1
|
Escal J, Poenou G, Delavenne X, Bezzeghoud S, Mismetti V, Humbert M, Montani D, Bertoletti L. Tailoring oral anticoagulant treatment in the era of multi-drug therapies for PAH and CTEPH. Blood Rev 2024:101240. [PMID: 39245607 DOI: 10.1016/j.blre.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The use of oral anticoagulants in the management of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) presents distinct therapeutic challenges and benefits. In PAH, the benefits of oral anticoagulation are uncertain, with studies yielding mixed results on their efficacy and safety. Conversely, oral anticoagulants are a cornerstone in the treatment of CTEPH, where their use is consistently recommended to prevent recurrent thromboembolic events. The choice between vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs) remains a significant clinical question, as each type presents advantages and potential drawbacks. Furthermore, drug-drug interactions (DDIs) with concomitant PAH and CTEPH treatments complicate anticoagulant management, necessitating careful consideration of individual patient regimens. This review examines the current evidence on oral anticoagulant use in PAH and CTEPH and discusses the implications of DDIs within a context of multi-drug treatments, including targeted drugs in PAH.
Collapse
Affiliation(s)
- Jean Escal
- INSERM UMR1059, Université Jean Monnet, F-42023 Saint-Etienne, France; Laboratoire de Pharmacologie et Toxicologie, CHU de Saint-Etienne, F-42055 Saint-Etienne, France.
| | - Geraldine Poenou
- INSERM UMR1059, Université Jean Monnet, F-42023 Saint-Etienne, France; Service de Médecine Vasculaire et Thérapeutique, CHU de Saint-Etienne, F-42055 Saint-Etienne, France.
| | - Xavier Delavenne
- INSERM UMR1059, Université Jean Monnet, F-42023 Saint-Etienne, France; Laboratoire de Pharmacologie et Toxicologie, CHU de Saint-Etienne, F-42055 Saint-Etienne, France.
| | - Souad Bezzeghoud
- Service de Médecine Vasculaire et Thérapeutique, INSERM CIC-1408, CHU de Saint-Etienne, F-42055 Saint-Etienne, France.
| | - Valentine Mismetti
- INSERM UMR1059, Université Jean Monnet, F-42023 Saint-Etienne, France; Service de Pneumologie, CHU de Saint-Etienne, F-42055 Saint-Etienne, France.
| | - Marc Humbert
- INSERM UMR-S 999, Université Paris-Saclay, Paris, France; Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (APHP), Le Kremlin-Bicêtre, France.
| | - David Montani
- INSERM UMR-S 999, Université Paris-Saclay, Paris, France; Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de L'Hypertension Pulmonaire OrphaLung, Hôpital de Bicêtre (APHP), Le Kremlin-Bicêtre, France.
| | - Laurent Bertoletti
- INSERM UMR1059, Université Jean Monnet, F-42023 Saint-Etienne, France; Service de Médecine Vasculaire et Thérapeutique, INSERM CIC-1408, INNOVTE, CHU de Saint-Etienne, F-42055 SaintEtienne, France.
| |
Collapse
|
2
|
Ochiai T, Honsawa T, Yamaguchi K, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Prostacyclin synthase deficiency exacerbates systemic inflammatory responses in lipopolysaccharide-induced septic shock in mice. Inflamm Res 2024; 73:1349-1358. [PMID: 38832966 DOI: 10.1007/s00011-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Sepsis is a systemic inflammatory disorder characterized by life-threateningorgan dysfunction resulting from a dysregulated host response to infection. Prostacyclin (PGI2) is a bioactive lipid produced by PGI synthase (PGIS) and is known to play important roles in inflammatory reactions as well as cardiovascular regulation. However, little is known about the roles of PGIS and PGI2 in systemic inflammatory responses such as septic shock. METHODOLOGY Systemic inflammation was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS) in wild type (WT) or PGIS knockout (KO) mice. Selexipag, a selective PGI2 receptor (IP) agonist, was administered 2 h before LPS injection and again given every 12 h for 3 days. RESULTS Intraperitoneal injection of LPS induced diarrhea, shivering and hypothermia. These symptoms were more severe in PGIS KO mice than in WT micqe. The expression of Tnf and Il6 genes was notably increased in PGIS KO mice. In contrast, over 95% of WT mice survived 72 h after the administration of LPS, whereas all of the PGIS KO mice had succumbed by that time. The mortality rate of LPS-administrated PGIS KO mice was improved by selexipag administration. CONCLUSION Our study suggests that PGIS-derived PGI2 negatively regulates LPS-induced symptoms via the IP receptor. PGIS-derived PGI2-IP signaling axis may be a new drug target for systemic inflammation in septic shock.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Keishi Yamaguchi
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | | | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
3
|
Hall A, Chatzopoulou M, Frost J. Bioisoteres for carboxylic acids: From ionized isosteres to novel unionized replacements. Bioorg Med Chem 2024; 104:117653. [PMID: 38579492 DOI: 10.1016/j.bmc.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 04/07/2024]
Abstract
Carboxylic acids are key pharmacophoric elements in many molecules. They can be seen as a problem by some, due to perceived permeability challenges, potential for high plasma protein binding and the risk of forming reactive metabolites due to acyl-glucuronidation. By others they are viewed more favorably as they can decrease lipophilicity by adding an ionizable center which can be beneficial for solubility, and can add enthalpic interactions with the target protein. However, there are many instances where the replacement of a carboxylic acid with a bioisosteric group is required. This has led to the development of a number of ionizable groups which sufficiently mimic the carboxylic acid functionality whilst improving, for example, the metabolic profile of the molecule in question. An alternative strategy involves replacement of the carboxylate by neutral functional groups. This review initially details carefully selected examples whereby tetrazoles, acyl sulfonamides or isoxazolols have been beneficially utilized as carboxylic acid bioisosteres altering physicohemical properties, interactions with the target and metabolism and/or pharmacokinetics, before delving further into the binding mode of carboxylic acid derivatives with their target proteins. This analysis highlights new ways to consider the replacement of carboxylic acids by neutral bioisosteric groups which either rely on hydrogen bonds or cation-π interactions. It should serve as a useful guide for scientists working in drug discovery.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK.
