1
|
Dandekar MP, Luse D, Hoffmann C, Cotton P, Peery T, Ruiz C, Hussey C, Giridharan VV, Soares JC, Quevedo J, Fenoy AJ. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle. J Affect Disord 2017; 217:80-88. [PMID: 28395208 DOI: 10.1016/j.jad.2017.03.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. METHODS Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). RESULTS Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. LIMITATIONS This study was not performed on an animal model of TRD. CONCLUSION MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Dustin Luse
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Carson Hoffmann
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Patrick Cotton
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Travis Peery
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Christian Ruiz
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Caroline Hussey
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Albert J Fenoy
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA.
| |
Collapse
|
2
|
Carkaci-Salli N, Salli U, Tekin I, Hengst JA, Zhao MK, Gilman TL, Andrews AM, Vrana KE. Functional characterization of the S41Y (C2755A) polymorphism of tryptophan hydroxylase 2. J Neurochem 2014; 130:748-58. [PMID: 24899127 DOI: 10.1111/jnc.12779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/23/2014] [Indexed: 01/11/2023]
Abstract
Human TPH2 (hTPH2) catalyzes the rate-limiting step in CNS serotonin biosynthesis. We characterized a single-nucleotide polymorphism (C2755A) in the hTPH2 gene that substitutes tyrosine for serine at position 41 in the regulatory domain of the enzyme. This polymorphism is associated with bipolar disorder and peripartum depression in a Chinese population. Recombinant h TPH2 human proteins were expressed in bacteria and also stably expressed in PC12 cells. Following bacterial expression and purification, the tyrosine for serine substitution at position 41 (S41Y) polymorphic enzyme displayed increased Vmax with unchanged Km values. By contrast, enzyme stability was decreased in vitro from 32 min to 4 min (37 °C) for the S41Y enzyme (as compared to the wild-type enzyme). The S41Y polymorphism decreased cyclic AMP-dependent protein kinase A-mediated phosphorylation ~ 50% relative to wild-type hTPH2, suggesting that the S41Y mutation may disrupt the post-translational regulation of this enzyme. Transfected PC12 cells expressed hTPH2 mRNA, active protein, and synthesized and released serotonin. Paradoxically, while S41Y-transfected PC12 cells expressed higher levels of hTPH2 than wild type, they synthesized less serotonin. These findings suggest a modified regulation of the S41Y gene variant leading to altered regulation and reduced neurotransmitter synthesis that may contribute to association of the polymorphism with bipolar disorder and depression. We report the functional implications of a polymorphic human tryptophan hydroxylase-2 gene associated with depression and bipolar disorder. The polymorphic enzyme (serine-41 converted to tyrosine) has increased activity, but decreased enzyme stability and serotonin production. Moreover, cyclic AMP-dependent protein kinase (PKA)-mediated phosphorylation of the mutant enzyme is decreased suggesting modified regulation of the S41Y variant leading to altered serotonin.
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The human serotonin transporter (SERT) gene possesses a 43-base pair (bp) insertion-deletion promoter polymorphism, the h5-HTTLPR. Genotype at this locus correlates with variation in anxiety-related personality traits and risk for major depressive disorder in many studies. Yet, the complex effects of the h5-HTTLPR, in combination with closely associated single-nucleotide polymorphisms (SNPs), continue to be debated. Moreover, although SERT is of high clinical significance, transporter function in vivo remains difficult to assess. Rhesus express a promoter polymorphism related to the h5-HTTLPR. The rh5-HTTLPR has been linked to differences in stress-related behavior and cognitive flexibility, although allelic variations in serotonin uptake have not been investigated. We studied the serotonin system as it relates to the 5-HTTLPR in rhesus peripheral blood cells. Sequencing of the rh5-HTTLPR revealed a 23-bp insertion, which is somewhat longer than originally reported. Consistent with previous reports, no SNPs in the rh5-HTTLPR and surrounding genomic regions were detected in the individuals studied. Reductions in serotonin uptake rates, cell surface SERT binding, and 5-hydroxyindoleacetic acid/serotonin ratios, but not SERT mRNA levels, were associated with the rh5-HTTLPR short allele. Thus, serotonin uptake rates are differentiable with respect to the 5-HTTLPR in an easily accessible native peripheral tissue. In light of these findings, we foresee that primary blood cells, in combination with high sensitivity functional measurements enabled by chronoamperometry, will be important for investigating alterations in serotonin uptake associated with genetic variability and antidepressant responsiveness in humans.
