1
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Cyclooxygenase-2-Mediated Up-Regulation of Mitochondrial Transcription Factor A Mitigates the Radio-Sensitivity of Cancer Cells. Int J Mol Sci 2019; 20:ijms20051218. [PMID: 30862036 PMCID: PMC6429587 DOI: 10.3390/ijms20051218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) regulates mitochondrial biogenesis, and it is a candidate target for sensitizing tumor during therapy. Previous studies identified that increased TFAM expression conferred tumor cells resistance to ionizing radiation. However, the mechanisms on how TFAM are regulated in irradiated tumor cells remain to be explored. In this research, we demonstrated the contribution of cyclooxygenase-2 (COX-2) to enhancing TFAM expression in irradiated tumor cells. Our results showed TFAM was concomitantly up-regulated with COX-2 in irradiated tumor cells. Inhibition of COX-2 by NS-398 blocked radiation-induced expression of TFAM, and prostaglandin E2 (PGE2) treatment stimulated TFAM expression. We next provided evidence that DRP1-mediated mitochondrial fragmentation was a reason for TFAM up-regulation in irradiated cells, by using small interfering RNA (siRNA) and selective inhibitor-targeted DRP1. Furthermore, we proved that p38-MAPK-connected COX-2, and DRP1-mediated TFAM up-regulation. Enhanced phosphorylation of p38 in irradiated tumor cells promoted DRP1 expression, mitochondrial fragmentation, and TFAM expression. NS-398 treatment inhibited radiation-induced p38 phosphorylation, while PGE2 stimulated the activation of p38. The results put forward a mechanism where COX-2 stimulates TFAM expression via p38-mediated DRP1/mitochondrial fragmentation signaling in irradiated tumor cells, which may be of value in understanding how to sensitize cancer cells during radiotherapy.
Collapse
|
3
|
Kim SH, Lee KM, Lee GS, Seong JW, Kang TJ. Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro. Biomol Ther (Seoul) 2017; 25:634-640. [PMID: 29081091 PMCID: PMC5685433 DOI: 10.4062/biomolther.2017.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/05/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of β-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-α (TNF-α) and prostaglandin D₂ (PGD₂), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ki Man Lee
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Geum Seon Lee
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
4
|
Kim HK. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cava in activated human mast cell line-1 cells. ASIAN PAC J TROP MED 2014. [DOI: 10.1016/s1995-7645(14)60120-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Induced CD4+ forkhead box protein–positive T cells inhibit mast cell function and established contact hypersensitivity through TGF-β1. J Allergy Clin Immunol 2012; 130:444-52.e7. [DOI: 10.1016/j.jaci.2012.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/27/2012] [Accepted: 05/10/2012] [Indexed: 01/14/2023]
|
6
|
Khan MNA, Lee YS. Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med Res Rev 2011; 31:161-201. [PMID: 19967720 DOI: 10.1002/med.20182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exert their effect by inhibition of cyclooxygenase-1 (COX-1) as well as COX-2 enzymes. As COX-1 is responsible for maintaining normal biological functions, the nonselective inhibition of these enzymes caused side effects including gastrointestinal (GI) problems. Recently developed selective COX-2 inhibitors could reduce these adverse effects, but the evidence of cardiovascular side effects including an increased risk of myocardial infarction began to emerge, and some of the COX-2 inhibitors were eventually withdrawn from the market and this led to the downfall of this research. So, the discovery of novel COX-2 inhibitors with their safety profile became the biggest challenge in pharmaceutical research. However, recent mechanistic and clinical studies revolutionized this area by indicating the fact that COX-2 is involved in apoptosis resistance, angiogenesis, and tumor progression. Epidemiological data suggest that selective COX-2 inhibitors might prevent the development of cancers. Moreover, COX-2 is found to be overexpressed in many cancers thus making it an attractive therapeutic target for the prevention and treatment of a number of malignancies. The purpose of this review is to focus on the medicinal chemistry aspects of COX-2 inhibitors in cancer chemotherapy and recent reports on these inhibitors as anticancer agents. We attempted to cover only the COX inhibitors that showed anticancer activity, although a number of potent COX-2 inhibitors have been reported without their anticancer effects. Furthermore, structure-activity relationships (SAR) of different classes of compounds for COX-2 inhibition as well as anticancer activity, and their future applications are discussed.
