1
|
Dobrek L, Głowacka K. Depression and Its Phytopharmacotherapy-A Narrative Review. Int J Mol Sci 2023; 24:4772. [PMID: 36902200 PMCID: PMC10003400 DOI: 10.3390/ijms24054772] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Depression is a mental health disorder that develops as a result of complex psycho-neuro-immuno-endocrinological disturbances. This disease presents with mood disturbances, persistent sadness, loss of interest and impaired cognition, which causes distress to the patient and significantly affects the ability to function and have a satisfying family, social and professional life. Depression requires comprehensive management, including pharmacological treatment. Because pharmacotherapy of depression is a long-term process associated with the risk of numerous adverse drug effects, much attention is paid to alternative therapy methods, including phytopharmacotherapy, especially in treating mild or moderate depression. Preclinical studies and previous clinical studies confirm the antidepressant activity of active compounds in plants, such as St. John's wort, saffron crocus, lemon balm and lavender, or less known in European ethnopharmacology, roseroot, ginkgo, Korean ginseng, borage, brahmi, mimosa tree and magnolia bark. The active compounds in these plants exert antidepressive effects in similar mechanisms to those found in synthetic antidepressants. The description of phytopharmacodynamics includes inhibiting monoamine reuptake and monoamine oxidase activity and complex, agonistic or antagonistic effects on multiple central nervous system (CNS) receptors. Moreover, it is noteworthy that the anti-inflammatory effect is also important to the antidepressant activity of the plants mentioned above in light of the hypothesis that immunological disorders of the CNS are a significant pathogenetic factor of depression. This narrative review results from a traditional, non-systematic literature review. It briefly discusses the pathophysiology, symptomatology and treatment of depression, with a particular focus on the role of phytopharmacology in its treatment. It provides the mechanisms of action revealed in experimental studies of active ingredients isolated from herbal antidepressants and presents the results of selected clinical studies confirming their antidepressant effectiveness.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
2
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
3
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
4
|
Menegazzi M, Masiello P, Novelli M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants (Basel) 2020; 10:antiox10010018. [PMID: 33379141 PMCID: PMC7824709 DOI: 10.3390/antiox10010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we review the mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7168
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| |
Collapse
|
5
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
6
|
Cabbaroğlu D, Songür Kodik M, Uyanıkgil Y, Çetin Uyanıkgil EÖ, Karabey F, Kıyan S. Temas tipi yanıklarda Hypericum perforatum (sarı kantaron) ile tedavi: Deneysel bir çalışma. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.512502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
8
|
Barroso MES, Oliveira BG, Pimentel EF, Pereira PM, Ruas FG, Andrade TU, Lenz D, Scherer R, Fronza M, Ventura JA, Vaz BG, Kondratyuk TP, Romão W, Endringer DC. Phytochemical profile of genotypes of Euterpe edulis Martius - Juçara palm fruits. Food Res Int 2018; 116:985-993. [PMID: 30717031 DOI: 10.1016/j.foodres.2018.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/26/2018] [Accepted: 09/12/2018] [Indexed: 02/02/2023]
Abstract
Juçara fruit (Euterpe edulis) has received attention due to its similarities to Euterpe oleracea (Açaí). The aim of this study was to evaluate the cytotoxicity, bioactive compounds, antioxidant capacities and chemopreventive activities of the fruit pulps of six populations of E. edulis (J1-J6) and one population of E. espiritosantense from different ecological regions. ESI(-)-FT-ICR-MS was used to evaluate the pulp composition. The varieties J1 and J4 presented higher polyphenol contents, while J2 and J5 showed higher anthocyanin contents. ESI-FT-ICR MS identified cyanidin-3-rutinoside (J1, J2, J3, J4, J5, J7), protocatechuic acid, methylhydroxybenzoate hexoside and rutin (J1 to J7) and malvidin-glicoside (J2 to J5). The J2, J3, J4, J5 and J6 samples inhibited inducible nitric oxide synthase (iNOS). The chemoprevention biomarker quinone reductase was significantly induced by J6. Pulp from plants J3, J4, J6 and J7 significantly reduced the inflammatory cytokine TNF-α, and J6 was selected as having the most potential for cultivation and consumption.
Collapse
Affiliation(s)
- Maria E S Barroso
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Bruno G Oliveira
- Forensic Chemistry Laboratory, Department of Chemistry, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória 29075-910, Brazil
| | - Elisângela F Pimentel
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Pedro M Pereira
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Fabiana G Ruas
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Tadeu U Andrade
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Dominik Lenz
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Rodrigo Scherer
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Marcio Fronza
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - José A Ventura
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Boniek G Vaz
- Federal University of Goiás, Samambaia Campus, Chemistry Institute, Avenida Esperança, s/n Campus Universitário, 74690-900 Goiânia, GO, Brazil
| | - Tamara P Kondratyuk
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, HI, USA
| | - Wanderson Romão
- Forensic Chemistry Laboratory, Department of Chemistry, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória 29075-910, Brazil; Federal Instituto of Espírito Santo, Av. Ministro Salgado Filho, Soteco, Vila Velha, ES 29106-010, Brazil
| | - Denise C Endringer
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil.
