leone DR, Giza K, Dolinski BM, Perper S, Nickerson-Nutter C, Lepage D, Chakraborty A, Whalley ET, Petter RC, Adams SP, Lobb RR, Scott DM. Design, synthesis, and analysis of a polyethelene glycol-modified (PEGylated) small molecule inhibitor of integrin {alpha}4{beta}1 with improved pharmaceutical properties. J Pharmacol Exp Ther 2005; 312:742-50. [PMID: 15485895 DOI: 10.1124/jpet.104.075648] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integrin alpha4beta1 plays an important role in inflammatory processes by regulating the migration of leukocytes into inflamed tissues. Previously, we identified BIO5192 [2(S)-{[1-(3,5-dichloro-benzenesulfonyl)-pyrrolidine-2(S)-carbonyl]-amino}-4-[4-methyl-2(S)-(methyl-{2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl}-amino)-pentanoylamino]-butyric acid], a highly selective and potent (K(D) of 9 pM) small molecule inhibitor of alpha4beta1. Although BIO5192 is efficacious in various animal models of inflammatory disease, high doses and daily treatment of the compound are needed to achieve a therapeutic effect because of its relatively short serum half-life. To address this issue, polyethylene glycol modification (PEGylation) was used as an approach to improve systemic exposure. BIO5192 was PEGylated by a targeted approach in which derivatizable amino groups were incorporated into the molecule. Two sites were identified that could be modified, and from these, five PEGylated compounds were synthesized and characterized. One compound, 2a-PEG (K(D) of 19 pM), was selected for in vivo studies. The pharmacokinetic and pharmacodynamic properties of 2a-PEG were dramatically improved relative to the unmodified compound. The PEGylated compound was efficacious in a rat model of experimental autoimmune encephalomyelitis at a 30-fold lower molar dose than the parent compound and required only a once-a-week dosing regimen compared with a daily treatment for BIO5192. Compound 2a-PEG was highly selective for alpha4beta1. These studies demonstrate the feasibility of PEGylation of alpha4beta1-targeted small molecules with retention of activity in vitro and in vivo. 2a-PEG, and related compounds, will be valuable reagents for assessing alpha4beta1 biology and may provide a new therapeutic approach to treatment of human inflammatory diseases.
Collapse
Affiliation(s)
- R B Pepinsky
- Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Olson DL, Burkly LC, Leone DR, Dolinski BM, Lobb RR. Anti-α4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.91.4.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In a syngeneic murine model of multiple myeloma with many of the characteristics of the human disease, a monoclonal antibody (mAb) to the integrin very late antigen-4 (VLA-4), given after the myeloma has already homed to and begun to establish itself within the bone marrow compartment, produces statistically significant effects on multiple disease variables. These include reductions in circulating levels of IgG2b; percentage of IgG2b-positive myeloma cells circulating in blood; spleen weight; and myeloma cell burden in spleen, bone marrow, and liver. mAb therapy had no effect on nonmalignant hematopoietic cells. An acute 6-day regimen of mAb treatment, initiated very late in disease to avoid mAb elimination in the immunocompetent animals, still significantly reduced spleen and blood myeloma cell burden. The ability of the (VLA-4) mAb to affect multiple variables in this model, even as monotherapy, suggests this pathway plays a central role in disease progression.
Collapse
|
48
|
Gold R, Ransohoff RM, Sandrock A, Rieckmann P. The blood–brain barrier as target of multiple sclerosis research and therapy. J Neuroimmunol 2004; 152:1-4. [PMID: 15303274 DOI: 10.1016/j.jneuroim.2004.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ralf Gold
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Würzburg, Germany.
| | | | | | | |
Collapse
|
49
|
Coffey GP, Stefanich E, Palmieri S, Eckert R, Padilla-Eagar J, Fielder PJ, Pippig S. In vitro internalization, intracellular transport, and clearance of an anti-CD11a antibody (Raptiva) by human T-cells. J Pharmacol Exp Ther 2004; 310:896-904. [PMID: 15190122 DOI: 10.1124/jpet.104.067611] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efalizumab (Raptiva) is a humanized CD11a-specific monoclonal antibody that was recently approved for the treatment of moderate to severe psoriasis. In psoriasis patients, the rate of efalizumab clearance from serum is related to T-cell surface expression of CD11a, suggesting a receptor-mediated clearance model for efalizumab (Bauer et al., 1999). However, limited experimental data are available to explain how the interaction with CD11a results in the systemic clearance of efalizumab. The following studies were designed to test the hypothesis that one mechanism of anti-CD11a antibody clearance is mediated in part by cellular internalization. This was tested in vitro using purified mouse and human T-cells as a model to study the cellular uptake and clearance of anti-CD11a antibodies. Data from these studies suggest that anti-CD11a antibodies are internalized by purified T-cells. Upon internalization, the antibodies appeared to be targeted to lysosomes and were cleared from within the cells in a time-dependent manner. CD11a-mediated internalization and lysosomal targeting of efalizumab may constitute one pathway by which this antibody is cleared in vivo.
Collapse
Affiliation(s)
- G P Coffey
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., 1 DNA Way, Building 20, Room 201, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Theien BE, Vanderlugt CL, Nickerson-Nutter C, Cornebise M, Scott DM, Perper SJ, Whalley ET, Miller SD. Differential effects of treatment with a small-molecule VLA-4 antagonist before and after onset of relapsing EAE. Blood 2003; 102:4464-71. [PMID: 12933585 DOI: 10.1182/blood-2003-03-0974] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of very late antigen-4 (VLA-4) with its ligand vascular cell adhesion molecule-1 (VCAM-1) is required for central nervous system (CNS) migration of encephalitogenic T cells in relapsing experimental autoimmune encephalomyelitis (R-EAE). Anti-VLA-4 monoclonal antibody (mAb) treatment prior to EAE onset inhibits disease induction; however, treatment initiated after the appearance of clinical symptoms increases relapse rates, augments Th1 responses, and enhances epitope spreading perhaps due to the activation of costimulatory signals. To negate the potential costimulatory activity of intact anti-VLA-4, we examined the ability of BIO 5192, a small-molecule VLA-4 antagonist, to regulate active proteolipid protein 139-151 (PLP139-151)-induced R-EAE. BIO 5192 administered one week after peptide priming (ie, before clinical disease onset) delayed the clinical disease onset but led to severe disease exacerbation upon treatment removal. BIO 5192 treatment initiated during disease remission moderately enhanced clinical disease while mice were on treatment and also resulted in posttreatment exacerbation. Interestingly, BIO 5192 treatment begun at the peak of acute disease accelerated entrance into disease remission and inhibited relapses, but treatment removal again exacerbated disease. Enhanced disease was caused by the release of encephalitogenic cells from the periphery and the rapid accumulation of T cells in the CNS. Collectively, these results further demonstrate the complexity of VLA-4/VCAM interactions, particularly in a relapsing-remitting autoimmune disease.
Collapse
Affiliation(s)
- Bradley E Theien
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|