1
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
2
|
Maier A, Braig M, Jakob K, Bienert T, Schäper M, Merkle A, Wadle C, Menza M, Neudorfer I, Bojti I, Stachon P, Duerschmied D, Hilgendorf I, Heidt T, Bode C, Peter K, Klingel K, von Elverfeldt D, von Zur Mühlen C. Molecular magnetic resonance imaging of activated platelets allows noninvasive detection of early myocarditis in mice. Sci Rep 2020; 10:13211. [PMID: 32764735 PMCID: PMC7413393 DOI: 10.1038/s41598-020-70043-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
MRI sensitivity for diagnosis and localization of early myocarditis is limited, although it is of central clinical interest. The aim of this project was to test a contrast agent targeting activated platelets consisting of microparticles of iron oxide (MPIO) conjugated to a single-chain antibody directed against ligand-induced binding sites (LIBS) of activated glycoprotein IIb/IIIa (= LIBS-MPIO). Myocarditis was induced by subcutaneous injection of an emulsion of porcine cardiac myosin and complete Freund’s adjuvant in mice. 3D 7 T in-vivo MRI showed focal signal effects in LIBS-MPIO injected mice 2 days after induction of myocarditis, whereas in control-MPIO injected mice no signal was detectable. Histology confirmed CD41-positive staining, indicating platelet involvement in myocarditis in mice as well as in human specimens with significantly higher LIBS-MPIO binding compared to control-MPIO in both species. Quantification of the myocardial MRI signal confirmed a signal decrease after LIBS-MPIO injection and significant less signal in comparison to control-MPIO injection. These data show, that platelets are involved in inflammation during the course of myocarditis in mice and humans. They can be imaged non-invasively with LIBS-MPIO by molecular MRI at an early time point of the inflammation in mice, which is a valuable approach for preclinical models and of interest for both diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| | - Moritz Braig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Jakob
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Thomas Bienert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michaela Schäper
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Merkle
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Wadle
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Marius Menza
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irene Neudorfer
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - István Bojti
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| |
Collapse
|
3
|
McFadyen JD, Fernando H, Peter K. Off-target drug effects on platelet function: Protecting an Achilles heel of drug development. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Site-Specific Glycation and Chemo-enzymatic Antibody Sortagging for the Retargeting of rAAV6 to Inflamed Endothelium. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:261-269. [PMID: 31453264 PMCID: PMC6704353 DOI: 10.1016/j.omtm.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Gene therapy holds great potential for conditions such as cardiovascular disease, including atherosclerosis and also vascular cancers, yet available vectors such as the adeno-associated virus (rAAV) transduce the vasculature poorly. To enable retargeting, a single-chain antibody (scFv) that binds to the vascular cell-adhesion molecule (VCAM-1) overexpressed at areas of endothelial inflammation was site specifically and covalently conjugated to the exterior of rAAV6. To achieve conjugation, the scFv was functionalized with an orthogonal click chemistry group. This conjugation utilized site-specific sortase A methodology, thus preserving scFv binding capacity to VCAM-1. The AAV6 was separately functionalized with 4-azidophenyl glyoxal (APGO) via covalent adducts to arginine residues in the capsid’s heparin co-receptor binding region. APGO functionalization removed native tropism, greatly reducing rAAV6-GFP transduction into all cells tested, and the effect was similar to the inhibition seen in the presence of heparin. Utilizing the incorporated functionalizations, the scFv was then covalently conjugated to the exterior of rAAV6 via strain-promoted azide-alkyne cycloaddition (SPAAC). With both the removal of native heparin tropism and the addition of VCAM-1 targeting, rAAV6 transduction of endothelial cells was greatly enhanced compared to control cells. Thus, this novel and modular targeting system could have further application in re-directing AAV6 toward inflamed endothelium for therapeutic use.
Collapse
|
5
|
Armstrong PC, Peter K. GPIIb/IIIa inhibitors: From bench to bedside and back to bench again. Thromb Haemost 2017; 107:808-14. [DOI: 10.1160/th11-10-0727] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
SummaryFrom the discovery of the platelet glycoprotein (GP) IIb/IIIa and identification of its central role in haemostasis, the integrin GPIIb/IIIa (αIIbβ3, CD41/CD61) was destined to be an anti-thrombotic target. The subsequent successful development of intravenous ligand-mimetic inhibitors occurred during a time of limited understanding of integrin physiology. Although efficient inhibitors of ligand binding, they also mimic ligand function. In the case of GPIIb/IIIa inhibitors, despite strongly inhibiting platelet aggregation, paradoxical fibrinogen binding and platelet activation can occur. The quick progression to development of small-molecule orally available inhibitors meant that this approach inherited many potential flaws, which together with a short half-life resulted in an increase in mortality and a halt to the numerous pharmaceutical development programs. Limited clinical benefits, together with the success of other anti-thrombotic drugs, in particular P2Y12 ADP receptor blockers, have also led to a restrictive use of intravenous GPIIb/ IIIa inhibitors. However, with a greater understanding of this key platelet-specific integrin, GPIIb/IIIa remains a potentially attractive target and future drug developments will be better informed by the lessons learnt from taking the current inhibitors back to the bench. This overview will review the physiology behind the inherent problems of a ligand-based integrin inhibitor design and discuss novel promising approaches for GPIIb/IIIa inhibition.
Collapse
|
6
|
Ta HT, Li Z, Hagemeyer CE, Cowin G, Zhang S, Palasubramaniam J, Alt K, Wang X, Peter K, Whittaker AK. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017; 134:31-42. [DOI: 10.1016/j.biomaterials.2017.04.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
|
7
|
Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging. Sci Rep 2016; 6:25044. [PMID: 27138487 PMCID: PMC4853725 DOI: 10.1038/srep25044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism.
Collapse
|
8
|
Abstract
Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.