| |
Collapse
|
9
|
Bonaterra GA, Schwendler A, Hüther J, Schwarzbach H, Schwarz A, Kolb C, Abdel-Aziz H, Kinscherf R. Neurotrophic, Cytoprotective, and Anti-inflammatory Effects of St. John's Wort Extract on Differentiated Mouse Hippocampal HT-22 Neurons. Front Pharmacol 2018; 8:955. [PMID: 29403374 PMCID: PMC5778116 DOI: 10.3389/fphar.2017.00955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction: Since ancient times Hypericum perforatum L. named St. John's wort (SJW), has been used in the management of a wide range of applications, including nervous disorders. Development of mood disorders are due to alterations in glutamate metabolism, initiation of inflammatory pathways, and changes of the neuronal plasticity. Previous studies suggest that the glutamatergic system contributes to the pathophysiology of depression. Extracts of SJW have been recommended for the treatment of depression. The aim of the present in vitro study was to evaluate the action of STW3-VI, a special SJW extract in differentiated mouse hippocampal HT-22 neurons. We evaluated the stimulation of neurogenesis, the protective effect against glutamate or N-methyl-D-aspartate receptor induced-excitotoxicity and its anti-inflammatory properties in LPS-activated human macrophages. Results: After 48 h treatment, STW3-VI stimulated the neurite formation by 25% in comparison with the control and showed protective effects against glutamate- or NMDA-induced cytotoxicity by significantly increasing the viability about +25 or +50%. In conjunction with these effects, after pretreatment with STW3-VI, the intracellular reduced glutathione content was significantly 2.3-fold increased compared with the neurons incubated with glutamate alone. Additionally, pre-treatment of human macrophages with STW3-VI showed anti-inflammatory effects after 24 or 48 h concerning inhibition of LPS-induced TNF release by -47.3 and -53.8% (24 h) or -25.0 to -64.8% (48 h). Conclusions: Our data provide new evidence that STW3-VI protects hippocampal cells from NMDA- or glutamate-induced cytotoxicity. Moreover, our results indicate a morphological remodeling by increasing neurite outgrowth and activation of the anti-inflammatory defense by inhibition of the cytokine production in human macrophages after STW3-VI treatment. These protective, neurotrophic and anti-inflammatory properties may be beneficial in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Anna Schwendler
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Julian Hüther
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Christiane Kolb
- Steigerwald Arzneimittelwerk GmbH, Scientific Department, Darmstadt, Germany
| | - Heba Abdel-Aziz
- Steigerwald Arzneimittelwerk GmbH, Scientific Department, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
10
|
Kyungheechunggan-Tang-01, a New Herbal Medication, Suppresses LPS-Induced Inflammatory Responses through JAK/STAT Signaling Pathway in RAW 264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7383104. [PMID: 29348772 PMCID: PMC5733936 DOI: 10.1155/2017/7383104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023]
Abstract
Medicinal plants have been used as alternative therapeutic tools to alleviate inflammatory diseases. The objective of this study was to evaluate anti-inflammatory properties of Kyungheechunggan-tang- (KCT-) 01, KCT-02, and Injinchunggan-tang (IJCGT) as newly developed decoctions containing 3–11 herbs in LPS-induced macrophages. KCT-01 showed the most potent inhibitory effects on LPS-induced NO, PGE2, TNF-α, and IL-6 production among those three herbal formulas. In addition, KCT-01 significantly inhibited LPS-induced iNOS and COX-2 at protein levels and expression of iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Molecular data revealed that KCT-01 attenuated the activation of JAK/STAT signaling cascade without affecting NF-κB or AP-1 activation. In ear inflammation induced by croton oil, KCT-01 significantly reduced edema, MPO activity, expression levels of iNOS and COX-2, and STAT3 phosphorylation in ear tissues. Taken together, our findings suggest that KCT-01 can downregulate the expression of proinflammatory genes by inhibiting JAK/STAT signaling pathway under inflammatory conditions. This study provides useful data for further exploration and application of KCT-01 as a potential anti-inflammatory medicine.
Collapse
|
11
|
Novelli M, Beffy P, Gregorelli A, Porozov S, Mascia F, Vantaggiato C, Masiello P, Menegazzi M. Persistence of STAT-1 inhibition and induction of cytokine resistance in pancreatic β cells treated with St John's wort and its component hyperforin. ACTA ACUST UNITED AC 2017; 71:93-103. [PMID: 28990659 DOI: 10.1111/jphp.12823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 08/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES St John's wort extract (SJW) and its component hyperforin (HPF) were shown to potently inhibit cytokine-induced STAT-1 and NF-κB activation in pancreatic β cells and protect them against injury. This study aimed at exploring the time course of STAT-1 inhibition afforded by these natural compounds in the β-cell line INS-1E. METHODS INS-1E cells were pre-incubated with SJW extract (2-5 μg/ml) or HPF (0.5-2 μm) and then exposed to a cytokine mixture. In some experiments, these compounds were added after or removed before cytokine exposure. STAT-1 activation was assessed by electrophoretic mobility shift assay, apoptosis by caspase-3 activity assay, mRNA gene expression by RT-qPCR. KEY FINDINGS Pre-incubation with SJW/HPF for 1-2 h exerted a remarkable STAT-1 downregulation, which was maintained upon removal of the compounds before early or delayed cytokine addition. When the protective compounds were added after cell exposure to cytokines, between 15 and 90 min, STAT-1 inhibition also occurred at a progressively decreasing extent. Upon 24-h incubation, SJW and HPF counteracted cytokine-induced β-cell dysfunction, apoptosis and target gene expression. CONCLUSIONS SJW and HPF confer to β cells a state of 'cytokine resistance', which can be elicited both before and after cytokine exposure and safeguards these cells from deleterious cytokine effects.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Alex Gregorelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Svetlana Porozov
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Chiara Vantaggiato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Cakir M, Duzova H, Baysal I, Gül CC, Kuşcu G, Kutluk F, Çakin H, Şeker Ş, İlbeği E, Uslu S, Avci U, Demir S, Akinci C, Atli S. The effect of hypericum perforatum on kidney ischemia/reperfusion damage. Ren Fail 2017; 39:385-391. [PMID: 28209087 PMCID: PMC6014337 DOI: 10.1080/0886022x.2017.1287734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been revealed in recent studies that Hypericum Perforatum (HP) is influential on cancer, inflammatory diseases, bacterial and viral diseases, and has neuroprotective and antioxidant properties. In this study, we investigated the effect of HP, which is known to have antioxidant and anti-inflammatory effects, on kidney I/R damage. Male Sprague–Dawley rats were divided into three groups, and each of the groups had eight rats: The Control Group; the Ischemia/Reperfusion (I/R) Group; and the IR + HP Group which was treated with 50 mg/kg of HP. The right kidneys of the rats were removed, and the left kidney developed ischemia during the 45th min, and reperfusion occurred in the following 3rd h. The histopathological findings and also the level of Malondialdehyde (MDA), Glutathione (GSH) and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) enzyme activations in the renal tissues were measured. Blood Urea Nitrogen (BUN), Creatinin (Cre) from serum samples were determined. The levels of BUN, Cre, and kidney tissue MDA increased at a significant level, and the SOD, CAT, and GSH-PX enzyme activity decreased at a significant level in the I/R group, compared with the Control Group (p < 0.05). In the I/R + HP group, the levels of MDA decreased at a significant level compared to the I/R group, while the SOD, CAT, and GSH-PX activity increased (p < 0.05). In histopathological examinations, it was observed that the tubular dilatation and epithelial desquamation regressed in the IR + HP Group when compared with the I/R Group. It has been shown with the histological and biochemical results in this study that HP is protective against acute renal I/R.