Collapse
|
4
|
Switzer RC, Lowry-Franssen C, Benkovic SA. Recommended Neuroanatomical Sampling Practices for Comprehensive Brain Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2011; 39:73-84. [DOI: 10.1177/0192623310397557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adequate tissue sampling is known to reduce the likelihood that the toxicity of novel biomolecules, chemicals, and drugs might go undetected. Each organ, and often specific structurally and functionally distinct regions within it, must be assessed to detect potential site-specific toxicity. Adequate sampling of the brain requires particular consideration because of the many major substructures and more than 600 subpopulations of generally irreplaceable cells with unique functions and vulnerabilities. All known neurotoxicants affect specific subpopulations (usually neurons) rather than damaging a certain percentage of cells throughout the brain; thus, all populations should be independently assessed for lesions. Historically, the affected neural cell subpopulation has not been predictable, but it is now clear that sampling selected populations (e.g., cerebral cortex, hippocampus, cerebellar folia) cannot forecast the health of other populations. This article reviews the neuroanatomical domains affected by several model neurotoxicants to illustrate the need for more comprehensive neurohistological evaluation during nonclinical development of novel compounds. The article also describes an easily executed, cost-effective method that uses a set number of evenly spaced coronal (cross) sections to accomplish this comprehensive brain assessment during nonclinical safety studies performed in rodents, dogs, and nonhuman primates.
Collapse
Affiliation(s)
| | - Catherine Lowry-Franssen
- NeuroScience Associates, Knoxville, Tennessee, USA
- Randolph-Macon College, Ashland, Virginia, USA
| | | |
Collapse
|
5
|
Magiatis P, Polychronopoulos P, Skaltsounis AL, Lozach O, Meijer L, Miller DB, O'Callaghan JP. Indirubins deplete striatal monoamines in the Intact and MPTP-treated mouse brain and block kainate-induced striatal astrogliosis. Neurotoxicol Teratol 2009; 32:212-9. [PMID: 20034560 DOI: 10.1016/j.ntt.2009.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/03/2009] [Accepted: 12/16/2009] [Indexed: 12/28/2022]
Abstract
The indirubins long have been used in Chinese medicine for treatment of myelocytic leukemia. Among the many more recently described biological activities of the indirubins, attention has been directed toward the ability of these compounds to inhibit GSK-3 and CDKs, kinases implicated in neurodegenerative conditions. Little information is available on effects of indirubins on chemically-induced neurodegeneration. Here we examined the influence of three indirubins on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and kainic acid (KA)-induced neurotoxicity in the mouse. The three indirubins examined were 6-bromoindirubin-3'-oxime (6BIO), 5-bromoindirubin-3'-oxime (5BIO) and 5-amino-6-bromoindirubin (5A6BI). The first two derivatives were previously described indirubins with low nanomolar inhibitory activity against GSK-3 and CDKs. The third compound was synthesized by the dimerization of 5-amino-6-bromoisatin with 3-acetoxyindol. The synthesis of the key compound 5-amino-6-bromoisatin was based on the bromination of the ketal of 5-amino-isatin. All indirubins examined decreased various measures associated with dopaminergic neurotransmission in striatum. These effects occurred alone or over and above the decrements seen following administration of the dopaminergic neurotoxicant, MPTP. Striatal serotonin and serotonin turnover were decreased by the indirubins in MPTP-treated mice. None of these striatal effects of the indirubins alone were associated with evidence of astrogliosis, an indicator of underlying neuropathology, nor did they potentiate the astrogliosis accompanying administration of MPTP. In general, the indirubins reduced KA-associated mortality and striatal but not hippocampal astrogliosis due to this toxicant. The data suggest that indirubins affect striatal biogenic amine levels and turnover in intact mice. The data do not indicate a neuroprotective action of indirubins in mice treated with MPTP but that they do suggest that they may be neuroprotective against KA-induced injury of the neostriatum.