Collapse
|
9
|
Meier S, Pütz G, Massing U, Hagemeyer C, von Elverfeldt D, Meißner M, Ardipradja K, Barnert S, Peter K, Bode C, Schubert R, von zur Muhlen C. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis. Biomaterials 2015; 53:137-48. [DOI: 10.1016/j.biomaterials.2015.02.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
|
10
|
Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protoc 2014; 10:90-105. [DOI: 10.1038/nprot.2014.177] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
von Elverfeldt D, Maier A, Duerschmied D, Braig M, Witsch T, Wang X, Mauler M, Neudorfer I, Menza M, Idzko M, Zirlik A, Heidt T, Bronsert P, Bode C, Peter K, von Zur Muhlen C. Dual-contrast molecular imaging allows noninvasive characterization of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging. Circulation 2014; 130:676-87. [PMID: 24951772 DOI: 10.1161/circulationaha.113.008157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inflammation and myocardial necrosis play important roles in ischemia/reperfusion injury after coronary artery occlusion and recanalization. The detection of inflammatory activity and the extent of myocardial necrosis itself are of great clinical and prognostic interest. We developed a dual, noninvasive imaging approach using molecular magnetic resonance imaging in an in vivo mouse model of myocardial ischemia and reperfusion. METHODS AND RESULTS Ischemia/reperfusion injury was induced in 10-week-old C57BL/6N mice by temporary ligation of the left anterior descending coronary artery. Activated platelets were targeted with a contrast agent consisting of microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody directed against a ligand-induced binding site (LIBS) on activated glycoprotein IIb/IIIa (LIBS-MPIOs). After injection and imaging of LIBS-MPIOs, late gadolinium enhancement was used to depict myocardial necrosis; these imaging experiments were also performed in P2Y12 (-/-) mice. All imaging results were correlated to immunohistochemistry findings. Activated platelets were detectable by magnetic resonance imaging via a significant signal effect caused by LIBS-MPIOs in the area of left anterior descending coronary artery occlusion 2 hours after reperfusion. In parallel, late gadolinium enhancement identified the extent of myocardial necrosis. Immunohistochemistry confirmed that LIBS-MPIOs bound significantly to microthrombi in reperfused myocardium. Only background binding was found in P2Y12 (-/-) mice. CONCLUSIONS Dual molecular imaging of myocardial ischemia/reperfusion injury allows characterization of platelet-driven inflammation by LIBS-MPIOs and myocardial necrosis by late gadolinium enhancement. This noninvasive imaging strategy is of clinical interest for both diagnostic and prognostic purposes and highlights the potential of molecular magnetic resonance imaging for characterizing ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dominik von Elverfeldt
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Alexander Maier
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Daniel Duerschmied
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Moritz Braig
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Thilo Witsch
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Xiaowei Wang
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Maximilian Mauler
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Irene Neudorfer
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Marius Menza
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Marco Idzko
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Andreas Zirlik
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Timo Heidt
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Peter Bronsert
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Christoph Bode
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Karlheinz Peter
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.)
| | - Constantin von Zur Muhlen
- From the Department of Radiology-Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of Biology, University Freiburg, Freiburg, Germany (M. Mauler); and Center for Systems Biology, Massachusetts General Hospital, Boston (T.H.).
| |
Collapse
|
12
|
Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114:1083-93. [PMID: 24508759 DOI: 10.1161/circresaha.114.302514] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Fibrinolysis is a valuable alternative for the treatment of myocardial infarction when percutaneous coronary intervention is not available in a timely fashion. For acute ischemic stroke, fibrinolysis is the only treatment option with a very narrow therapeutic window. Clinically approved thrombolytics have significant drawbacks, including bleeding complications. Thus their use is highly restricted, leaving many patients untreated. OBJECTIVE We developed a novel targeted fibrinolytic drug that is directed against activated platelets. METHODS AND RESULTS We fused single-chain urokinase plasminogen activator (scuPA) to a small recombinant antibody (scFvSCE5), which targets the activated form of the platelet-integrin glycoprotein IIb/IIIa. Antibody binding and scuPA activity of this recombinant fusion protein were on par with the parent molecules. Prophylactic in vivo administration of scFvSCE5-scuPA (75 U/g body weight) prevented carotid artery occlusion after ferric chloride injury in a plasminogen-dependent process compared with saline (P<0.001), and blood flow recovery was similar to high-dose nontargeted urokinase (500 U/g body weight). Tail bleeding time was significantly prolonged with this high dose of nontargeted urokinase, but not with equally effective targeted scFvSCE5-scuPA at 75 U/g body weight. Real-time in vivo molecular ultrasound imaging demonstrates significant therapeutic reduction of thrombus size after administration of 75 U/g body weight scFvSCE5-scuPA as compared with the same dose of a mutated, nontargeting scFv-scuPA or vehicle. The ability of scFvSCE5-scuPA to lyse thrombi was lost in plasminogen-deficient mice, but could be restored by intravenous injection of plasminogen. CONCLUSIONS Targeting of scuPA to activated glycoprotein IIb/IIIa allows effective thrombolysis and the potential novel use as a fibrinolytic agent for thromboprophylaxis without bleeding complications.