Collapse
Affiliation(s)
- Murat Cakir
- a Department of Physiology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Halil Duzova
- a Department of Physiology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Işil Baysal
- b Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Cemile Ceren Gül
- b Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Gülbahar Kuşcu
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Fatma Kutluk
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Hilal Çakin
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Şifanur Şeker
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Esranur İlbeği
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Seda Uslu
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Umut Avci
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Samet Demir
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Cihan Akinci
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Sercan Atli
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| |
Collapse
|
13
|
Galeotti N. Hypericum perforatum (St John's wort) beyond depression: A therapeutic perspective for pain conditions. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:136-146. [PMID: 28216196 DOI: 10.1016/j.jep.2017.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (Hypericaceae), popularly called St. John's wort (SJW), has a rich historical background being one of the oldest used and most extensively investigated medicinal herbs. Many bioactivities and applications of SJW are listed in popular and in scientific literature, including antibacterial, antiviral, anti-inflammatory. In the last three decades many studies focused on the antidepressant activity of SJW extracts. However, several studies in recent years also described the antinociceptive and analgesic properties of SJW that validate the traditional uses of the plant in pain conditions. AIM OF THE REVIEW This review provides up-to-date information on the traditional uses, pre-clinical and clinical evidence on the pain relieving activity of SJW and its active ingredients, and focuses on the possible exploitation of this plant for the management of pain. MATERIALS AND METHODS Historical ethnobotanical publications from 1597 were reviewed for finding local and traditional uses. The relevant data on the preclinical and clinical effects of SJW were searched using various databases such as PubMed, Science Direct, Scopus, and Google Scholar. Plant taxonomy was validated by the database Plantlist.org. RESULTS Preclinical animal studies demonstrated the ability of low doses of SJW dry extracts (0.3% hypericins; 3-5% hyperforins) to induce antinociception, to relieve from acute and chronic hyperalgesic states and to augment opioid analgesia. Clinical studies (homeopathic remedies, dry extracts) highlighted dental pain conditions as a promising SJW application. In vivo and in vitro studies showed that the main components responsible for the pain relieving activity are hyperforin and hypericin. SJW analgesia appears at low doses (5-100mg/kg), minimizing the risk of herbal-drug interactions produced by hyperforin, a potent inducer of CYP enzymes. CONCLUSION Preclinical studies indicate a potential use of SJW in medical pain management. However, clinical research in this field is still scarce and the few studies available on chronic pain produced negative results. Prospective randomized controlled clinical trials performed at low doses are needed to validate its potential efficacy in humans.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
14
|
|
15
|
St. John’s wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells. Int J Biochem Cell Biol 2016; 81:92-104. [DOI: 10.1016/j.biocel.2016.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
|
16
|
Nunes C, Teixeira N, Serra D, Freitas V, Almeida L, Laranjinha J. Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb) 2016; 5:53-65. [PMID: 30090326 PMCID: PMC6061778 DOI: 10.1039/c5tx00214a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022] Open
Abstract
The development of therapeutic approaches combining efficacy and safety represents an important goal in intestinal inflammation research. Recently, evidence has supported dietary polyphenols as useful tools in the treatment and prevention of chronic inflammatory diseases, but the mechanisms of action are still poorly understood. We here reveal molecular mechanisms underlying the anti-inflammatory action of a non-alcoholic polyphenol red wine extract (RWE), operating at complementary levels via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) and Nuclear factor-erythroid 2-related factor-2 (Nrf2) pathways. RWE significantly reduced the nuclear levels of phosphorylated STAT1 and also the cellular levels of phosphorylated JAK1 induced by cytokines, suppressing the JAK/STAT inflammatory signalling cascade. In turn, RWE increased the Nrf2 nuclear level, activating the Nrf2 pathway, leading not only to an up-regulation of the heme oxygenase-1 (HO-1) expression but also to an increase of the glutamate-cysteine ligase subunit catalytic (GCLc) gene expression, enhancing the GSH synthesis, thereby counteracting GSH depletion that occurs under inflammatory conditions. Overall, data indicate that the anti-inflammatory action of RWE is exerted at complementary levels, via suppression of the JAK/STAT inflammatory pathway and positive modulation of the activity of Nrf2. These results point to the potential use of the RWE as an efficient, readily available and inexpensive therapeutic strategy in the context of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - Natércia Teixeira
- Department of Chemistry , Faculty of Sciences , University of Porto , Portugal
| | - Diana Serra
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - Víctor Freitas
- Department of Chemistry , Faculty of Sciences , University of Porto , Portugal
| | - Leonor Almeida
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - João Laranjinha
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| |
Collapse
|
17
|
Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015; 6:334-343. [PMID: 26335399 PMCID: PMC4565017 DOI: 10.1016/j.redox.2015.08.009] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. NO is pro- and anti-tumorigenic. High concentrations of NO maybe anti-tumorigenic. iNOS produces high concentrations of NO and relates to tumor growth or its inhibition. iNOS is associated with cytotoxicity, apoptosis and bystander anti-tumor effects. Tumor- and stromal-iNOS, and the ‘cell situation’ contribute to anti or pro-tumor effects. Dual role of iNOS is influenced by the cell situation and is environment dependent.
Collapse
Affiliation(s)
- Federica Vannini
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031, United States
| | - Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031, United States
| | - Niharika Nath
- Department of Life Sciences, New York Institute of Technology, NY 10023, United States.