Collapse
Affiliation(s)
- Mohammed Naseer A Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea
| | | |
Collapse
|
7
|
Båge T, Kats A, Lopez BS, Morgan G, Nilsson G, Burt I, Korotkova M, Corbett L, Knox AJ, Pino L, Jakobsson PJ, Modéer T, Yucel-Lindberg T. Expression of prostaglandin E synthases in periodontitis immunolocalization and cellular regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1676-88. [PMID: 21435451 PMCID: PMC3078457 DOI: 10.1016/j.ajpath.2010.12.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 12/17/2022]
Abstract
The inflammatory mediator prostaglandin E(2) (PGE(2)) is implicated in the pathogenesis of chronic inflammatory diseases including periodontitis; it is synthesized by cyclooxygenases (COX) and the prostaglandin E synthases mPGES-1, mPGES-2, and cPGES. The distribution of PGES in gingival tissue of patients with periodontitis and the contribution of these enzymes to inflammation-induced PGE(2) synthesis in different cell types was investigated. In gingival biopsies, positive staining for PGES was observed in fibroblasts and endothelial, smooth muscle, epithelial, and immune cells. To further explore the contribution of PGES to inflammation-induced PGE(2) production, in vitro cell culture experiments were performed using fibroblasts and endothelial, smooth muscle, and mast cells. All cell types expressed PGES and COX-2, resulting in basal levels of PGE(2) synthesis. In response to tumor necrosis factor (TNF-α), IL-1β, and cocultured lymphocytes, however, mPGES-1 and COX-2 protein expression increased in fibroblasts and smooth muscle cells, accompanied by increased PGE(2), whereas mPGES-2 and cPGES were unaffected. In endothelial cells, TNF-α increased PGE(2) production only via COX-2 expression, whereas in mast cells the cytokines did not affect PGE(2) enzyme expression or PGE(2) production. Furthermore, PGE(2) production was diminished in gingival fibroblasts derived from mPGES-1 knockout mice, compared with wild-type fibroblasts. These results suggest that fibroblasts and smooth muscle cells are important sources of mPGES-1, which may contribute to increased PGE(2) production in the inflammatory condition periodontitis.
Collapse
Affiliation(s)
- Tove Båge
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kats
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Blanca Silva Lopez
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gareth Morgan
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Clinical Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden
| | - Idil Burt
- Department of Orthodontics, Eastman Institute, Stockholm, Sweden
| | | | - Lisa Corbett
- Division of Respiratory Medicine, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Alan J. Knox
- Division of Respiratory Medicine, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Leonardo Pino
- Örebro City Council, Postgraduate Dental Education Center, Örebro, Sweden
| | | | - Thomas Modéer
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Shin HJ, Kim HL, Kim SJ, Chung WS, Kim SS, Um JY. Inhibitory effects of chelidonic acid on IL-6 production by blocking NF-κB and caspase-1 in HMC-1 cells. Immunopharmacol Immunotoxicol 2011; 33:614-9. [DOI: 10.3109/08923973.2011.552508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Kang OH, Lee JH, Kwon DY. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol Immunotoxicol 2010; 33:473-9. [DOI: 10.3109/08923973.2010.538851] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Choi IY, Kim SJ, Kim MC, Kim HL, Shin HJ, Kang TH, Jeong HJ, Shim JS, Kim JH, Yang DC, Hong SH, Kim HM, Um JY. Inhibitory effects of the transgenicPanax ginsengson phorbol ester plus A23187-induced IL-6 production and cyclooxygenase-2 via suppression of NF-κB and MAPKs in HMC-1. Immunopharmacol Immunotoxicol 2010; 33:205-10. [DOI: 10.3109/08923973.2010.496459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Asano K, Sakai M, Matsuda T, Tanaka H, Fujii K, Hisamitsu T. Suppression of matrix metalloproteinase production from synovial fibroblasts by meloxicam in-vitro. J Pharm Pharmacol 2010; 58:359-66. [PMID: 16536903 DOI: 10.1211/jpp.58.3.0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