Collapse
Affiliation(s)
- Xiaowei Wang
- From Atherothrombosis and Vascular Biology Laboratory (X.W., J.P., Y.G., J.D.H., E.W., K.A., D.H., F.J., I.A., K.P.), and Vascular Biotechnology Laboratory (R.K., K.A., C.E.H.), Baker IDI, Melbourne, Australia; Department of Cardiology and Angiology, University Hospital Freiburg, Germany (I.A.); Fibrinolysis and Gene Regulation Laboratory, Australian Centre for Blood Diseases, Melbourne, Australia (R.L.M.); and Central Clinical School, Monash University, Melbourne, Australia (R.L.M., K.P., C.E.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ardipradja K, Yeoh SD, Alt K, O'Keefe G, Rigopoulos A, Howells DW, Scott AM, Peter K, Ackerman U, Hagemeyer CE. Detection of activated platelets in a mouse model of carotid artery thrombosis with 18 F-labeled single-chain antibodies. Nucl Med Biol 2013; 41:229-37. [PMID: 24440583 DOI: 10.1016/j.nucmedbio.2013.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/14/2013] [Accepted: 12/07/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Activated platelets are key players in thrombosis and inflammation. We previously generated single-chain antibodies (scFv) against ligand-induced binding sites (LIBS) on the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. The aim of this study was the construction and characterisation of a novel (18)F PET radiotracer based on this antibody. METHODS ScFv(anti-LIBS) and control antibody mut-scFv were reacted with N-succinimidyl-4-[(18)F]fluorobenzoate (S[(18)F]FB). Radiolabeled scFv was incubated with in vitro formed platelet clots and injected into mice with FeCl(3) induced thrombus in the left carotid artery. Clots were imaged in the PET scanner and amount of radioactivity measured using an ionization chamber and image analysis. Assessment of vessel injury as well as the biodistribution of the radiolabeled scFv was studied. RESULTS After incubation with increasing concentrations of (18)F-scFv(anti-LIBS) clots had retained significantly higher amounts of radioactivity compared to clots incubated with radiolabeled (18)F-mut-scFv (13.3 ± 3.8 vs. 3.6 ± 1 KBq, p < 0.05, n = 9, decay corrected). In the in vivo experiments we found an high uptake of the tracer in the injured vessel compared with the non-injured vessel, with 12.6 ± 4.7% injected dose per gram (ID/g) uptake in the injured vessel and 3.7 ± 0.9% ID/g in the non-injured vessel 5 minutes after injection (p < 0.05, n = 6). CONCLUSIONS Our results show that the novel antibody radiotracer (18)F-scFv(anti-LIBS) is useful for the sensitive detection of activated platelets and thrombosis. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE We describe the first (18)F variant of a scFv(anti-LIBS) against activated platelets. This diagnostic agent could provide a powerful tool for the assessment of acute thrombosis and inflammation in patients in the future.
Collapse
Affiliation(s)
- Katie Ardipradja
- Vascular Biotechnology Laboratory, Baker IDI, Melbourne, Australia; Atherothrombosis and Vascular Biology Laboratory, Baker IDI, Melbourne, Australia; Departments of Nuclear Medicine and Centre for PET, Austin Hospital, Melbourne, Australia; Department of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Shinn Dee Yeoh
- Departments of Nuclear Medicine and Centre for PET, Austin Hospital, Melbourne, Australia
| | - Karen Alt
- Vascular Biotechnology Laboratory, Baker IDI, Melbourne, Australia; Atherothrombosis and Vascular Biology Laboratory, Baker IDI, Melbourne, Australia
| | - Graeme O'Keefe
- Departments of Nuclear Medicine and Centre for PET, Austin Hospital, Melbourne, Australia
| | - Angela Rigopoulos
- Ludwig Institute for Cancer Research, Austin Hospital, Melbourne, Australia
| | - David W Howells
- The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Melbourne, Australia
| | - Andrew M Scott
- Departments of Nuclear Medicine and Centre for PET, Austin Hospital, Melbourne, Australia; Department of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Ludwig Institute for Cancer Research, Austin Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI, Melbourne, Australia; Central Clinical School, Monash University, Melbourne, Australia
| | - Uwe Ackerman
- Departments of Nuclear Medicine and Centre for PET, Austin Hospital, Melbourne, Australia; Department of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Ludwig Institute for Cancer Research, Austin Hospital, Melbourne, Australia
| | - Christoph E Hagemeyer
- Vascular Biotechnology Laboratory, Baker IDI, Melbourne, Australia; Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Westein E, Flierl U, Hagemeyer CE, Peter K. Destination Known: Targeted Drug Delivery in Atherosclerosis and Thrombosis. Drug Dev Res 2013. [DOI: 10.1002/ddr.21103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Erik Westein
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Ulrike Flierl
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Christoph E. Hagemeyer
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Karlheinz Peter
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| |
Collapse
|
15
|
Adair BD, Xiong JP, Alonso JL, Hyman BT, Arnaout MA. EM structure of the ectodomain of integrin CD11b/CD18 and localization of its ligand-binding site relative to the plasma membrane. PLoS One 2013; 8:e57951. [PMID: 23469114 PMCID: PMC3585415 DOI: 10.1371/journal.pone.0057951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022] Open
Abstract
One-half of the integrin α-subunit Propeller domains contain and extra vWFA domain (αA domain), which mediates integrin binding to extracellular physiologic ligands via its metal-ion-dependent adhesion site (MIDAS). We used electron microscopy to determine the 3D structure of the αA-containing ectodomain of the leukocyte integrin CD11b/CD18 (αMβ2) in its inactive state. A well defined density for αA was observed within a bent ectodomain conformation, while the structure of the ectodomain in complex with the Fab fragment of mAb107, which binds at the MIDAS face of CD11b and stabilizes the inactive state, further revealed that αA is restricted to a relatively small range of orientations relative to the Propeller domain. Using Fab 107 as probe in fluorescent lifetime imaging microscopy (FLIM) revealed that αA is positioned relatively far from the membrane surface in the inactive state, and a systematic orientation search revealed that the MIDAS face would be accessible to extracellular ligand in the inactive state of the full-length cellular integrin. These studies are the first to define the 3D EM structure of an αA-containing integrin ectodomain and to position the ligand-binding face of αA domain in relation to the plasma membrane, providing new insights into current models of integrin activation.