| |
Collapse
|
18
|
Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol 2014; 281:230-41. [PMID: 25448439 DOI: 10.1016/j.taap.2014.10.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
19
|
Orhan IE, Kartal M, Gülpinar AR, Yetkin G, Orlikova B, Diederich M, Tasdemir D. Inhibitory effect of St. John׳s Wort oil macerates on TNFα-induced NF-κB activation and their fatty acid composition. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1086-1092. [PMID: 24993886 DOI: 10.1016/j.jep.2014.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The oil macerates of Hypericum perforatum L. (St. John׳s Wort=SJW) have a long history of medicinal use and SJW has been used in traditional medicine both orally and topically for centuries worldwide mainly for wound healing, ulcer and inflammation. MATERIALS AND METHODS We analyzed the fatty acid composition of 10 traditionally (home-made) and 13 commercially (ready-made) prepared SJW oil macerates by GC-MS. The acid, peroxide, iodine, saponification values, and the unsaponifiable matters of the samples were determined according to the European Pharmacopoeia. We also explored potential mechanism of wound healing effect of the samples, i.e. TNFα-induced NF-κB activation. RESULTS The most home-made oil samples contained oleic acid predominantly and complied with the requirements set for olive oil by European Pharmacopoeia. However, majority of the ready-made samples appeared to have adulteration with some other oils. Moderate NF-κB inhibitory effects have been observed with some of the oil samples. CONCLUSION This study sheds light on the fact that application of the proper traditional method to prepare olive oil macerates from Hypericum perforatum is able to get bioactive constituents in the oil. Besides, inhibition of TNFα-induced NF-κB activation appears to be a potential mechanism for topical wound healing activity of SJW oil macerates.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Ali Rifat Gülpinar
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Gülin Yetkin
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Barbora Orlikova
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deniz Tasdemir
- School of Chemistry, National University of Ireland Galway, Ireland.
| |
Collapse
|
20
|
Hammer KDP, Birt DF. Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 2014; 54:781-9. [PMID: 24345048 DOI: 10.1080/10408398.2011.607519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypericum perforatum (Hp) extracts contain many different classes of constituents including flavonoids and biflavonoids, phloroglucinols, naphthodianthrones, caffeic acid derivatives, and unknown and/or unidentified compounds. Many constituents may be responsible for the anti-inflammatory activity of Hp including quercetin and derivatives, hyperforin, pseudohypericin, and amentoflavone. In line with antidepressant data, it appears that the interactions of constituents may be important for the anti-inflammatory activity of Hp. Interactions of constituents, tested in bioavailability models, may explain why synergistic mechanisms have been found to be important for antidepressant and antiproliferative bioactivities. This review highlights the relationship among individual constituents and the anti-inflammatory activity of Hp extracts and proposes that interactions of constituents may be important for the anti-inflammatory activity of botanical extracts, although the exact mechanisms of the interactions are still unclear.
Collapse
Affiliation(s)
- Kimberly D P Hammer
- a Center for Research on Botanical Dietary Supplements , Iowa State University , Ames , Iowa , USA
| | | |
Collapse
|
21
|
Baek JH, Nierenberg AA, Kinrys G. Clinical applications of herbal medicines for anxiety and insomnia; targeting patients with bipolar disorder. Aust N Z J Psychiatry 2014; 48:705-15. [PMID: 24947278 DOI: 10.1177/0004867414539198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Patients with bipolar disorder frequently continue to experience residual anxiety and insomnia between mood episodes. In real-world practice, patients increasingly self-prescribe alternative medicines. METHODS We reviewed case reports, open-label, and placebo-controlled trials investigating the use of herbal medicines to treat anxiety and insomnia, and discussed their potential applications for bipolar disorder. RESULTS Eleven herbal medicines that have been studied in human subjects are included in this review. Mechanisms of action, efficacy, side effects, and drug-drug interactions are discussed. Based on currently available evidence, valerian seems to be the most promising candidate for insomnia and anxiety in bipolar disorder. CONCLUSIONS Adjunctive herbal medicines may have the potential to alleviate these symptoms and improve the outcomes of standard treatment, despite limited evidence. Physicians need to have a more in-depth understanding of the evidence of benefits, risks, and drug interactions of alternative treatments.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Bipolar Clinic and Research Program, Massachusetts General Hospital, Boston, USA School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Andrew A Nierenberg
- Bipolar Clinic and Research Program, Massachusetts General Hospital, Boston, USA Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Gustavo Kinrys
- Bipolar Clinic and Research Program, Massachusetts General Hospital, Boston, USA Department of Psychiatry, Harvard Medical School, Boston, USA
| |
Collapse
|
22
|
Hyperforin attenuates microglia activation and inhibits p65-Ser276 NFκB phosphorylation in the rat piriform cortex following status epilepticus. Neurosci Res 2014; 85:39-50. [PMID: 24881563 DOI: 10.1016/j.neures.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 01/23/2023]
Abstract
Hyperforin, a lipophilic constituent of medicinal herb St. John's Wort, has neurobiological effects including antidepressant activity, antibiotic potency, anti-inflammatory activity and anti-tumoral properties. Furthermore, hyperforin activates transient receptor potential conical channel-6 (TRPC6), a nonselective cation channel. To elucidate the roles of hyperforin and TRPC6 in neuroinflammation in vivo, we investigated the effect of hyperforin on neuroinflammatory responses and its related events in the rat piriform cortex (PC) following status epilepticus (SE). Hyperforin attenuated microglial activation, p65-serine 276 NFκB phosphorylation, and suppressed TNF-α expression in the PC following SE. Hyperforin also effectively alleviated SE-induced vasogenic edema formation, neuronal damage, microglial TRPC6 induction and blood-derived monocyte infiltration. Our findings suggest that hyperforin may effectively attenuate microglia-mediated neuroinflammation in the TRPC6-independent manner.