| | - Maria Chatzopoulou
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK
| | - James Frost
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK
| |
Collapse
|
4
|
Wang JJ, Jin S, Zhang H, Xu Y, Hu W, Jiang Y, Chen C, Wang DW, Xu HE, Wu C. Molecular recognition and activation of the prostacyclin receptor by anti-pulmonary arterial hypertension drugs. SCIENCE ADVANCES 2024; 10:eadk5184. [PMID: 38335293 PMCID: PMC10857463 DOI: 10.1126/sciadv.adk5184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The prostacyclin (PGI2) receptor (IP) is a Gs-coupled receptor associated with blood pressure regulation, allergy, and inflammatory response. It is a main therapeutic target for pulmonary arterial hypertension (PAH) and several other diseases. Here we report cryo-electron microscopy (cryo-EM) structures of the human IP-Gs complex bound with two anti-PAH drugs, treprostinil and MRE-269 (active form of selexipag), at global resolutions of 2.56 and 2.41 angstrom, respectively. These structures revealed distinct features governing IP ligand binding, receptor activation, and G protein coupling. Moreover, comparison of the activated IP structures uncovered the mechanism and key residues that determine the superior selectivity of MRE-269 over treprostinil. Combined with molecular docking and functional studies, our structures provide insight into agonist selectivity, ligand recognition, receptor activation, and G protein coupling. Our results provide a structural template for further improving IP-targeting drugs to reduce off-target activation of prostanoid receptors and adverse effects.
Collapse
Affiliation(s)
- James Jiqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Sanshan Jin
- Lingang laboratory, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- Lingang laboratory, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - H. Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Ludovico ID, Sarkar S, Elliott E, Virtanen SM, Erlund I, Ramanadham S, Mirmira RG, Metz TO, Nakayasu ES. Fatty acid-mediated signaling as a target for developing type 1 diabetes therapies. Expert Opin Ther Targets 2023; 27:793-806. [PMID: 37706269 PMCID: PMC10591803 DOI: 10.1080/14728222.2023.2259099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune disease in which pro-inflammatory and cytotoxic signaling drive the death of the insulin-producing β cells. This complex signaling is regulated in part by fatty acids and their bioproducts, making them excellent therapeutic targets. AREAS COVERED We provide an overview of the fatty acid actions on β cells by discussing how they can cause lipotoxicity or regulate inflammatory response during insulitis. We also discuss how diet can affect the availability of fatty acids and disease development. Finally, we discuss development avenues that need further exploration. EXPERT OPINION Fatty acids, such as hydroxyl fatty acids, ω-3 fatty acids, and their downstream products, are druggable candidates that promote protective signaling. Inhibitors and antagonists of enzymes and receptors of arachidonic acid and free fatty acids, along with their derived metabolites, which cause pro-inflammatory and cytotoxic responses, have the potential to be developed as therapeutic targets also. Further, because diet is the main source of fatty acid intake in humans, balancing protective and pro-inflammatory/cytotoxic fatty acid levels through dietary therapy may have beneficial effects, delaying T1D progression. Therefore, therapeutic interventions targeting fatty acid signaling hold potential as avenues to treat T1D.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily Elliott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Suvi M. Virtanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Iris Erlund
- Department of Governmental Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Kuramoto K, Ogawa A, Kiyama K, Matsubara H, Ohno Y, Fuchikami C, Hayashi K, Kosugi K, Kuwano K. Antiproliferative effect of selexipag active metabolite MRE-269 on pulmonary arterial smooth muscle cells from patients with chronic thromboembolic pulmonary hypertension. Pulm Circ 2023; 13:e12231. [PMID: 37180827 PMCID: PMC10173849 DOI: 10.1002/pul2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a group 4 pulmonary hypertension (PH) characterized by nonresolving thromboembolism in the central pulmonary artery and vascular occlusion in the proximal and distal pulmonary artery. Medical therapy is chosen for patients who are ineligible for pulmonary endarterectomy or balloon pulmonary angioplasty or who have symptomatic residual PH after surgery or intervention. Selexipag, an oral prostacyclin receptor agonist and potent vasodilator, was approved for CTEPH in Japan in 2021. To evaluate the pharmacological effect of selexipag on vascular occlusion in CTEPH, we examined how its active metabolite MRE-269 affects platelet-derived growth factor-stimulated pulmonary arterial smooth muscle cells (PASMCs) from CTEPH patients. MRE-269 showed a more potent antiproliferative effect on PASMCs from CTEPH patients than on those from normal subjects. DNA-binding protein inhibitor (ID) genes ID1 and ID3 were found by RNA sequencing and real-time quantitative polymerase chain reaction to be expressed at lower levels in PASMCs from CTEPH patients than in those from normal subjects and were upregulated by MRE-269 treatment. ID1 and ID3 upregulation by MRE-269 was blocked by co-incubation with a prostacyclin receptor antagonist, and ID1 knockdown by small interfering RNA transfection attenuated the antiproliferative effect of MRE-269. ID signaling may be involved in the antiproliferative effect of MRE-269 on PASMCs. This is the first study to demonstrate the pharmacological effects on PASMCs from CTEPH patients of a drug approved for the treatment of CTEPH. Both the vasodilatory and the antiproliferative effect of MRE-269 may contribute to the efficacy of selexipag in CTEPH.