Collapse
Affiliation(s)
- Brian D. Adair
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Jian-Ping Xiong
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - José Luis Alonso
- Leukocyte Biology and Inflammation Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bradley T. Hyman
- Division of Nephrology, and Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - M. Amin Arnaout
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Leukocyte Biology and Inflammation Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
von Elverfeldt D, von zur Muhlen C, Wiens K, Neudorfer I, Zirlik A, Meissner M, Tilly P, Charles AL, Bode C, Peter K, Fabre JE. In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice. PLoS One 2012; 7:e45008. [PMID: 23028736 PMCID: PMC3441740 DOI: 10.1371/journal.pone.0045008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/11/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Early and non-invasive detection of platelets on micro atherothrombosis provides a means to identify unstable plaque and thereby allowing prophylactic treatment towards prevention of stroke or myocardial infarction. Molecular magnetic resonance imaging (mMRI) of activated platelets as early markers of plaque rupture using targeted contrast agents is a promising strategy. In this study, we aim to specifically image activated platelets in murine atherothrombosis by in vivo mMRI, using a dedicated animal model of plaque rupture. METHODS An antibody targeting ligand-induced binding sites (LIBS) on the glycoprotein IIb/IIIa-receptor of activated platelets was conjugated to microparticles of iron oxide (MPIO) to form the LIBS-MPIO contrast agent causing a signal-extinction in T2*-weighted MRI. ApoE(-/-) mice (60 weeks-old) were fed a high fat diet for 5 weeks. Using a small needle, the surface of their carotid plaques was scratched under blood flow to induce atherothrombosis. In vivo 9.4 Tesla MRI was performed before and repetitively after intravenous injection of either LIBS-MPIO versus non-targeted-MPIO. RESULTS LIBS-MPIO injected animals showed a significant signal extinction (p<0.05) in MRI, corresponding to the site of plaque rupture and atherothrombosis in histology. The signal attenuation was effective for atherothrombosis occupying ≥ 2% of the vascular lumen. Histology further confirmed significant binding of LIBS-MPIO compared to control-MPIO on the thrombus developing on the surface of ruptured plaques (p<0.01). CONCLUSION in vivo mMRI detected activated platelets on mechanically ruptured atherosclerotic plaques in ApoE(-/-) mice with a high sensititvity. This imaging technology represents a unique opportunity for noninvasive detection of atherothrombosis and the identification of unstable atherosclerotic plaques with the ultimate promise to prevent strokes and myocardial infarctions.
Collapse
Affiliation(s)
| | | | - Kristina Wiens
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Irene Neudorfer
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Mirko Meissner
- Department of Radiology/Medical Physics, University Hospital, Freiburg, Germany
| | - Peg Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
| | - Anne-Laure Charles
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | | | - Jean-Etienne Fabre
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
17
|
von Elverfeldt D, Meißner M, Peter K, Paul D, Meixner F, Neudorfer I, Merkle A, Harloff A, Zirlik A, Schöllhorn J, Markl M, Hennig J, Bode C, von zur Muhlen C. An approach towards molecular imaging of activated platelets allows imaging of symptomatic human carotid plaques in a new model of a tissue flow chamber. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:204-13. [DOI: 10.1002/cmmi.482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Mirko Meißner
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology; Baker Heart Research Institute; Melbourne Australia
| | - Dominik Paul
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Fabian Meixner
- Department of Cardiology and Angiology; University Medical Center Freiburg; Germany
| | - Irene Neudorfer
- Department of Cardiology and Angiology; University Medical Center Freiburg; Germany
| | - Annette Merkle
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology; University Medical Center Freiburg; Germany
| | - Andreas Zirlik
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Joachim Schöllhorn
- Department of Cardiovascular Surgery; University Medical Center Freiburg; Germany
| | - Michael Markl
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Jürgen Hennig
- Department of Radiology-Medical Physics; University Medical Center Freiburg; Germany
| | - Christoph Bode
- Department of Cardiology and Angiology; University Medical Center Freiburg; Germany
| | | |
Collapse
|
18
|
Duerschmied D, Meiner M, Peter K, Neudorfer I, Roming F, Zirlik A, Bode C, von Elverfeldt D, von zur Muhlen C. Molecular Magnetic Resonance Imaging Allows the Detection of Activated Platelets in a New Mouse Model of Coronary Artery Thrombosis. Invest Radiol 2011; 46:618-23. [DOI: 10.1097/rli.0b013e31821e62fb] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ta HT, Prabhu S, Leitner E, Jia F, von Elverfeldt D, Jackson KE, Heidt T, Nair AKN, Pearce H, von Zur Muhlen C, Wang X, Peter K, Hagemeyer CE. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res 2011; 109:365-73. [PMID: 21700932 DOI: 10.1161/circresaha.111.249375] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. OBJECTIVE To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. METHODS AND RESULTS The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. CONCLUSIONS This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.
Collapse
Affiliation(s)
- H T Ta
- Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Heidt T, Deininger F, Peter K, Goldschmidt J, Pethe A, Hagemeyer CE, Neudorfer I, Zirlik A, Weber WA, Bode C, Meyer PT, Behe M, von Zur Mühlen C. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody. PLoS One 2011; 6:e18446. [PMID: 21479193 PMCID: PMC3068185 DOI: 10.1371/journal.pone.0018446] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/28/2011] [Indexed: 01/29/2023] Open
Abstract
Background Activated platelets can be found on the surface of inflamed, rupture-prone
and ruptured plaques as well as in intravascular thrombosis. They are key
players in thrombosis and atherosclerosis. In this study we describe the
construction of a radiolabeled single-chain antibody targeting the
LIBS-epitope of activated platelets to selectively depict platelet
activation and wall-adherent non-occlusive thrombosis in a mouse model with
nuclear imaging using in vitro and ex vivo
autoradiography as well as small animal SPECT-CT for in
vivo analysis. Methodology/Principal Findings LIBS as well as an unspecific control single-chain antibody were labeled with
111Indium (111In) via bifunctional DTPA
( = 111In-LIBS/111In-control).
Autoradiography after incubation with 111In-LIBS on activated
platelets in vitro (mean 3866±28 DLU/mm2,
4010±630 DLU/mm2 and 4520±293 DLU/mm2)
produced a significantly higher ligand uptake compared to
111In-control (2101±76 DLU/mm2, 1181±96
DLU/mm2 and 1866±246 DLU/mm2) indicating a
specific binding to activated platelets; P<0.05.