Collapse
|
23
|
Novelli M, Beffy P, Menegazzi M, De Tata V, Martino L, Sgarbossa A, Porozov S, Pippa A, Masini M, Marchetti P, Masiello P. St. John's wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity. Acta Diabetol 2014; 51:113-21. [PMID: 24121871 PMCID: PMC3923109 DOI: 10.1007/s00592-013-0518-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/28/2013] [Indexed: 11/27/2022]
Abstract
The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marta Menegazzi
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Luisa Martino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Anna Sgarbossa
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Svetlana Porozov
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
24
|
Teiten MH, Gaascht F, Dicato M, Diederich M. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol 2013; 86:1239-47. [DOI: 10.1016/j.bcp.2013.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
|
25
|
Galeotti N, Ghelardini C. Reversal of NO-induced nociceptive hypersensitivity by St. John's wort and hypericin: NF-κB, CREB and STAT1 as molecular targets. Psychopharmacology (Berl) 2013; 227:149-63. [PMID: 23254377 DOI: 10.1007/s00213-012-2950-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022]
Abstract
RATIONALE Hypericum perforatum, popularly called St. John's wort (SJW), is a medicinal plant mainly used as antidepressant with a favorable safety profile than standard antidepressants. Some studies have also documented other SJW bioactivities, including pain modulation. OBJECTIVES The aim of this study was to demonstrate the capability of SJW to relieve nitric oxide (NO)-induced nociceptive hypersensitivity and identify the effective component. METHODS Nociceptive hypersensitivity induced by administration of the NO donors nitroglycerin (GTN) and sodium nitroprusside (SNP) was assessed by cold and hot plate tests. The cellular pathways and molecular targets involved were investigated by Western blotting. RESULTS GTN and SNP produced a prolonged allodynia and hyperalgesia in mice. A single oral administration of low doses of an SJW dried extract or purified hypericin reversed the NO donor-induced nociceptive behavior whereas hyperforin and flavoinoids were ineffective. Investigating into the cellular pathways involved, an increased CREB and STAT1 phosphorylation, and activation of NF-κB were detected within PAG and thalamus following NO donors' administration. These cellular events were prevented by SJW or hypericin. Since hypericin showed PKC blocking properties, a role of PKC as an upstream modulator of these transcription factors was hypothesized. NO donors increased expression and phosphorylation of protein kinase C (PKC) γ and ε isoforms, molecular events prevented by SJW or hypericin. CONCLUSIONS SJW reversed NO-induced nociceptive hypersensitivity through the blockade of a supraspinal signaling pathway involving a PKC-dependent CREB, STAT1 and NF-κB activation due to presence of hypericin. These data indicate SJW/hypericin as a therapeutic perspective for pain treatment.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | | |
Collapse
|
26
|
Vujanovic S, Vujanovic J. Bioresources in the pharmacotherapy and healing of burns: A mini-review. Burns 2013; 39:1031-8. [PMID: 23642293 DOI: 10.1016/j.burns.2013.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 09/07/2012] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
The present mini-review actualizes the pharmacy of botanical, animal, and fungal sources of potential value in the management of burns wounds. It also highlights the importance of applying contemporary imaged-based sciences such as radiology in the assessment and prognosis of wounds and burns.
Collapse
Affiliation(s)
- Silva Vujanovic
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
27
|
|
28
|
Asgary S, Solhpour A, Parkhideh S, Madani H, Mahzouni P, Kabiri N. Effect of hydroalcoholic extract of Hypericum perforatum on selected traditional and novel biochemical factors of cardiovascular diseases and atherosclerotic lesions in hypercholesterolemic rabbits: A comparison between the extract and lovastatin. J Pharm Bioallied Sci 2012; 4:212-8. [PMID: 22923963 PMCID: PMC3425170 DOI: 10.4103/0975-7406.99044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/20/2011] [Accepted: 12/02/2011] [Indexed: 11/26/2022] Open
Abstract
Context: Evidence suggests that diets with high contents of cholesterol will increase serum lipoproteins and apolipoproteins, thereby increase risk of atherosclerosis. According to literature, some plants show hypolipidemic, hypocholestrolemic, and antiatherosclerotic activities. Aims: In this study, antiatherosclerotic effect of Hypericum perforatum hydroalcoholic extract on hypercholesterolemic rabbits was compared with that of lovastatin. Materials and Methods: Twenty five mature male New Zealand rabbits were randomly divided into five groups of five and were fed for 60 days as follows: Standard diet (GroupI), standard diet and hydroalcoholic extract of Hypericum perforatum (150 mg/kg daily)(GroupII), standard diet, hydroalcoholic extract of Hypericum perforatum (150 mg/ kg daily) and cholesterol (1% of food content) (Group III), standard diet and cholesterol (1% of food content)(GroupIV), and finally standard diet, lovastatin (10 mg/kg), and cholesterol (1% of foodcontent) (GroupV). Results: Hypericum perforatum extract significantly decreased the levels of apolipoprotein B(apoB), apolipoprotein B/apolipoprotein A (apoB/apoA), triglyceride, cholesterol, low density lipoprotein cholesterol, oxidized LDL, malondialdehyde, and C-reactive protein (CRP) as well as atherosclerosis index, and increased high density lipoprotein and apoA in rabbits of Group III compared to the rabbits of Group IV. The effect of Hypericum perforatum extract in decreasing the level of some biochemical factors like apoB, apoB/apoA, and CRP was meaningfully more than that of lovastatin. Histopathological findings confirmed that hydroalcoholic extract of Hypericum perforatum restricted the atherosclerotic lesions. Conclusions: This study indicates that hydroalcoholic extract of Hypericum perforatum possesses hypolipidemic and anti-atherosclerotic effects and could be beneficial in the management of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | | | | | | | | | | |
Collapse
|
29
|
Borner T, Pinkernell S, Lutz TA, Riediger T. Lipopolysaccharide inhibits ghrelin-excited neurons of the arcuate nucleus and reduces food intake via central nitric oxide signaling. Brain Behav Immun 2012; 26:867-79. [PMID: 22465682 DOI: 10.1016/j.bbi.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 12/30/2022] Open
Abstract
Lipopolysaccharide (LPS) induces anorexia and expression of inducible nitric oxide synthase (iNOS) in the hypothalamic arcuate nucleus (Arc). Peripheral administration of the iNOS inhibitor 1400 W counteracts the anorectic effects of LPS. Here we investigated the role of central NO signaling in LPS anorexia. In electrophysiological studies we tested whether 1400 W counteracts the iNOS-dependent inhibition of Arc neurons triggered by in vivo or in vitro stimulation with LPS. We used the hormone ghrelin as a functional reference stimulus because ghrelin is known to activate orexigenic Arc neurons. Further, we investigated whether in vitro LPS stimulation induces an iNOS-mediated formation of the second messenger cGMP. Since the STAT1 pathway contributes to the regulation of iNOS expression we investigated whether LPS treatment induces STAT1 phosphorylation in the Arc. Finally we tested the effect of intracerebroventricular injection of 1400 W on LPS-induced anorexia. Superfusion with 1400 W (10(-4) M) increased neuronal activity in 37% of neurons in Arc slices from LPS treated (100 μg/kg ip) but not from saline treated rats. Similarly, 1400 W excited 45% of Arc neurons after in vitro stimulation with LPS (100 ng/ml). In both approaches, a considerable percentage of 1400 W sensitive neurons were excited by ghrelin (10(-8)M; 50% and 75%, respectively). In vitro stimulation with LPS induced cGMP formation in the Arc, which was blocked by co-incubation with 1400 W. LPS treatment elicited a pSTAT1 response in the Arc of mice. Central 1400 W injection (4 μg/rat) attenuated LPS-induced anorexia and counteracted the LPS-dependent decrease in respiratory quotient and energy expenditure. In conclusion, the current findings substantiate a role of central iNOS dependent NO formation in LPS-induced effects on eating and energy homeostasis. A pharmacological blockade of NO formation might be a therapeutic approach to ameliorate disease-related anorexia.