Collapse
Affiliation(s)
- Kazuya Kuramoto
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Aiko Ogawa
- Department of Clinical ScienceNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Kazuko Kiyama
- Department of Clinical ScienceNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Hiromi Matsubara
- Department of CardiologyNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Yuji Ohno
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Chiaki Fuchikami
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Kyota Hayashi
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Keiji Kosugi
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Keiichi Kuwano
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| |
Collapse
|
7
|
Maruyama H, Sakai S, Dewachter L, Dewachter C, Rondelet B, Naeije R, Ieda M. Prostacyclin receptor agonists induce DUSP1 to inhibit pulmonary artery smooth muscle cell proliferation. Life Sci 2023; 315:121372. [PMID: 36608870 DOI: 10.1016/j.lfs.2023.121372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIMS Upregulated p38MAPK signaling is implicated in the accelerated proliferation of pulmonary artery smooth muscle cells (PA-SMCs) and the pathogenesis of pulmonary artery remodeling observed in pulmonary arterial hypertension (PAH). Previously, we reported that after endothelin-1 (ET-1) pretreatment, bone morphogenetic protein 2 (BMP2) activates p38MAPK signaling and accelerates PA-SMC proliferation. The activity of p38MAPK signaling is tightly regulated by the inactivation of dual-specificity phosphatase 1 (DUSP1). Activated p38MAPK induces DUSP1 expression, forming a negative feedback loop. Prostacyclin IP receptor agonists (prostacyclin and selexipag) are used to treat PAH. In this study, we aimed to verify whether IP receptor agonists affect DUSP1 expression and accelerate the proliferation of PA-SMCs. MAIN METHODS PA-SMCs were treated with BMP2, ET-1, prostacyclin, and MRE-269, an active metabolite of selexipag, either alone or in combination. We quantified mRNA expressions using real-time quantitative polymerase chain reaction. Pulmonary artery specimens and PA-SMCs were obtained during lung transplantation in patients with PAH. KEY FINDINGS Both prostacyclin and MRE-269 increased DUSP1 expression. Combined treatment with BMP2 and ET-1 induced cyclin D1 and DUSP1 expression and increased PA-SMC proliferation. MRE-269 attenuated BMP2/ET-1-induced cell proliferation. ET-1 increased DUSP1 expression in PA-SMCs from control patients but not in PA-SMCs from patients with PAH. SIGNIFICANCE This study showed that the p38MAPK/DUSP1 negative feedback loop is impaired in PAH, contributing to unregulated p38MAPK activation and PA-SMC hyperplasia. IP receptor agonist MRE-269 increases DUSP1 expression and inhibit p38MAPK-mediated PA-SMC proliferation. Future elucidation of the detailed mechanism underlying reduced DUSP1 expression would be informative for PAH treatment.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center, 300-8585 Tsuchiura, Japan; Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan; Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Satoshi Sakai
- Faculty of Health Science, Tsukuba University of Technology, 305-8520 Tsukuba, Japan
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; Department of Cardiology, Erasme Academic Hospital, 1070 Brussels, Belgium
| | - Benoit Rondelet
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, 5530 Yvoir, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Masaki Ieda
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan
| |
Collapse
|
8
|
Selexipag in Patients With Pulmonary Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Probl Cardiol 2023; 48:101466. [PMID: 36283497 DOI: 10.1016/j.cpcardiol.2022.101466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/04/2023]
Abstract
Despite the availability of treatments for all subgroups of pulmonary hypertension (PH), the prognosis for PH remains poor. This systematic review and meta-analysis aimed to determine the efficacy and safety of selexipag in patients with PH. A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. Randomized controlled trials (RCTs) on treatment of PH with selexipag, compared with placebo or blank, were reviewed. Studies were pooled to weighted mean differences (WMDs) and risk ratios (RRs), with 95% confidence intervals (CIs). Selexipag was safe and significantly improved hospitalization for worsening of PH, WHO FC, mPAP, NT-proBNP, and cardiac index in patients with PH. Selexipag should be considered in patients with pulmonary arterial hypertension or chronic thromboembolic PH.