Applying these findings to an ex vivo mouse model of
carotid artery thrombosis revealed a significant increase in ligand uptake
after injection of 111In-LIBS in the presence of small thrombi
compared to the non-injured side, as confirmed by histology
(49630±10650 DLU/mm2 vs. 17390±7470
DLU/mm2; P<0.05). These findings could
also be reproduced in vivo. SPECT-CT analysis of the
injured carotid artery with 111In-LIBS resulted in a significant
increase of the target-to-background ratio compared to
111In-control (1.99±0.36 vs. 1.1±0.24;
P<0.01). Conclusions/Significance Nuclear imaging with 111In-LIBS allows the detection of platelet
activation in vitro and ex vivo with high
sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid
arteries could be depicted in vivo. These results encourage
further studies elucidating the role of activated platelets in plaque
pathology and atherosclerosis and might be of interest for further
developments towards clinical application.
Collapse
Affiliation(s)
- Timo Heidt
- Department of Cardiology and Angiology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hantgan RR, Stahle MC. Integrin Priming Dynamics: Mechanisms of Integrin Antagonist-Promoted αIIbβ3:PAC-1 Molecular Recognition. Biochemistry 2009; 48:8355-65. [DOI: 10.1021/bi900475k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roy R. Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| | - Mary C. Stahle
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| |
Collapse
|
22
|
von zur Muhlen C, von Elverfeldt D, Moeller J, Choudhury R, Paul D, Hagemeyer C, Olschewski M, Becker A, Neudorfer I, Bassler N, Schwarz M, Bode C, Peter K. Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows In Vivo Detection of Thrombosis and Monitoring of Thrombolysis. Circulation 2008; 118:258-67. [DOI: 10.1161/circulationaha.107.753657] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background—
Platelets are the key to thrombus formation and play a role in the development of atherosclerosis. Noninvasive imaging of activated platelets would be of great clinical interest. Here, we evaluate the ability of a magnetic resonance imaging (MRI) contrast agent consisting of microparticles of iron oxide (MPIOs) and a single-chain antibody targeting ligand-induced binding sites (LIBS) on activated glycoprotein IIb/IIIa to image carotid artery thrombi and atherosclerotic plaques.
Methods and Results—
Anti-LIBS antibody or control antibody was conjugated to 1-μm MPIOs (LIBS MPIO/control MPIO). Nonocclusive mural thrombi were induced in mice with 6% ferric chloride. MRI (at 9.4 T) was performed once before and repeatedly in 12-minute-long sequences after LIBS MPIO/control MPIO injection. After 36 minutes, a significant signal void, corresponding to MPIO accumulation, was observed with LIBS MPIOs but not control MPIOs (
P
<0.05). After thrombolysis, in LIBS MPIO-injected mice, the signal void subsided, indicating successful thrombolysis. On histology, the MPIO content of the thrombus, as well as thrombus size, correlated significantly with LIBS MPIO-induced signal void (both
P
<0.01). After ex vivo incubation of symptomatic human carotid plaques, MRI and histology confirmed binding to areas of platelet adhesion/aggregation for LIBS MPIOs but not for control MPIOs.
Conclusions—
LIBS MPIOs allow in vivo MRI of activated platelets with excellent contrast properties and monitoring of thrombolytic therapy. Furthermore, activated platelets were detected on the surface of symptomatic human carotid plaques by ex vivo MRI. This approach represents a novel noninvasive technique allowing the detection and quantification of platelet-containing thrombi.
Collapse
Affiliation(s)
- C. von zur Muhlen
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - D. von Elverfeldt
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - J.A. Moeller
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - R.P. Choudhury
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - D. Paul
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - C.E. Hagemeyer
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - M. Olschewski
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - A. Becker
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - I. Neudorfer
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - N. Bassler
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - M. Schwarz
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - C. Bode
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| | - K. Peter
- From the Departments of Cardiology and Angiology (C.v.z.M., J.A.M., I.N., M.S., C.B.), Radiology/Medical Physics (D.v.E., D.P., A.B.), and Medical Biometry and Statistics (M.O.), University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK (R.P.C.); and Baker Heart Research Institute, Melbourne, Australia (C.E.H., N.B., K.P.)
| |
Collapse
|
23
|
von zur Muhlen C, Peter K, Ali ZA, Schneider JE, McAteer MA, Neubauer S, Channon KM, Bode C, Choudhury RP. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J Vasc Res 2008; 46:6-14. [PMID: 18515970 PMCID: PMC2914450 DOI: 10.1159/000135660] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/19/2008] [Indexed: 12/18/2022] Open
Abstract
Ruptured atherosclerotic plaques, lined with activated platelets, constitute an attractive target for magnetic resonance imaging (MRI). This study evaluated whether microparticles of iron oxide (MPIO) targeting ligand-induced binding sites (LIBS) on the activated conformation of glycoprotein IIb/IIIa could be used to image platelets. MPIO (size: 1 μm) were conjugated to anti-LIBS or control single-chain antibody. Following guidewire injury to mouse femoral artery, platelet adhesion was present after 24 h. Mice were perfused with anti-LIBS-MPIO (or control MPIO) via the left ventricle and 11.7-tesla MRI was performed on femoral arteries ex vivo. A 3D gradient echo sequence attained an isotropic resolution of 25 μm. MPIO binding, quantified by MRI, was 4-fold higher with anti-LIBS-MPIO in comparison to control MPIO (p < 0.01). In histological sections, low signal zones on MRI and MPIO correlated strongly (R2 = 0.72; p < 0.001), indicating accurate MR quantification. In conclusion, anti-LIBS-MPIO bind to activated platelets in mouse arteries, providing a basis for the use of function-specific single-chain antibody-MPIO conjugates for molecular MRI, and represent the first molecular imaging of a conformational change in a surface receptor. This presents an opportunity to specifically image activated platelets involved in acute atherothrombosis with MRI.