The aim of this study was to evaluate the influence of meloxicam on the production of both matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) from human synovial fibroblasts by TNF-α stimulation in-vitro. Synovial fibroblasts (2 times 104 cells/mL) derived from patients with osteoarthritis were stimulated with 20.0 ng mL−1 TNF-α in the presence of various concentrations of meloxicam. After 24 h, the culture supernatants were obtained and assayed for MMP-1, MMP-2, MMP-3, MMP-13, TIMP-1 and TIMP-2 by ELISA. mRNA expression for MMPs and TIMPs in 4-h-cultured cells were examined by real-time polymerase chain reaction. Transcriptional factor (NF-κB and AP-1) activation in 2-h-cultured cells was also examined by ELISA. Meloxicam could suppress MMP production in a dose-dependent manner. The minimum concentration of the agent that showed significant suppression was 0.6 times 10−6 m for MMP-1, MMP-2 and MMP-3, and 1.3 times 10−6 m for MMP-13. The ability of synovial fibroblasts to produce TIMPs was also suppressed by meloxicam as in the case of MMP production. Addition of meloxicam into synovial fibroblast cultures inhibited dose-dependently mRNA expression for MMPs and TIMPs, which were increased by TNF-α stimulation, through the suppression of NF-κB and AP-1 activation. The suppressive effect of meloxicam on the production of MMPs and TIMPs may partly be involved in attenuation of the clinical conditions of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Kazuhito Asano
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 2010; 15:385-98. [PMID: 20110898 PMCID: PMC6257122 DOI: 10.3390/molecules15010385] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 01/18/2023] Open
Abstract
Luteolin (3′,4′,5,7-tetrahydroxylflavone) is a plant flavonoid and pharmacologically active agent that has been isolated from several plant species. In the present study, the effect of luteolin from the flowers of Lonicera japonica on phorbol 12-myristate 13-acetate (PMA) plus A23187-induced mast cell activation was examined. Luteolin significantly inhibited the induction of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) by PMA plus A23187. Moreover, luteolin attenuated cyclooxygenase (COX)-2 expression and intracellular Ca2+ levels. In activated HMC-1 cells, the phosphorylation of extra-signal response kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2), but not p38 mitogen-activated protein kinase (p38 MAPK) were decreased by treatment of the cells with luteolin. Luteolin inhibited PMA plus A23187-induced nuclear factor (NF)-κB activation, IκB degradation, and luciferase activity. Furthermore, luteolin suppressed the expression of TNF-α, IL-8, IL-6, GM-CSF, and COX-2 through a decrease in the intracellular Ca2+ levels, and also showed a suppression of the ERK 1/2, JNK 1/2, and NF-κB activation. These results indicated that luteolin from the flowers of Lonicera japonica exerted a regulatory effect on mast cell-mediated inflammatory diseases, such as RA, allergy disease and IBD.
Collapse
|
13
|
Ahmad S, Rathish IG, Bano S, Alam MS, Javed K. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. J Enzyme Inhib Med Chem 2009; 25:266-71. [DOI: 10.3109/14756360903155781] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shamim Ahmad
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - I. G. Rathish
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sameena Bano
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M. S. Alam
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Kalim Javed
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
14
|
Steiner AA, Hunter JC, Phipps SM, Nucci TB, Oliveira DL, Roberts JL, Scheck AC, Simmons DL, Romanovsky AA. Cyclooxygenase-1 or -2--which one mediates lipopolysaccharide-induced hypothermia? Am J Physiol Regul Integr Comp Physiol 2009; 297:R485-94. [PMID: 19515980 DOI: 10.1152/ajpregu.91026.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic inflammation is associated with either fever or hypothermia. Fever, a response to mild systemic inflammation, is mediated by cyclooxygenase (COX)-2 and not by COX-1. However, it is still disputed whether COX-2, COX-1, neither, or both mediate(s) responses to severe systemic inflammation, and, in particular, the hypothermic response. We compared the effects of SC-236 (COX-2 inhibitor) and SC-560 (COX-1 inhibitor) on the deep body temperature (T(b)) of rats injected with a lower (10 microg/kg i.v.) or higher (1,000 microg/kg i.v.) dose of LPS at different ambient temperatures (T(a)s). At a neutral T(a) (30 degrees C), the rats responded to LPS with a polyphasic fever (lower dose) or a brief hypothermia followed by fever (higher dose). SC-236 (2.5 mg/kg i.v.) blocked the fever induced by either LPS dose, whereas SC-560 (5 mg/kg i.v.) altered neither the febrile response to the lower LPS dose nor the fever component of the response to the higher dose. However, SC-560 blocked the initial hypothermia caused by the higher LPS dose. At a subneutral T(a) (22 degrees C), the rats responded to LPS with early (70-90 min, nadir) dose-dependent hypothermia. The hypothermic response to either dose was enhanced by SC-236 but blocked by SC-560. The hypothermic response to the higher LPS dose was associated with a fall in arterial blood pressure. This hypotensive response was attenuated by either SC-236 or SC-560. At the onset of LPS-induced hypothermia and hypotension, the functional activity of the COX-1 pathway (COX-1-mediated PGE(2) synthesis ex vivo) increased in the spleen but not liver, lung, kidney, or brain. The expression of splenic COX-1 was unaffected by LPS. We conclude that COX-1, but not COX-2, mediates LPS hypothermia, and that both COX isoforms are required for LPS hypotension.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Choi IY, Kim SJ, Jeong HJ, Park SH, Song YS, Lee JH, Kang TH, Park JH, Hwang GS, Lee EJ, Hong SH, Kim HM, Um JY. Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol Cell Biochem 2007; 305:153-61. [PMID: 17629775 DOI: 10.1007/s11010-007-9539-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