Collapse
|
9
|
Ma G, Wang D, Xu X, Liang L, Xu L. Case report: apatinib plus selexipag as a novel therapy for pulmonary tumor thrombotic microangiopathy accompanied by pulmonary hypertension associated with gastric carcinoma. Medicine (Baltimore) 2022; 101:e29412. [PMID: 35839042 PMCID: PMC11132349 DOI: 10.1097/md.0000000000029412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
RATIONALE PTTM is a rare but fatal disease, characterized by endothelial intimal proliferation and pulmonary hypertension due to micro-vascular remodeling. In view of the poor prognosis, new effective strategies are urgently required. PATIENT CONCERNS AND DIAGNOSIS A 51-year-old woman was admitted to hospital for acute progressive dyspnea and dry cough. Clinical tests revealed hypercoagulable state and signs of severe pulmonary hypertension, without evidence of pulmonary embolism on contrast-enhanced CT. CT showed interlobular septal thickening and diffuse ground-glass opacity. Lung perfusion scan indicated multiple segment defect. Further right heart catherization proved a significant increase in pulmonary vascular resistance. INTERVENTIONS A combination therapy of apatinib and selexipag was administered for treatment of PTTM. The conventional therapies of ventilation, anticoagulation and diuretic medicines were initiated after admission. OUTCOMES Symptoms of PTTM were ameliorated with a reduction in pulmonary artery pressure. The resolution of interlobular septal thickening and ground-glass opacity on CT constituted the clinical benefits from treatment. LESSONS Patient with PTTM will benefit from the combination strategy of apatinib, a VEGF-receptor antagonist, and selexipag, an oral prostacyclin receptor agonist.
Collapse
Affiliation(s)
- Guofeng Ma
- Regional medical center for National institute of respiratory diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Xu
- Regional medical center for National institute of respiratory diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Liang
- Regional medical center for National institute of respiratory diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Regional medical center for National institute of respiratory diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Corboz MR, Plaunt AJ, Malinin V, Li Z, Gauani H, Chun D, Cipolla D, Perkins WR, Chapman RW. Treprostinil palmitil inhibits the hemodynamic and histopathological changes in the pulmonary vasculature and heart in an animal model of pulmonary arterial hypertension. Eur J Pharmacol 2022; 916:174484. [PMID: 34508752 DOI: 10.1016/j.ejphar.2021.174484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Treprostinil palmitil (TP) is a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE). In this study, TP was delivered by inhalation (treprostinil palmitil inhalation suspension, TPIS) in a rat Sugen 5416 (Su)/hypoxia (Hx) model of pulmonary arterial hypertension (PAH) to evaluate its effects on hemodynamics, pulmonary vascular remodeling, and cardiac performance and histopathology. Male Sprague-Dawley rats received Su (20 mg/kg, s.c), three weeks of Hx (10% O2) and 5 or 10 weeks of normoxia (Nx). TPIS was given during the 5-10 week Nx period after the Su/Hx challenge. Su/Hx increased the mean pulmonary arterial blood pressure (mPAP) and right heart size (Fulton index), reduced cardiac output (CO), stroke volume (SV) and heart rate (HR), and increased the thickness and muscularization of the pulmonary arteries along with obliteration of small pulmonary vessels. In both the 8- and 13-week experiments, TPIS at inhaled doses ranging from 39.6 to 134.1 μg/kg, QD, dose-dependently improved pulmonary vascular hemodynamics, reduced the increase in right heart size, enhanced cardiac performance, and attenuated most of the histological changes induced by the Su/Hx challenge. The PDE5 inhibitor sildenafil, administered at an oral dose of 50 mg/kg, BID for 10 weeks, was not as effective as TPIS. These results in Su/Hx challenged rats demonstrate that inhaled TPIS may have superior effects to oral sildenafil. We speculate that the improvement of the pathobiology in this PAH model induced by TPIS involves effects on pulmonary vascular remodeling due to the local effects of TRE in the lungs.