Collapse
|
24
|
von Zur Muhlen C, Sibson NR, Peter K, Campbell SJ, Wilainam P, Grau GE, Bode C, Choudhury RP, Anthony DC. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J Clin Invest 2008; 118:1198-207. [PMID: 18274670 DOI: 10.1172/jci33314] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/19/2007] [Indexed: 01/08/2023] Open
Abstract
Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-alpha, but not IL-1beta or lymphotoxin-alpha (LT-alpha), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-alpha injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies.
Collapse
|
25
|
von zur Mühlen C, von Elverfeldt D, Choudhury RP, Ender J, Ahrens I, Schwarz M, Hennig J, Bode C, Peter K. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Constantin von zur Mühlen
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Dominik von Elverfeldt
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Robin Paul Choudhury
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Janine Ender
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Ingo Ahrens
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Meike Schwarz
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Jürgen Hennig
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Christoph Bode
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Karlheinz Peter
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| |
Collapse
|
26
|
Stoll P, Bassler N, Hagemeyer CE, Eisenhardt SU, Chen YC, Schmidt R, Schwarz M, Ahrens I, Katagiri Y, Pannen B, Bode C, Peter K. Targeting Ligand-Induced Binding Sites on GPIIb/IIIa via Single-Chain Antibody Allows Effective Anticoagulation Without Bleeding Time Prolongation. Arterioscler Thromb Vasc Biol 2007; 27:1206-12. [PMID: 17322097 DOI: 10.1161/atvbaha.106.138875] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Therapeutic anticoagulation is widely used, but limitations in efficacy and bleeding complications cause an ongoing search for new agents. However, with new agents developed it seems to be an inherent problem that increased efficiency is accompanied by an increase in bleeding complications. We investigate whether targeting of anticoagulants to activated platelets provides a means to overcome this association of potency and bleeding.
Methods and Results—
Ligand-induced binding sites (LIBS) on fibrinogen/fibrin-binding GPIIb/IIIa represent an abundant clot-specific target. We cloned an anti-LIBS single-chain antibody (scFv
anti-LIBS
) and genetically fused it with a potent, direct factor Xa (fXa) inhibitor, tick anticoagulant peptide (TAP). Specific antibody binding of fusion molecule scFv
anti-LIBS
-TAP was proven in flow cytometry; anti-fXa activity was demonstrated in chromogenic assays. In vivo anticoagulative efficiency was determined by Doppler-flow in a ferric chloride–induced carotid artery thrombosis model in mice. ScFv
anti-LIBS
-TAP prolonged occlusion time comparable to enoxaparine, recombinant TAP, and nontargeted mutant-scFv-TAP. ScFv
anti-LIBS
-TAP revealed antithrombotic effects at low doses at which the nontargeted mutant-scFv-TAP failed. In contrast to the other anticoagulants tested, bleeding times were not prolonged by scFv
anti-LIBS
-TAP.
Conclusions—
The novel clot-targeting approach of anticoagulants via single-chain antibody directed against a LIBS-epitope on GPIIb/IIIa promises effective anticoagulation with reduced bleeding risk.
Collapse
Affiliation(s)
- Patrick Stoll
- Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, PO Box 6492 St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hantgan RR, Stahle MC, Connor JH, Connor RF, Mousa SA. AlphaIIbbeta3 priming and clustering by orally active and intravenous integrin antagonists. J Thromb Haemost 2007; 5:542-50. [PMID: 17166246 DOI: 10.1111/j.1538-7836.2007.02351.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Drugs that block platelet-platelet and platelet-fibrin interactions via the alpha(IIb)beta(3) (glycoprotein IIb/IIIa) receptor are used daily in patients undergoing percutaneous coronary interventions. Along with expected increases in spontaneous bleeding, clinical trials have revealed a surprising increase in thrombosis when these drugs are used without other anticoagulants. A better understanding of their mechanisms can minimize these risks. OBJECTIVES This study tested the hypothesis that interventions designed to block fibrinogen binding inevitably leave the alpha(IIb)beta(3) receptor in an activated state. It compared the effects on platelet function and alpha(IIb)beta(3) conformation of the orally active compounds orbofiban and roxifiban, the i.v. agents eptifibatide and tirofiban, and echistatin, an arginine-glycine-aspartate (RGD) disintegrin. METHODS The integrin antagonist concentrations required to saturate platelets and to block platelet-platelet and platelet-fibrin interactions were determined by flow cytometry, aggregometry, and clot-based adhesion assays, respectively. Analytical ultracentrifugation measured each antagonist's effects on the solution structure of alpha(IIb)beta(3). Fluorescence anisotropy provided equilibrium and kinetic data for integrin:antagonist interactions. RESULTS Both orally active drugs bound more tightly and inhibited platelet aggregation and adhesion to fibrin more effectively than echistatin. Analytical ultracentrifugation yielded this order for perturbing alpha(IIb)beta(3) conformation (priming) and promoting oligomerization (clustering): echistatin > eptifibatide > orbofiban > tirofiban > roxifiban. Roxifiban was also most effective at disrupting the rapidly forming/slowly dissociating alpha(IIb)beta(3):echistatin complex. CONCLUSIONS Our results suggest that the same molecular mechanisms that enable glycoprotein IIb/IIIa inhibitors to bind tightly to the alpha(IIb)beta(3) receptor and block fibrinogen binding contribute to their ability to perturb the resting integrin's conformation, thus limiting the safety and efficacy of both oral and i.v. integrin antagonists.
Collapse
Affiliation(s)
- R R Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1019, USA.
| | | | | | | | | |
Collapse
|
28
|
Bassler N, Loeffler C, Mangin P, Yuan Y, Schwarz M, Hagemeyer CE, Eisenhardt SU, Ahrens I, Bode C, Jackson SP, Peter K. A Mechanistic Model for Paradoxical Platelet Activation by Ligand-Mimetic α
IIb
β
3
(GPIIb/IIIa) Antagonists. Arterioscler Thromb Vasc Biol 2007; 27:e9-15. [PMID: 17170374 DOI: 10.1161/01.atv.0000255307.65939.59] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Integrins are attractive therapeutic targets. Inhibition of integrin α
IIb
β
3
effectively blocks platelet aggregation. However, limitations with intravenous α
IIb
β
3
antagonists and failure of oral α
IIb
β
3
antagonists prompted doubts on the current concept of ligand-mimetic integrin blockade.