Collapse
Affiliation(s)
- Prokopios Magiatis
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
6
|
Ho G, Kumar S, Zhang C, Kng YL, Zhuo L. Molecular imaging reveals a correlation between 2'-CH3-MPTP-induced neonatal neurotoxicity and dopaminergic neurodegeneration in adult transgenic mice. Int J Dev Neurosci 2008; 26:673-81. [PMID: 18703131 DOI: 10.1016/j.ijdevneu.2008.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022] Open
Abstract
We previously reported that a single subcutaneous (s.c.) injection of the neurotoxicant, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine or 2'-CH(3)-MPTP, to postnatal day 4 (PD4) mice caused acute and transient gliosis in the brain, which can be noninvasively monitored during a course of 8 h immediately after the dosing [Ho, G., Zhang, C.Y., Zhuo, L., 2007. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity. Toxicol. Appl. Pharmacol. 221, 76-85]. In the current study, we examined the consequence of PD4 mice receiving multiple injections (4 x 8 mg/kg, s.c. in 2 h intervals) of the same neurotoxicant 24-72 h after the last injection. Here we showed that the multiple dosing scheme (with a higher cumulative dose) triggered a severe gliosis not only in the striatum and substantia nigra pars compacta (SNpc), but also in hippocampus and cerebellum when examined by noninvasive in vivo imaging and by immunohistochemistry (IHC), respectively, in the PD5 to PD7 mice. When neonates treated with the neurotoxicant at PD4 were allowed to develop to 10 weeks of age and examined with IHC, a majority of the dopaminergic (DA) neurons were found to be permanently depleted from the adult SNpc. Our findings suggest that neurotoxicant-elicited neonatal gliosis can be used as an early molecular signature to predict the permanent loss of DA neurons in the developed brain. Since 2'-CH(3)-MPTP is an inducer of Parkinsonism in mice, the molecular imaging method described here is a relatively simple and powerful tool for longitudinally studying the developmental aspect of Parkinsonism.
Collapse
Affiliation(s)
- Gideon Ho
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore 138669
| | | | | | | | | |
Collapse
|
7
|
Luellen BA, Szapacs ME, Materese CK, Andrews AM. The neurotoxin 2′-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. Neuropharmacology 2006; 50:297-308. [PMID: 16288930 DOI: 10.1016/j.neuropharm.2005.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/03/2005] [Accepted: 09/05/2005] [Indexed: 11/15/2022]
Abstract
1-Methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH2-MPTP) causes long-term depletions in cortical and hippocampal serotonin (5-HT) and norepinephrine (NE) that are accompanied by acute elevations in glial fibrillary acidic protein (GFAP) and argyrophilia. To further investigate the hypothesis that these changes are reflective of serotonergic and noradrenergic axonal degeneration, 2'-NH2-MPTP was administered to mice and innervation densities were determined immunocytochemically. Regional responses of the neurotrophin, brain-derived neurotrophic factor (BDNF), to putative damage were also assessed. Three days after 2'-NH2-MPTP, 5-HT axons exhibited a beaded, tortuous appearance indicative of ongoing degeneration. At 21 days, numbers of serotonin axons were significantly decreased, with the greatest axonal losses occurring in cortex and hippocampus. Serotonin axons in the amygdala were contrastingly spared long-term damage, as were 5-HT and NE cell bodies in the brain stem. BDNF protein levels were selectively increased in the hippocampus 3 days post-dose and returned to normal 21 days later. These results, in conjunction with previous findings, demonstrate that 2'-NH2-MPTP causes degeneration of serotonergic axons innervating the cortex and hippocampus on par with depletions in neurotransmitter levels. Moreover, damage to the hippocampus, a brain region important for learning and memory, and the modulation of anxiety and stress responsiveness, results in a transitory increase in BDNF.