Collapse
Affiliation(s)
- Michel R Corboz
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Adam J Plaunt
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Vladimir Malinin
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Zhili Li
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Helena Gauani
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Donald Chun
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - David Cipolla
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Walter R Perkins
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Richard W Chapman
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| |
Collapse
|
11
|
Chen M, Lai Y, Chen R, Lu J, Zhang Y, Liu H, Wang D, Zhong Y, Zheng Z, Hong C. Efficacy and safety of selexipag, an oral prostacyclin receptor agonist for the treatment of pulmonary hypertension: A meta-analysis. Pulm Pharmacol Ther 2021; 72:102100. [PMID: 34856365 DOI: 10.1016/j.pupt.2021.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE This meta-analysis was performed to evaluate the effect and safety of selexipag in the treatment of pulmonary hypertension and to explore the effect of selexipag on cardiac function indexes in PAH patients. METHODS Electronic databases, including the Cochrane Library, EMBASE, and PubMed databases, were searched. Endnote software X9 was used for study selection, and the Cochrane Risk of Bias Tool was used for literature screening and quality assessment. Data analysis was performed using RevMan 5.3 software, and GRADE was used to assess the evidence level. RESULTS Ten studies were finally selected in accordance with the standard. A total of 10 papers were included. A total of 1322 patients were included, including 723 in the trial group and 599 in the control group. Patients with PAH treated with selexipag were included in the trial group, and patients with PAH treated with placebo were included in the control group. The results of the study showed that selexipag was effective in reducing mortality in patients (WMD=0.70, 95% CI: 0.53-0.94, P = 0.02). Selexipag effectively increased the 6-min walk distance (WMD=33.79, 95% CI: 2.69-64.90, P=0.03). Selexipag also effectively increased the 6-min distance between baseline and follow-up (WMD = 15.28, 95% CI: 7.76-22.80, P < 0.0001). Selexipag effectively reduced PVR (WMD = -230.96, 95% CI: 445.94 to -15.97, P = 0.04). Selexipag significantly reduced PVR between baseline and follow-up (WMD = -139.62, 95% CI: 215.32 to -63.91, P = 0.0003). The adverse reactions of selexipag were mild with headache, diarrhea and nausea reported as the main symptoms. CONCLUSION Selexipag is a new drug with mild adverse reactions and is safe for the treatment of PAH. This drug significantly prolongs the level of 6MWD in PAH patients, reduces the fatality rate, improves WHO FC and reduces PVR. The effects of this drug on CI, mPAP, MRAP, SvO2 and other indicators still need to be further confirmed. PROSPERO REGISTRATION CRD42021245557.
Collapse
Affiliation(s)
- Minshan Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China; Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, China
| | - Yuanqiang Lai
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China; Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Yu Zhang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Haimin Liu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Donghao Wang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Yue Zhong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, China.
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
12
|
Ogo T, Shimokawahara H, Kinoshita H, Sakao S, Abe K, Matoba S, Motoki H, Takama N, Ako J, Ikeda Y, Joho S, Maki H, Saeki T, Sugano T, Tsujino I, Yoshioka K, Shiota N, Tanaka S, Yamamoto C, Tanabe N, Tatsumi K. Selexipag for the treatment of chronic thromboembolic pulmonary hypertension. Eur Respir J 2021; 60:13993003.01694-2021. [PMID: 34824052 PMCID: PMC9260121 DOI: 10.1183/13993003.01694-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/05/2022]
Abstract
Treatment options for inoperable chronic thromboembolic pulmonary hypertension (CTEPH) remain limited. Selexipag, an oral selective IP prostacyclin-receptor agonist approved for pulmonary arterial hypertension, is a potential treatment option for CTEPH.In this multicentre, randomised, double-blind, placebo-controlled study, 78 Japanese patients with inoperable CTEPH or persistent/recurrent pulmonary hypertension after pulmonary endarterectomy and/or balloon pulmonary angioplasty were randomly assigned to receive placebo or selexipag. The primary endpoint was the change in pulmonary vascular resistance (PVR) from baseline to week 20. The secondary endpoints were changes in other haemodynamic parameters, 6-min walk distance (6 WMD), Borg Dyspnoea Scale score, World Health Organisation (WHO) functional class, EuroQol 5 dimensions 5-level and N-terminal pro-brain natriuretic peptide.The change in PVR was -98.2±111.3 dyn·s·cm-5 and -4.6±163.6 dyn·s·cm-5 in the selexipag and placebo groups, respectively (mean difference, -93.5 dyn·s·cm-5; 95% confidence interval, -156.8, -30.3; p=0.006). The changes in cardiac index (p<0.001) and Borg Dyspnoea Scale score (p=0.036) were also significantly improved over placebo. 6WMD and WHO functional class were not significantly improved. The common adverse events in the selexipag group were corresponded to those generally observed following a prostacyclin analogue is administered.Selexipag significantly improved PVR and other haemodynamic variables in patients with CTEPH, although exercise capacity remained unchanged. Further large-scale investigation is necessary to prove the role of selexipag in CTEPH.