Collapse
Affiliation(s)
- Tito Borner
- Institute of Veterinary Physiology and Centre of Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
30
|
Huang N, Rizshsky L, Hauck CC, Nikolau BJ, Murphy PA, Birt DF. The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3. PHYTOCHEMISTRY 2012; 76:106-116. [PMID: 22245632 PMCID: PMC3294117 DOI: 10.1016/j.phytochem.2011.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/11/2011] [Accepted: 12/06/2011] [Indexed: 05/29/2023]
Abstract
Our previous studies found that 4 compounds, namely pseudohypericin, amentoflavone, quercetin, and chlorogenic acid, in Hypericum perforatum ethanol extract synergistically inhibited lipopolysaccharide (LPS)-induced macrophage production of prostaglandin E2 (PGE2). Microarray studies led us to hypothesize that these compounds inhibited PGE2 production by activating suppressor of cytokine signaling 3 (SOCS3). In the current study, siRNA was used to knockdown expression of SOCS3 in RAW 264.7 macrophages and investigated the impact of H. perforatum extract and the 4 compounds on inflammatory mediators and cytokines. It was found that the SOCS3 knockdown significantly compromised the inhibition of PGE2 and nitric oxide (NO) by the 4 compounds, but not by the extract. The 4 compounds, but not the extract, decreased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while both lowered interleukine-1β. SOCS3 knockdown further decreased IL-6 and TNF-α. Pseudohypericin was the major contributor to the PGE2 and NO inhibition in cells treated with the 4 compounds, and its activity was lost with the SOCS3 knockdown. Cyclooxygenase-2 (COX-2) and inducible NO synthase protein expression were not altered by the treatments, while COX-2 activity was decreased by the extract and the 4 compounds and increased by SOCS3 knockdown. In summary, it was demonstrated that the 4 compounds inhibited LPS-induced PGE2 and NO through SOCS3 activation. The reduction of PGE2 can be partially attributed to COX-2 enzyme activity, which was significantly elevated with SOCS3 knockdown. At the same time, these results also suggest that constituents in H. perforatum extract were alleviating LPS-induced macrophage response through SOCS3 independent mechanisms.
Collapse
Affiliation(s)
- Nan Huang
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Ludmila Rizshsky
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Catherine C. Hauck
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Basil J. Nikolau
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Patricia A. Murphy
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Diane F. Birt
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
31
|
Mortensen T, Shen S, Shen F, Walsh MK, Sims RC, Miller CD. Investigating the effectiveness of St John's wort herb as an antimicrobial agent against mycobacteria. Phytother Res 2012; 26:1327-33. [PMID: 22294548 DOI: 10.1002/ptr.3716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 01/16/2023]
Abstract
A persistent need exists for effective treatment agents for mycobacterial infections. This research investigated the effectiveness of the Hypericum perforatum herb (commonly known as St John's wort; SJW) in its growth inhibition of mycobacteria. A SJW extract was effective at inhibiting five nonpathogenic Mycobacterium isolates and Bacillus subtilis, but not Escherichia coli. Quantitative studies of concentration sensitivity to the SJW extract were performed with minimal bactericidal concentrations (MBC) ranging from 0.33 to 2.66 mg extract/mL. The SJW compounds hyperforin (Hfn), hypericin (Hpn), and pseudohypericin (Phn) were quantified in the extract using HPLC. The SJW extract solution of 133 mg extract/mL used in this study contained 2.3 mg Hfn/mL, 0.8 mg Hpn/mL, and 2.1 mg Phn/mL. Purified Hfn, Hpn, and Phn were tested for inhibitory activity against Mycobacterium JLS (M. JLS) at similar concentrations used in the crude extract. While Hfn was inhibitory at 46 µg/mL, none of the purified SJW constituents were bactericidal at concentrations corresponding to SJW treatments. Scanning electron microscopy (SEM) analysis of SJW-treated M. JLS cells showed changes in cell surface morphology.
Collapse
Affiliation(s)
- Trent Mortensen
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | | | | | | | | | | |
Collapse
|
32
|
Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012; 2012:623019. [PMID: 22363173 PMCID: PMC3272848 DOI: 10.1155/2012/623019] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization of phosphorylated ATM and γ-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting the risk of inflammation-related cancers.
Collapse
|
33
|
Tugrul I, Demirci B, Demir O, Dost T, Birincioglu M. The effect of Hypericum perforatum on isolated rat aorta. PHARMACEUTICAL BIOLOGY 2011; 49:879-883. [PMID: 21696333 DOI: 10.3109/13880209.2010.551779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Different Hypericum species such as Hypericum perforatum (HP) L. and Hypericum triquetrifolium Turra are well known and widely used traditional medicine in Turkey. OBJECTIVES We investigated the effect of standardized HP extract on endothelium and vascular function. MATERIALS AND METHODS After suspending the aortas with endothelium in organ baths containing Krebs solution, contractile and relaxant responses were assessed in the absence and presence of HP (0.05 mg/ml). RESULTS Although there were significant reductions in the contractile responses to phenylephrine (1113.73 ± 164.11; 477.40 ± 39.94; p < 0.05) and potassium chloride (745.58 ± 66.73; 112.58 ± 26.58; p < 0.05), no differences in the relaxant responses to acetylcholine (94.61 ± 2.65; 87.79 ± 9.40) and sodium nitroprusside (108.82 ± 5.06; 106.43 ± 7.45) were observed. DISCUSSION AND CONCLUSION These data suggest that even the high dose of HP intervention does not bring any harmful effect on endothelium and smooth muscle function; meanwhile it might be beneficial on some of diseases accompanied with increased vascular contraction.