Methods and Results—
Evaluating P-selectin expression on platelets by flow cytometry, we report a mechanism of paradoxical platelet activation by ligand-mimetic α
IIb
β
3
antagonists and define three requirements: (1) Induction of ligand-bound conformation of α
IIb
β
3
, (2) receptor clustering, (3) prestimulation of platelets. Conformational change is inducible by clinically used ligand-mimetic α
IIb
β
3
antagonists, RGD-peptides, and anti-LIBS antibodies. In a mechanistic experimental model, clustering is achieved by crosslinking integrins via antibodies, and preactivation is induced by low-dose ADP. Finally, we demonstrate that platelet adhesion on collagen represents an in vivo correlate of platelet prestimulation and receptor clustering, in which the presence of ligand-mimetic α
IIb
β
3
antagonists results in platelet activation as detected by P-selectin, CD63, and CD40L expression as well as by measuring Ca
2+
-signaling. Blockade of the ADP receptor P2Y
12
by AR-C69931MX and clopidogrel inhibits α
IIb
β
3
antagonist-induced platelet activation.
Conclusion—
These findings can explain limitations of ligand-mimetic anti-α
IIb
β
3
therapy. They describe potential benefits of concomitant ADP receptor blockade and support a shift in drug development from ligand-mimetic toward allosteric or activation-specific integrin antagonists.
Collapse
Affiliation(s)
- Nicole Bassler
- Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, PO Box 6492 St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Microparticles (MP) derived from vascular endothelium or circulating blood cells circulate in the peripheral blood. They originate from blebbing and shedding from cell membrane surfaces in physiological and pathological conditions and are present in low concentrations in normal plasma. Increased levels are generated by a number of mechanisms including platelet activation, direct vascular endothelial damage, thrombin activity on the cell surface, C5b-9 activation, and PF4-heparin-antibody interaction. Several techniques are currently used to study the generation and nature of circulating microparticles. In particular, the genesis and role of microparticles, derived from platelets, endothelial cells and monocytes, in sepsis (especially meningococcal-induced), heparin-induced thrombocytopenia (HIT), thrombotic thrombocytopenic purpura (TTP), aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and sickle cell disease (SCD) have been well studied, and provide important insights into the underlying diseases. A defect in the ability to form microparticles leads to the severe bleeding disorder of Scott syndrome, which in turn provides a revealing insight into the physiology of coagulation. In addition the complex role of microparticles in vascular and cardiovascular diseases is an area of immense interest, that promises to yield important advances into diagnosis and therapy.
Collapse
Affiliation(s)
- Andrea Piccin
- Irish Blood Transfusion Service, James's Street, Dublin 8, Ireland.
| | | | | |
Collapse
|
30
|
Schwarz M, Meade G, Stoll P, Ylanne J, Bassler N, Chen YC, Hagemeyer CE, Ahrens I, Moran N, Kenny D, Fitzgerald D, Bode C, Peter K. Conformation-Specific Blockade of the Integrin GPIIb/IIIa. Circ Res 2006; 99:25-33. [PMID: 16778135 DOI: 10.1161/01.res.0000232317.84122.0c] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet activation causes conformational changes of integrin GPIIb/IIIa (alpha(IIb)beta3), resulting in the exposure of its ligand-binding pocket. This provides the unique possibility to design agents that specifically block activated platelets only. We used phage display of single-chain antibody (scFv) libraries in combination with several rounds of depletion/selection to obtain human scFvs that bind specifically to the activated conformation of GPIIb/IIIa. Functional evaluation of these scFv clones revealed that fibrinogen binding to human platelets and platelet aggregation can be effectively inhibited by activation-specific scFvs. In contrast to clinically used GPIIb/IIIa blockers, which are all conformation unspecific, activation-specific GPIIb/IIIa blockers do not induce conformational changes in GPIIb/IIIa or outside-in signaling, as evaluated by ligand-induced binding-site (LIBS) exposure in flow cytometry or P-selectin expression in immunofluorescence microscopy, respectively. In contrast to the conformation-unspecific blocker abciximab, activation-specific scFvs permit cell adhesion and spreading on immobilized fibrinogen, which is mediated by nonactivated GPIIb/IIIa. Mutagenesis studies and computer modeling indicate that exclusive binding of activation-specific scFv is mediated by RXD motifs in the heavy-chain complementary-determining region (CDR) 3 of the antibodies, which in comparison with other antibodies forms an exceptionally extended loop. In vivo experiments in a ferric-chloride thrombosis model of the mouse carotid artery demonstrate similar antithrombotic potency of activation-specific scFv, when compared with the conformation-unspecific blockers tirofiban and eptifibatide. However, in contrast to tirofiban and eptifibatide, bleeding times are not prolonged with the activation-specific scFvs, suggesting lower bleeding risks. In conclusion, activation-specific GPIIb/IIIa blockade via human single-chain antibodies represents a promising novel strategy for antiplatelet therapy.