The citrus unshiu peel has been used traditionally as a medicine to improve bronchial and asthmatic conditions or cardiac and blood circulation in Korea, China, and Japan. Here, we report the effects of citrus unshiu peel water extract (CPWE) on the phorbol myristate acetate (PMA)+calcium ionophore A23187-induced hypoxia-inducible factor-1alpha (HIF-1alpha) activation and inflammatory cytokine production from the human mast cell line, HMC-1 cells. We compared CPWE with hesperidin, a common constituent of citrus unshiu. CPWE and hesperidin inhibited the PMA+A23187-induced HIF-1alpha expression and the subsequent production of vascular endothelial growth factor (VEGF). In addition, CPWE suppressed PMA+A23187-induced phosphorylation of the extracellular signal-regulated kinase (ERK). We also show that the increased cytokines interleukin (IL)-1beta, IL-8, and tumor necrosis factor (TNF)-alpha level was significantly inhibited by treatment of CPWE or hesperidin. In the present study, we report that CPWE and hesperidin are inhibitors of HIF-1alpha and cytokines on the mast cell-mediated inflammatory responses.
Collapse
Affiliation(s)
- In-Young Choi
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ralstin MC, Gage EA, Yip-Schneider MT, Klein PJ, Wiebke EA, Schmidt CM. Parthenolide cooperates with NS398 to inhibit growth of human hepatocellular carcinoma cells through effects on apoptosis and G0-G1 cell cycle arrest. Mol Cancer Res 2006; 4:387-99. [PMID: 16778086 DOI: 10.1158/1541-7786.mcr-05-0157] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapy to date has not been effective in the treatment of human hepatocellular carcinoma. More effective treatment strategies may involve combinations of agents with activity against hepatocellular carcinoma. Parthenolide, a nuclear factor-kappaB (NF-kappaB) inhibitor, and NS398, a cyclooxygenase (COX)-2 inhibitor, have been shown to individually suppress the growth of hepatocellular carcinoma cells in vitro. To investigate their effects in combination, three human hepatocellular carcinoma lines (Hep3B, HepG2, and PLC) were treated with parthenolide and/or NS398. Parthenolide (0.1-10 micromol/L) and NS398 (1-100 micromol/L) each caused concentration-dependent growth inhibition in all cell lines. The addition of parthenolide to NS398 reduced the concentration of NS398 required to inhibit hepatocellular carcinoma growth. Because parthenolide and COX-2 inhibitors have been reported to influence NF-kappaB activity, the effects on this pathway were investigated. The combination of parthenolide/NS398 inhibited phosphorylation of the NF-kappaB-inhibitory protein IkappaBalpha and increased total IkappaBalpha levels. NF-kappaB DNA-binding and transcriptional activities were inhibited more by the combination than the single agents in Hep3B and HepG2 cells but not in PLC cells. The response of PLC cells to NS398 was augmented by p65 small interfering RNA to inhibit NF-kappaB p65 protein expression. The combination of parthenolide/NS398 increased apoptosis only in PLC cells, suggesting that the combination may decrease the apoptotic threshold in these cells. In Hep3B and HepG2 cells, combination treatment with NS398/parthenolide altered the cell cycle distribution resulting in more G0-G1 accumulation. Cyclin D1 levels were further decreased by combination treatment in all cell lines, correlating with the cell cycle alterations. Our results suggest that parthenolide may be effective in combination with COX-2 inhibitors for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Matthew C Ralstin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sekar Y, Moon TC, Muñoz S, Befus AD. Role of nitric oxide in mast cells: controversies, current knowledge, and future applications. Immunol Res 2006; 33:223-39. [PMID: 16462000 DOI: 10.1385/ir:33:3:223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mast cells (MC) are important effector cells in allergic disorders. Recently, the role of MC in innate and adaptive immunity is gaining prominence. Nitric oxide is an important signaling molecule and its production in mast cell has been reported widely. However, controversy exists about whether MC produce NO. This review addresses the role of NO in MC biology and the reasons behind the controversy and discusses effects of NO in regulation of MC phenotype and function.