Collapse
Affiliation(s)
- Ibrahim Tugrul
- Department of Pharmacology, Adnan Menderes University, School of Medicine, Aydin, Turkey
| | | | | | | | | |
Collapse
|
34
|
Klemow K, Bartlow A, Crawford J, Kocher N, Shah J, Ritsick M. Medical Attributes of St. John's Wort (Hypericum perforatum). OXIDATIVE STRESS AND DISEASE 2011:211-237. [DOI: 10.1201/b10787-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Abstract
During developmental age, differences in pharmacodynamic reactions to several drugs may reflect polymorphisms of genes encoding drug-transporting proteins, receptors, drug targets, and gene products, whose disturbed activity sometimes plays an important role in certain diseases. Administration of drugs with a narrow therapeutic index may quite easily be associated with changes in pharmacokinetics and development of adverse drug reactions, which occasionally may cause fatalities. In such cases, polypragmasy and resulting drug interactions may enhance effects of changes in drug-metabolizing enzymes' activities. Phenotyping and genotyping of patients slowly are finding their place in some therapeutic regimens used in clinical gastroenterology and hepatology. At present, some assays to measure, for example, thiopurine S-methyltransferase activity are already commercially available. Polymorphisms of CYP450 enzymes, interleukins, and altered gene expression play an important role in some patients' various gastrointestinal tract and liver diseases. Herbal drugs also affect proinflammatory and antiinflammatory cytokine and nitric oxide balance in the body. Therapeutic use of recombined proteins, such as infliximab, natalizumab, onercept, humanized antibody to integrin α-4 β-7, or IFN-β in some large-bowel diseases increased therapeutic efficacy. IFN-α used in the patients with chronic hepatitis C improved cellular immunity in these subjects and exerted antiviral activity. Practical application of progress in pharmacogenetics, pharmacokinetics, pharmacodynamics, and use of bioproducts in novel therapeutic regimens has opened therapeutic frontiers and increased clinical safety.
Collapse
|
36
|
Hatanaka J, Shinme Y, Kuriyama K, Uchida A, Kou K, Uchida S, Yamada S, Onoue S. In vitro and in vivo Characterization of New Formulations of St. John's Wort Extract with Improved Pharmacokinetics and Anti-nociceptive Effect. Drug Metab Pharmacokinet 2011; 26:551-8. [DOI: 10.2133/dmpk.dmpk-11-rg-041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Galeotti N, Vivoli E, Bilia AR, Vincieri FF, Ghelardini C. St. John's Wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase C γ and ɛ activity. Biochem Pharmacol 2010; 79:1327-36. [DOI: 10.1016/j.bcp.2009.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/05/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
|
39
|
Kraus B, Wolff H, Elstner EF, Heilmann J. Hyperforin is a modulator of inducible nitric oxide synthase and phagocytosis in microglia and macrophages. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:541-53. [PMID: 20369228 DOI: 10.1007/s00210-010-0512-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 01/06/2023]
Abstract
Upon activation, microglia, the immunocompetent cells in the brain, get highly phagocytic and release pro-inflammatory mediators like nitric oxide (NO). Excessive NO production is pivotal in neurodegenerative disorders, and there is evidence that abnormalities in NO production and inflammatory responses may at least support a range of neuropsychiatric disorders, including depression. Although extracts of St. John's wort (Hypericum perforatum L.) have been used for centuries in traditional medicine, notably for the treatment of depression, there is still considerable lack in scientific knowledge about the impact on microglia. We used N11 and BV2 mouse microglia, as well as RAW 264.7 macrophages to investigate the effects of St. John's wort extract and constituents thereof on NO production Moreover, flow cytometry and fluorescence microscopy were employed to analyze the influence on phagocytosis, transcription factor activation states, and cell motility. We found that extracts of St. John's wort efficiently suppress lipopolysaccharide-induced NO release and identified hyperforin as the responsible compound, being effective at concentrations between 0.25 and 0.75 microM. The reduced NO production was mediated by diminished inducible nitric oxide synthase expression on the mRNA and protein level. In addition, at similar concentrations, hyperforin reduced zymosan phygocytosis to 20-40% and putatively acted by downregulating the CD206 macrophage mannose receptor and modulation of cell motility. We found that the observed effects correlate with a suppression of the activated state of Nf-kappaB and phospho-CREB, while c-JUN, STAT1, and HIF-1alpha activity and cyclooxygenase-2 expression remained unaffected by hyperforin. These results reveal that hyperforin influences pro-inflammatory and immunological responses of microglia that are involved in the progression of neuropathologic disorders.
Collapse
Affiliation(s)
- Birgit Kraus
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstrasse 31, Regensburg, Germany.
| | | | | | | |
Collapse
|
40
|
Galeotti N, Vivoli E, Bilia AR, Bergonzi MC, Bartolini A, Ghelardini C. A Prolonged Protein Kinase C-Mediated, Opioid-Related Antinociceptive Effect of St John's Wort in Mice. THE JOURNAL OF PAIN 2010; 11:149-59. [DOI: 10.1016/j.jpain.2009.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/18/2009] [Accepted: 06/24/2009] [Indexed: 02/08/2023]
|
41
|
|
42
|
Patil AJ, Gramajo AL, Sharma A, Seigel GM, Kuppermann BD, Kenney MC. Differential effects of nicotine on retinal and vascular cells in vitro. Toxicology 2009; 259:69-76. [DOI: 10.1016/j.tox.2009.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 11/16/2022]
|
43
|
Lorusso G, Vannini N, Sogno I, Generoso L, Garbisa S, Noonan DM, Albini A. Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent. Eur J Cancer 2009; 45:1474-84. [DOI: 10.1016/j.ejca.2009.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/30/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|
44
|
Mukerjee R, Deshmane SL, Darbinian N, Czernik M, Khalili K, Amini S, Sawaya BE. St. John's Wort protein, p27SJ, regulates the MCP-1 promoter. Mol Immunol 2008; 45:4028-35. [PMID: 18649942 DOI: 10.1016/j.molimm.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/29/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
St. John's Wort is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally St. John's Wort has also been used to treat inflammation. In this study, we sought to characterize the mechanisms used by St. John's Wort to treat inflammation by examining the effect of the recently isolated protein from St. John's Wort, p27SJ on the expression of MCP-1. By employing an adenovirus expression vector, we demonstrate that a low concentration of p27SJ upregulates the MCP-1 promoter through the transcription factor C/EBPbeta. In addition, we found that C/EBPbeta-homologous protein (CHOP) or siRNA-C/EBPbeta significantly reduced the ability of p27SJ to activate MCP-1 gene expression. Results from protein-protein interaction studies illustrate the existence of a physical interaction between p27SJ and C/EBPbeta in microglial cells. The use of chromatin immunoprecipitation assay (ChIP) led to the identification of a new cis-element that is responsive to C/EBPbeta within the MCP-1 promoter. Association of C/EBPbeta with MCP-1 DNA was not affected by the presence of p27SJ. The biological activity of MCP-1 produced by cultures of adenovirus-p27SJ transduced cells was increased relative to controls as measured by the transmigration of human Jurkat cells. Thus, we conclude that at high concentration, p27SJ is a potential agent that may be developed as a modulator of MCP-1 leading to the inhibition of the cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, School of Medicine, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hillwig ML, Hammer KDP, Birt DF, Wurtele ES. Characterizing the metabolic fingerprint and anti-inflammatory activity of Hypericum gentianoides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4359-66. [PMID: 18512936 PMCID: PMC2701219 DOI: 10.1021/jf800411v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper we characterize the metabolic fingerprint and first reported anti-inflammatory activity of Hypericum gentianoides. H. gentianoides has a history of medical use by Native Americans, but it has been studied very little for biological activity. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses of a methanol extract show that H. gentianoides contains a family of over nine related compounds that have retention times, mass spectra, and a distinctive UV absorption spectra characteristic of certain acyl-phloroglucinols. These metabolites are abundant relative to other secondary products present in H. gentianoides, accounting for approximately 0.2 g per gram of dry plant tissue. H. gentianoides methanol extracts and a specific semipreparative HPLC fraction from these extracts containing the putative acyl-phloroglucinols reduce prostaglandin E 2 synthesis in mammalian macrophages.