Collapse
Affiliation(s)
- Takeshi Ogo
- Division of Advanced Medical Research in Pulmonary Hypertension, Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Suita, Osaka, Japan
| | - Hiroto Shimokawahara
- Department of Cardiology, National Hospital Organization Okayama Medical Centre, Okayama, Okayama, Japan
| | - Hideyuki Kinoshita
- Department of Community Medicine Supporting System, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kohtaro Abe
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Hirohiko Motoki
- Department of Cardiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Noriaki Takama
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasuhiro Ikeda
- Department of Cardiology, Yamaguchi Prefectural Grand Medical Centre, Hofu, Yamaguchi, Japan
| | - Shuji Joho
- Second Department of Internal Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hisataka Maki
- Department of Cardiology, The University of Tokyo Hospital, Tokyo, Tokyo, Japan
| | - Takahiro Saeki
- Cardiovascular Medicine, National Hospital Organization Kanazawa Medical Centre, Kanazawa, Ishikawa, Japan
| | - Teruyasu Sugano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ichizo Tsujino
- Internal Medicine I, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koichiro Yoshioka
- Department of Cardiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoki Shiota
- Clinical Development Dept., Nippon Shinyaku Co., Ltd., Kyoto, Kyoto, Japan
| | - Shinichi Tanaka
- Data Science Dept., Nippon Shinyaku Co., Ltd., Kyoto, Kyoto, Japan
| | - Chieko Yamamoto
- Clinical Development Dept., Nippon Shinyaku Co., Ltd., Kyoto, Kyoto, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.,Chibaken Saiseikai Narashino Hospital, Narashino, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | | |
Collapse
|
13
|
Kuwano K, Kosugi K, Fuchikami C, Funaki S. [Pharmacological characteristics and clinical study results of Selexipag (Uptravi ® tablets), a selective prostacyclin receptor agonist]. Nihon Yakurigaku Zasshi 2021; 156:178-186. [PMID: 33952848 DOI: 10.1254/fpj.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Selexipag (Uptravi® tablets) is a novel prostacyclin receptor (IP receptor) agonist designed and synthesized at Nippon Shinyaku Co., Ltd., and approved for the treatment of pulmonary arterial hypertension (PAH). Selexipag is converted to MRE-269 in vivo, and the plasma concentration of MRE-269 is maintained at a therapeutic level for a long time. MRE-269 has selective IP receptor agonist activity and exerts vasodilatory and anti-proliferative effects on pulmonary arterial smooth muscle cells. In a study to investigate its vasodilatory effect in isolated rat pulmonary arteries, MRE-269 showed potent vasodilatory effects not only in extralobar but also in small intralobar pulmonary arteries. In a Sugen 5416/hypoxia rat model of PAH, selexipag significantly improved pulmonary artery obstruction, decreased right ventricular systolic pressure, decreased right ventricular hypertrophy and improved survival rate. In a phase II clinical trial for treatment with PAH conducted in Europe, selexipag showed good tolerability with promising efficacy. In an open-label phase II study in 37 patients with PAH in Japan, selexipag significantly decreased pulmonary vascular resistance compared with baseline. In the GRIPHON (Prostacyclin (PGI2) Receptor agonist In Pulmonary arterial HypertensiON) study in 1156 patients with PAH, the largest outcome study ever conducted in PAH, the selexipag treatment group showed a significant reduction in the risk of the primary composite endpoint of death or a complication related to PAH compared with placebo. Selexipag has been shown in clinical trials to prevent the progression of PAH, and is expected to contribute to the treatment of patients with PAH.
Collapse
Affiliation(s)
- Keiichi Kuwano
- Research & Development Division, Nippon Shinyaku Co., Ltd
| | - Keiji Kosugi
- Research & Development Division, Nippon Shinyaku Co., Ltd
| | | | | |
Collapse
|
14
|
Marulanda K, Tsihlis ND, McLean SE, Kibbe MR. Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension in preclinical models. Pediatr Res 2021; 89:1641-1649. [PMID: 33038872 PMCID: PMC8035353 DOI: 10.1038/s41390-020-01191-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Congenital diaphragmatic hernia (CDH)-related deaths are the largest contributor to in-hospital neonatal deaths in children with congenital malformations. Morbidity and mortality in CDH are directly related to the development of pulmonary hypertension (PH). Current treatment consists of supportive measures. To date, no pharmacotherapy has been shown to effectively reverse the hallmark finding of pulmonary vascular remodeling that is associated with pulmonary hypertension in CDH (CDH-PH). As such, there is a great need for novel therapies to effectively manage CDH-PH. Our review aims to evaluate emerging therapies, and specifically focuses on those that are still under investigation and not approved for clinical use by the Food and Drug Administration. Therapies were categorized into antenatal pharmacotherapies or antenatal regenerative therapies and assessed on their method of administration, safety profile, the effect on pulmonary vascular pathophysiology, and overall efficacy. In general, emerging antenatal pharmaceutical and regenerative treatments primarily aim to alleviate pulmonary vascular remodeling by restoring normal function and levels of key regulatory factors involved in pulmonary vascular development and/or in promoting angiogenesis. Overall, while these emerging therapies show great promise for the management of CDH-PH, most require further assessment of safety and efficacy in preclinical models before translation into the clinical setting. IMPACT: Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension (CDH-PH) show promise to effectively mitigate vascular remodeling in preclinical models. Further investigation is needed in preclinical and human studies to evaluate safety and efficacy prior to translation into the clinical arena. This review offers a comprehensive and up-to-date summary of emerging therapies currently under investigation in experimental animal models. There is no cure for CDH-PH. This review explores emerging therapeutic options for the treatment of CDH-PH and evaluates their impact on key molecular pathways and clinical markers of disease to determine efficacy in the preclinical stage.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Mandras S, Kovacs G, Olschewski H, Broderick M, Nelsen A, Shen E, Champion H. Combination Therapy in Pulmonary Arterial Hypertension-Targeting the Nitric Oxide and Prostacyclin Pathways. J Cardiovasc Pharmacol Ther 2021; 26:453-462. [PMID: 33836637 PMCID: PMC8261771 DOI: 10.1177/10742484211006531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disorder