Collapse
Affiliation(s)
- Beth A Luellen
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
8
|
Chang MS, Ariah LM, Marks A, Azmitia EC. Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge. Brain Res 2005; 1031:1-9. [PMID: 15621007 DOI: 10.1016/j.brainres.2004.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
Serotonin (5-HT) can induce a release of intraglial S-100B and produce a change in glial morphology. Because S-100B can inhibit polymerization of glial fibrillary acidic protein (GFAP), we hypothesize that glial reactivity may reflect the loss of intraglial S-100B. Adult male transgenic S-100B homozygous knockout (-/-) mice (KO) and wild-type CD-1 (WT) mice were studied. S-100B-immunoreactivity (IR) was seen in the brain tissue of WT (CD-1) but not S-100B KO (-/-) mice. GFAP-IR was seen in both WT (CD-1) and S-100B KO (-/-) glia cells, but S-100B KO (-/-) GFAP-IR cells appeared larger, darker, and more branched than in WT (CD-1). To compare the response of GFAP-IR cells to 5-HT in S-100B KO (-/-) and WT (CD-1) mice, we injected animals with para-chloroamphetamine (PCA) over 2 days (5 and 10 mg/ml). PCA is a potent 5-HT releaser which can induce gliosis in the rodent brain. In WT (CD-1) mice, the size, branching, and density of GFAP-IR cells were significantly increased after PCA injections. No increase in GFAP-IR activation was seen in the S-100B KO (-/-) after PCA injections. Cell-specific densitometry (set at a threshold of 0-150 based on a scale of 255) in these animals statistically showed an increase in GFAP-IR after PCA injections in WT (CD-1) but not S-100B KO (-/-) mice. These results are consistent with the hypothesis that 5-HT may modulate glial morphology by inducing a release of intracellular S-100B, and this pathway is inoperable in the S-100B KO (-/-).
Collapse
Affiliation(s)
- Matthew S Chang
- Department of Biology, New York University, 10-09 Silver Building; 100 Washington Square East, New York, NY 10003 USA
| | | | | | | |
Collapse
|
9
|
Khan HA. Detection and semi-quantitative determination of low abundance GFAP mRNA in mouse brain by capillary electrophoresis coupled with laser-induced fluorescence. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2004; 14:13-7. [PMID: 15519947 DOI: 10.1016/j.brainresprot.2004.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2004] [Indexed: 02/08/2023]
Abstract
The sensitivity of capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) was compared with conventional agarose gel electrophoresis-ethidium bromide-UV method (AE-EUV) for detection and semi-quantitative determination of GFAP mRNA in mouse brain. GFAP expression was induced by the neurotoxin MPTP in C57BL mice. Serially diluted RNA samples (0.0003, 0.003, 0.03, 0.3, and 3 microg total RNA) were subjected to RT-PCR and analyzed by both procedures. The integrated pixel density (AE-EUV) and peak area (CE-LIF) were directly proportional to the amount of RNA. However, the observed high sensitivity of CE-LIF suggests its potential application for detection and semi-quantitative determination of low-abundance mRNA transcripts.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Szapacs ME, Numis AL, Andrews AM. Late onset loss of hippocampal 5-HT and NE is accompanied by increases in BDNF protein expression in mice co-expressing mutant APP and PS1. Neurobiol Dis 2004; 16:572-80. [PMID: 15262269 DOI: 10.1016/j.nbd.2004.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 02/11/2004] [Accepted: 04/16/2004] [Indexed: 12/13/2022] Open
Abstract