Collapse
Affiliation(s)
- Matthew L. Hillwig
- To whom correspondence should be addressed. Phone: (515) 294-3509. E-mail: or
| | | | | | - Eve Syrkin Wurtele
- To whom correspondence should be addressed. Phone: (515) 294-3509. E-mail: or
| |
Collapse
|
46
|
Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Fukui Y, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: the relation to STAT3 activation and EGFR expression. Int J Cancer 2008; 122:2517-25. [PMID: 18307254 DOI: 10.1002/ijc.23415] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. Recently, reactive nitrogen and oxygen species are considered to participate in inflammation-related carcinogenesis through DNA damage. In our study, we obtained biopsy and surgical specimens of nasopharyngeal tissues from NPC patients in southern China, and performed double immunofluorescent staining to examine the formation of 8-nitroguanine, a nitrative DNA lesion and 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative DNA lesion, in these specimens. Strong DNA lesions were observed in cancer cells and inflammatory cells in stroma of NPC patients. Intensive immunoreactivity of iNOS was detected in the cytoplasm of 8-nitroguanine-positive cancer cells. DNA lesions and iNOS expression were also observed in epithelial cells of EBV-positive patients with chronic nasopharyngitis, although their intensities were significantly weaker than those in NPC patients. In EBV-negative subjects, no or little DNA lesions and iNOS expression were observed. EGFR and phosphorylated STAT3 were strongly expressed in cancer cells of NPC patients, but NF-kappaB was not expressed, suggesting that STAT3-dependent mechanism is important for NPC carcinogenesis. IL-6 was expressed mainly in inflammatory cells of nasopharyngeal tissues of EBV-infected patients. EBV-encoded RNAs (EBERs) and latent membrane protein 1 (LMP1) were detected in cancer cells from all EBV-infected patients. In vitro cell system, nuclear accumulation of EGFR was observed in LMP1-expressing cells, and IL-6 induced phosphorylated STAT3 and iNOS. These data suggest that nuclear accumulation of EGFR and STAT3 activation by IL-6 play the key role in iNOS expression and resultant DNA damage, leading to EBV-mediated NPC.
Collapse
Affiliation(s)
- Ning Ma
- Department of Anatomy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Inhibitory effect of the herbal antidepressant St. John’s wort (Hypericum perforatum) on rat gastric motility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 376:407-14. [DOI: 10.1007/s00210-007-0230-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/21/2007] [Indexed: 11/26/2022]
|
48
|
Efficacy of herbal products in colorectal cancer prevention. CURRENT COLORECTAL CANCER REPORTS 2008. [DOI: 10.1007/s11888-008-0007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Motallebn M, Moghadamni A, Talei M. The Efficacy of Hypericum perforatum Extract on Recurrent Aphthous Ulcers. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2008.39.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Guo L, Guo H, Gao C, Mi Z, Russell WB, Kuo PC. Stat1 acetylation inhibits inducible nitric oxide synthase expression in interferon-gamma-treated RAW264.7 murine macrophages. Surgery 2007; 142:156-62. [PMID: 17689680 PMCID: PMC2034510 DOI: 10.1016/j.surg.2007.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/22/2007] [Accepted: 02/25/2007] [Indexed: 01/14/2023]
Abstract
BACKGROUND We hypothesized that acetylation of the Stat1 regulates interferon-gamma (IFN-gamma) mediated macrophage expression of inducible nitric oxide synthase (iNOS). METHODS RAW 264.7 iNOS expression was induced with IFN-gamma. Deacetylase inhibitors trichostatin A (TSA) or valproic acid (VPA) were added. Stat1 and iNOS mRNA and protein were measured. Acetylated Stat1 was determined by immunoprecipitation. Chromatin immunoprecipitation assessed in vivo binding of Stat1 to the iNOS promoter. RESULTS IFN-gamma significantly increased nitrite, iNOS protein and iNOS mRNA, and iNOS promoter activation. (P < .01 vs control for nitrite, protein, and mRNA). TSA-mediated acetylation decreased these to levels that were not different from controls. IFN-gamma increased acetylated Stat1 by 5-fold (P < .02 vs control); TSA + IFN-gamma caused an additional 4-fold increase in acetylated Stat1 (P < .05 vs IFN alone). Stat1 binding to the iNOS promoter increased 8-fold with IFN-gamma (P < .01 vs control). In TSA + IFN-gamma, Stat1 binding was not different from controls. Although less potent than TSA, VPA also significantly decreased nitrite, iNOS protein, iNOS mRNA, Stat1 acetylation, and Stat1 binding. CONCLUSIONS Acetylation of Stat1 protein correlates with decreased Stat1 binding to the iNOS promoter with resultant inhibition of IFN-gamma-mediated iNOS expression. Acetylation of the Stat1 protein may downregulate iNOS expression in proinflammatory states.
Collapse
Affiliation(s)
- Lucie Guo
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|