characterized by vascular remodeling of the small pulmonary arteries, resulting
in elevated pulmonary vascular resistance and ultimately, right ventricular
failure. Expanded understanding of PAH pathophysiology as it pertains to the
nitric oxide (NO), prostacyclin (prostaglandin I2) (PGI2)
and endothelin-1 pathways has led to recent advancements in targeted drug
development and substantial improvements in morbidity and mortality. There are
currently several classes of drugs available to target these pathways including
phosphodiesterase-5 inhibitors (PDE5i), soluble guanylate cyclase (sGC)
stimulators, prostacyclin class agents and endothelin receptor antagonists
(ERAs). Combination therapy in PAH, either upfront or sequentially, has become a
widely adopted treatment strategy, allowing for simultaneous targeting of more
than one of these signaling pathways implicated in disease progression. Much of
the current treatment landscape has focused on initial combination therapy with
ambrisentan and tadalafil, an ERA and PDE5I respectively, following results of
the AMBITION study demonstrating combination to be superior to either agent
alone as upfront therapy. Consequently, clinicians often consider combination
therapy with other drugs and drug classes, as deemed clinically appropriate, for
patients with PAH. An alternative regimen that targets the NO and
PGI2 pathways has been adopted by some clinicians as an effective
and sometimes preferred therapeutic combination for PAH. Although there is a
paucity of prospective data, preclinical data and results from secondary data
analysis of clinical studies targeting these pathways may provide novel insights
into this alternative combination as a reasonable, and sometimes preferred,
alternative approach to combination therapy in PAH. This review of preclinical
and clinical data will discuss the current understanding of combination therapy
that simultaneously targets the NO and PGI2 signaling pathways,
highlighting the clinical advantages and theoretical biochemical interplay of
these agents.
Collapse
Affiliation(s)
| | - Gabor Kovacs
- Medical University of Graz, 580955Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Medical University of Graz, 580955Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Andrew Nelsen
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Eric Shen
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Hunter Champion
- Division of Cardiology, 12241Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
16
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
17
|
Genecand L, Wacker J, Beghetti M, Lador F. Selexipag for the treatment of pulmonary arterial hypertension. Expert Rev Respir Med 2020; 15:583-595. [PMID: 33382345 DOI: 10.1080/17476348.2021.1866990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION : Pulmonary arterial hypertension (PAH) is a rare pulmonary vasculopathy. This review focuses on selexipag, a prostacyclin receptor agonist validated for the treatment of PAH. AREAS COVERED We review the structure, mechanisms of action, pharmacokinetics, and pharmacodynamics of selexipag. Clinical efficacy and tolerability are discussed using the main clinical trial published for selexipag (GRIPHON) and its post-hoc analysis. EXPERT OPINION Selexipag should be added as a triple oral combination therapy in case of insufficient response to oral combination therapy with endothelin receptor antagonist and phosphodiesterase 5 inhibitor. However, selexipag should not replace parenteral prostacyclin in high-risk patients.
Collapse
Affiliation(s)
- Léon Genecand
- Internal Medicine Department,Riviera Chablais Hospital, Rennaz, Switzerland.,Pulmonary Hypertension Program, Geneva University Hospitals, Geneva, Switzerland
| | - Julie Wacker
- Pulmonary Hypertension Program, Geneva University Hospitals, Geneva, Switzerland.,Paediatric Cardiology Unit, University Hospitals of Geneva, Switzerland; Centre Universitaire Romand De Cardiologie Et Chirurgie Cardiaque Pédiatrique, University of Geneva and Lausanne, Switzerland
| | - Maurice Beghetti
- Pulmonary Hypertension Program, Geneva University Hospitals, Geneva, Switzerland.,Paediatric Cardiology Unit, University Hospitals of Geneva, Switzerland; Centre Universitaire Romand De Cardiologie Et Chirurgie Cardiaque Pédiatrique, University of Geneva and Lausanne, Switzerland
| | - Frédéric Lador
- Pulmonary Hypertension Program, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine Specialties, Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
18
|
Zheng W, Wang Z, Jiang X, Zhao Q, Shen J. Targeted Drugs for Treatment of Pulmonary Arterial Hypertension: Past, Present, and Future Perspectives. J Med Chem 2020; 63:15153-15186. [PMID: 33314936 DOI: 10.1021/acs.jmedchem.0c01093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that can lead to right ventricular failure and premature death. Although approved drugs have been shown to be safe and effective, PAH remains a severe clinical condition, and the long-term survival of patients with PAH is still suboptimal. Thus, potential therapeutic targets and new agents to treat PAH are urgently needed. In recent years, a variety of related pathways and potential therapeutic targets have been found, which brings new hope for PAH therapy. In this perspective, not only are the marketed drugs used to treat PAH summarized but also the recently developed novel pharmaceutical therapies currently in clinical trials are discussed. Furthermore, the advances in natural products as potential treatment for PAH are also updated.