Transgenic mice expressing both mutant amyloid precursor protein (APPswe) and presenilin-1 (PS1DeltaE9) develop amyloid deposits as early as 4 months of age and preliminary evidence suggests that this may be associated with degenerative changes in serotonin axons innervating the dentate gyrus of the hippocampus. In the present investigation, which focused on further delineating the effects of amyloid deposition on hippocampal neurochemistry, decreases in serotonin neurotransmitter levels (-25%) were discovered to be present at 18 months in APP+/PS1+ mice, while norepinephrine was reduced in the hippocampus of 12- (-30%) and 18-month-old (-45%) APP+/PS1+ double mutants. In addition, brain-derived neurotrophic factor (BDNF) protein levels were investigated since changes in BDNF are reported to occur in AD, and BDNF has been shown to have trophic effects on serotonin and norepinephrine neurons. In doubly, but not singly mutant mice, hippocampal BDNF levels were increased at 12 (+70%) and 18 months (+170%). Furthermore, in a different model of serotonergic and noradrenergic degeneration, BDNF protein levels were similarly increased in response to depletions in hippocampal serotonin and norepinephrine caused by the chemical neurotoxin 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH2-MPTP). These findings show that early amyloid deposition in mice expressing mutant human APP and PS-1 is associated with a progressive loss of serotonin and norepinephrine neurotransmitter levels in the hippocampus later in life. Furthermore, BDNF protein levels are increased in APP+/PS1+ and 2'-NH2-MPTP-treated mice, possibly as a compensatory response to serotonergic and noradrenergic neurodegeneration in a brain region important for learning and memory.
Collapse
Affiliation(s)
- Matthew E Szapacs
- Department of Chemistry and the Huck Institute for Life Sciences, The Pennsylvania State University, University Park, PA 16802-4615, USA
| | | | | |
Collapse
|
11
|
Abstract
Autoxidation pathways and redox reactions of dihydroxytryptamines (5,6- and 5,7-DHT) and of 6-hydroxydopamine (6-OH-DA) are illustrated, and their potential role in aminergic neurotoxicity is discussed. It is proposed that certain aspects of the cytotoxicity of 6-OH-DA and of the DHTs, namely redox cycling of their quinone- and quinoneimine-intermediates as a source of free radicals, may also apply to quinoidal reactive intermediates and to glutathionyl- or cysteinyl conjugates ("thioether adducts") of o-dihydroxylated (catechol-like) metabolites of certain substituted amphetamines (of methylenedioxymethamphetamine (MDMA) and of methylenedioxyamphetamine (MDA)). Despite similarities in their primary interaction with the plasmalemmal (serotonergic transporter/dopamine transporter, SERT/DAT) and vesicular monoamine transporters (VMAT2), MDMA and fenfluramine (N-ethyl-meta-trifluoromethamphetamine, Fen) differ substantially in many aspects of their metabolism, pharmacokinetics, pharmacology, and neurotoxicology profile; the consequences of these differences for neuronal response patterns and long-term survival prospects are not yet fully understood. However, sustained hyperthermia appears to be a critical factor in these differences. Methodological requirements for adequate detection and description of pre- and postsynaptic forms of drug-induced neurotoxicity are exemplified using recently published accounts. The inclusion of microglial markers into research strategies has widened contemporary pathogenetic concepts on methamphetamine (MA)-induced neurotoxicity as an example of inflammatory neurodegeneration, thus complementing the traditional ROS and RNS-dependent stress models. Amphetamine-type neurotoxicity studies may assist in elaborating of preventive strategies for human neurodegenerative disorders.
Collapse
Affiliation(s)
- H G Baumgarten
- Institut für Anatomie, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Königin-Luise-Str. 15, 14195 Berlin, Germany.
| | | |
Collapse
|