Collapse
Affiliation(s)
- Yokananth Sekar
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
18
|
Nan L, Dedes J, French BA, Bardag-Gorce F, Li J, Wu Y, French SW. Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor. Exp Mol Pathol 2006; 80:228-40. [PMID: 16563375 DOI: 10.1016/j.yexmp.2006.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/10/2006] [Indexed: 01/18/2023]
Abstract
Microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) to induce Mallory body (MB) cytokeratin aggresome formation showed that gene expression for cellular adhesion molecules, cytokeratins, kinases and aggresome forming proteins were upregulated, when MBs were formed in vivo. This response was enhanced when the DDC was refed (mice fed DDC for 10 weeks followed by DDC withdrawal for 1 month, then refed DDC for 7 days). Immunofluorescent antibody staining of the MBs that formed showed that MAPK p38 was colocalized with ubiquitin and p62 in the MBs. To investigate further the mechanisms of MB formation, primary cultures derived from DDC primed mice and their controls were incubated for 6 days. Liver cells cultured for 3 h and 6 days were used for microarray analysis. At 3 h, there were no MBs formed, but MBs were numerous after 6 days of culture. At 3 h, the expression of a large number of genes was different when the control, and the DDC primed hepatocytes were compared, which indicates that the primed hepatocytes were phenotypically changed. The gene expression of many kinases including p38 was upregulated after 6 days where the gene expression of cytokeratins, adhesion molecules and aggresome forming proteins were upregulated when MBs formed. An inhibitor of p38 phosphorylation (SB202190) completely prevented MB formation. Western blot showed that phosphorylated p38 MAPK and total p38 were absent in vitro after the p38 inhibitor treatment. Immunostaining of 6-day DDC-primed hepatocyte cultures stained with antibodies to p62 and phospho-p38 MAPK showed that phosphorylated p38 MAPK was concentrated within the MBs. Antibodies to specific serine phosphorylated sites 73 and 431, located in cytokeratin 8, localized to Mallory bodies in vivo, indicating that cytokeratin 8 was hyperphosphorylated. The data supported the concept that MBs form as the result of hyperphosphorylation of cytokeratin 8 by p38.
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Harding P, Balasubramanian L, Swegan J, Stevens A, Glass WF. Transforming growth factor beta regulates cyclooxygenase-2 in glomerular mesangial cells. Kidney Int 2006; 69:1578-85. [PMID: 16572115 DOI: 10.1038/sj.ki.5000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study examines the hypothesis that transforming growth factor beta (TGFbeta) regulates cyclooxygenase-2 (COX-2) and induces prostaglandin E synthase (mPGES-1) in rat mesangial cells. COX-2 expression was determined by Northern blot analysis after treatment with either TGFbeta1 or the selective COX-2 inhibitor, NS398. mPGES-1 expression was determined by real-time polymerase chain reaction. The effect of TGFbeta1 on COX-2 gene transcription was assessed using a luciferase reporter assay, and mRNA stability was also determined. To determine whether TGFbeta1 activates elements of the COX-2 promoter, we performed gel shift analyses to examine activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB). Prostaglandin E(2) (PGE(2)) and thromboxane B2 (TxB2) production was assayed by enzyme immunoassay. Finally, the pathophysiological relevance of COX-2 inhibition on the downstream effects of TGFbeta was assessed by examining collagen type I mRNA and net collagen production. COX-2 mRNA and mPGES-1 were induced after treatment with TGFbeta1 for 4 h, and this rise was accompanied by a three-fold increase in PGE(2) production that could be antagonized by selective inhibition of COX-2 with NS398. TGFbeta1 increased transcription by approximately 50% and activated both AP-1 and NF-kappaB. These effects were antagonized by co-treatment with NS398. Treatment with TGFbeta1 also doubled the half-life of COX-2 mRNA. Neither collagen type I mRNA nor net collagen production were altered by co-treatment with NS398. In conclusion, these results indicate that TGFbeta stimulates COX-2 and mPGES-1, with additional effects on transcription and stability of COX-2 mRNA.
Collapse
Affiliation(s)
- P Harding
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA.
| | | | | | | | | |
Collapse
|