Collapse
Affiliation(s)
- Meike Schwarz
- Department of Cardiology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rásó E, Tóvári J, Ladányi A, Varga N, Tímár J. Ligand-mimetic anti-aIIbβ3 antibody PAC-1 inhibits tyrosine signaling, proliferation and lung colonization of melanoma cells. Pathol Oncol Res 2005; 11:218-23. [PMID: 16388318 DOI: 10.1007/bf02893854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/11/2005] [Indexed: 01/12/2023]
Abstract
Beta3 integrin expression is the hallmark of melanoma and may serve as a potential therapeutic target. While alphav beta3 integrin expression seems to be constitutive in melanoma, ectopic expression of platelet-alphaIIb beta3 is dependent on progression. B16a murine melanoma is a suitable model for studies on alphaIIb beta3 treatment strategies since alphav beta3 is not expressed in this cell line. Here we have used a ligand-mimetic anti-alphaIIb beta3 monoclonal antibody, PAC-1, to test the biological consequences of alphaIIb beta3 modulation in melanoma cells. We have previously reported that in B16a cells FAK is constitutively active and tyrosine-phosphorylated. Upon PAC-1 binding to the surface alphaIIb beta3, which is in the active conformation, FAK became dephosphorylated through a process of PKC-dependent phosphatase activation. Furthermore, PAC-1 binding to B16a cells induced a significant decrease in phosphotyrosine-positive melanoma cells within 30 min. Treatment of B16a cells in vitro with PAC-1 significantly inhibited proliferation by decreasing the mitotic index but not affecting apoptotic rate. Incubation of B16a cells with PAC-1 decreased their lung colonization potential, suggesting a profound alteration in their biological behavior under the effect of this antibody. These preclinical data suggest that the ectopic expression of alphaIIb beta3 in melanoma cells can be exploited as a novel target of antibody therapy of melanoma.
Collapse
Affiliation(s)
- Erzsébet Rásó
- Department of Tumor Progression, National Institute of Oncology, Budapest, Hungary
| | | | | | | | | |
Collapse
|
32
|
Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2005; 53:210-30. [PMID: 15647627 DOI: 10.2302/kjm.53.210] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of circulating cell-derived microparticles (MP) is becoming more refined and clinically useful. This review, stemming from lectures given at Tokyo late 2003, does not repeat prior reviews but focuses on new horizons. A major theme is the rising recognition of platelets and their MP (PMP) as key mediators of inflammation/immunity. Among the major concepts developed are that (i) many so-called soluble markers of inflammation are in reality MP-bound; (ii) PMP and other MP appear to serve important signaling and immune functions including antigen presentation. In conclusion, MP analysis is poised to enter the mainstream of clinical testing, measuring specific antigens rather than gross levels. However, more research is needed to decisively establish their functions, and international standards are needed to allow comparing results from different laboratories.
Collapse
Affiliation(s)
- Lawrence L Horstman
- The Wallace H Coulter Platelet Laboratory, University of Miami Medical Center, FL 33136, USA
| | | | | | | | | |
Collapse
|
33
|
Schwarz M, Röttgen P, Takada Y, Le Gall F, Knackmuss S, Bassler N, Büttner C, Little M, Bode C, Peter K. Single‐chain antibodies for the conformation‐specific blockade of activated platelet integrin αIIbβ3designed by subtractive selection from naïve human phage libraries. FASEB J 2004; 18:1704-6. [PMID: 15522915 DOI: 10.1096/fj.04-1513fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Binding of fibrinogen to platelet integrin alphaIIbbeta3 mediates platelet aggregation, and thus inhibition of alphaIIbbeta3 represents a powerful therapeutic strategy in cardiovascular medicine. However, the currently used inhibitors of alphaIIbbeta3 demonstrate several adverse effects like thrombocytopenia and bleeding, which are associated with their property to bind to non-activated alphaIIbbeta3. To circumvent these problems, we designed blocking single-chain antibody-fragments (scFv) that bind to alphaIIbbeta3 exclusively in its activated conformation. Two naive phage libraries were created: a natural phage library, based on human lymphocyte cDNA, and a synthetic library, with randomized VHCDR3. We performed serial rounds of subtractive panning with depletion on non-activated and selection on activated alphaIIbbeta3, which were provided on resting and ADP-stimulated platelets and CHO cells, expressing wild-type or mutated and thereby activated alphaIIbbeta3. In contrast to isolated, immobilized targets, as generally used for phage display, this unique cell-based approach for panning allowed the preservation of functional integrin conformation. Thereby, we obtained several scFv-clones that demonstrated exclusive binding to activated platelets and complete inhibition of fibrinogen binding and platelet aggregation. Interestingly, all activation-specific clones contained an RXD pattern in the HCDR3. Binding studies on transiently expressed point mutants and mouse-human domain-switch mutants of alphaIIbbeta3 indicate a binding site similar to fibrinogen. In conclusion, we generated human activation-specific scFvs against alphaIIbbeta3, which bind selectively to activated alphaIIbbeta3 and thereby potently inhibit fibrinogen binding to alphaIIbbeta3 and platelet aggregation.
Collapse
Affiliation(s)
- Meike Schwarz
- Department of Cardiology, University of Freiburg, Breisacherstr. 33, Freiburg 79106, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seyfarth HJ, Koksch M. Fibrinogen receptor antagonists induce conformational changes of the human platelet glycoprotein IIb. ACTA ACUST UNITED AC 2004; 62:14-24. [PMID: 15476209 DOI: 10.1002/cyto.b.20026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Controversial results have been reported concerning the ability of fibrinogen receptor antagonists (fibans) to induce conformational changes in the fibrinogen receptor after binding to it as the initial step of fibrinogen binding and platelet activation. METHODS Platelets in citrated whole blood were stained with several pairs of anti-glycoprotein (anti-GP) IIb-directed monoclonal antibodies conjugated to phycoerythrin (PE) or indirectly labeled with Cy5. Pairs of monoclonal antibodies that induced a high-fluorescence resonance energy transfer (FRET) efficiency served as tools to detect activation-dependent changes of GP IIb after addition of adenosine diphosphate and several fibans. RESULTS Using the combination of the clones 5B12-PE and P2-biotin/SA-Cy5, a concentration-dependent alteration of the GP IIb conformation was observed after addition of tirofiban, eptifibatide, and lotrafiban. Magnitude and kinetics differed among the investigated substances. CONCLUSION The newly developed FRET assay allows the direct investigation of conformational changes of GP IIb after addition of platelet agonists or receptor ligands, as shown for three fibans.
Collapse
|