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingjie Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Katayama N, Odagiri K, Hakamata A, Kamiya C, Uchida S, Tanaka S, Inui N, Namiki N, Tatsumi K, Watanabe H. Clinical evaluation of drug-drug interactions between the cytochrome P450 substrates selexipag and clopidogrel in Japanese volunteers. Br J Clin Pharmacol 2020; 87:1903-1911. [PMID: 32997809 DOI: 10.1111/bcp.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS The strong cytochrome P450 (CYP) 2C8 inhibitor gemfibrozil has been demonstrated to increase the area under the plasma concentration-time curve from 0 to infinity (AUC0-∞ ) of ACT-333679, an active metabolite of selexipag, by 11-fold. Similarly to gemfibrozil, the CYP2C8 inhibitor clopidogrel increased ACT-333679 concentration by 1.9-fold after a single loading dose (300 mg once daily) and 2.7-fold after repeated treatment with the maintenance dose (75 mg once daily) in Europeans. However, the effects of clopidogrel on the pharmacokinetics of selexipag and ACT-333679 have not been fully elucidated in the Japanese population. METHODS We investigated the effect of clopidogrel on the pharmacokinetics of selexipag and ACT-333679 in 14 healthy Japanese volunteers. RESULTS The concomitant administration of clopidogrel with selexipag did not influence the maximum concentration and AUC0-∞ of selexipag, whereas it significantly increased AUC0-∞ of ACT-333679 by approximately 1.90-fold (90% confidence interval 1.69-2.14) without changing the maximum concentration. When selexipag was administered 1 day after clopidogrel was discontinued, the increase in AUC0-∞ of ACT-333679 was 1.37-fold (90% confidence interval 0.93-2.02), suggesting that, although the inhibitory effect of clopidogrel on CYP2C8 was reduced, it persisted for at least 1 day after withdrawal. CONCLUSION Our results demonstrated the impact of clopidogrel on the pharmacokinetics of selexipag and its active metabolite and suggested that selexipag should be carefully prescribed with clopidogrel with dose adjustment or reducing the dosing frequency in Japanese clinical settings.
Collapse
Affiliation(s)
- Naoki Katayama
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chiaki Kamiya
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinya Uchida
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shimako Tanaka
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Namiki
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Experience in Transitioning From Parenteral Prostacyclins to Selexipag in Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol 2020; 75:299-304. [PMID: 31934912 DOI: 10.1097/fjc.0000000000000800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parenteral prostacyclin therapies remain first-line therapy for patients with pulmonary arterial hypertension (PAH) with class IV symptoms. In selected patients who have been clinically stabilized, switching to selexipag, a chemically distinct prostacyclin receptor agonist, may alleviate risks associated with long-term parenteral therapy. We report our experience with transition of patients from parenteral prostacyclin therapy to selexipag. From January 2016 to July 2017, patients with PAH at the Duke University Pulmonary Vascular Disease Center with functional class II symptoms on stable parenteral prostacyclin therapy were offered the opportunity to transition to selexipag. A standardized protocol was developed to guide titration of therapies. Patients underwent pre- and post-transition assessments of hemodynamics, echocardiography, laboratory biomarkers, and functional status. We studied 14 patients with PAH (11 women; median age 53 years) in total. Overall, 13 patients tolerated the switch to selexipag and remained on the drug at study completion, and 1 patient passed away due to progressive liver failure. Surrogate markers including NT-proBNP, 6MWD, RV function, and TAPSE, and right heart catheterization hemodynamics were similar before and after transition. The transition from parenteral prostanoid therapy to oral selexipag was overall well-tolerated in patients with stable PAH and functional class II symptoms. Finally, doses of selexipag up to 3200 μg twice daily were well-tolerated in patients who had been treated with prior parenteral prostacyclins.
Collapse
|
21
|
Honda Y, Kosugi K, Fuchikami C, Kuramoto K, Numakura Y, Kuwano K. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats. PLoS One 2020; 15:e0240692. [PMID: 33057388 PMCID: PMC7561119 DOI: 10.1371/journal.pone.0240692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by a progressive increase in pulmonary artery pressure due to an increase in vessel tone and occlusion of vessels. The endogenous vasodilator prostacyclin and its analogs are used as therapeutic agents for PAH. However, their pharmacological effects on occlusive vascular remodeling have not been elucidated yet. Selexipag is a recently approved, orally available and selective prostacyclin receptor agonist with a non-prostanoid structure. In this study, we investigated the pharmacological effects of selexipag on the pathology of chronic severe PAH in Sprague-Dawley and Fischer rat models in which PAH was induced by a combination of injection with the vascular endothelial growth factor receptor antagonist Sugen 5416 and exposure to hypoxia (SuHx). Oral administration of selexipag for three weeks significantly improved right ventricular systolic pressure and right ventricular (RV) hypertrophy in Sprague-Dawley SuHx rats. Selexipag attenuated the proportion of lung vessels with occlusive lesions and the medial wall thickness of lung arteries, corresponding to decreased numbers of Ki-67-positive cells and a reduced expression of collagen type 1 in remodeled vessels. Administration of selexipag to Fischer rats with SuHx-induced PAH reduced RV hypertrophy and mortality caused by RV failure. These effects were probably based on the potent prostacyclin receptor agonistic effect of selexipag on pulmonary vessels. Selexipag has been approved and is used in the clinical treatment of PAH worldwide. It is thought that these beneficial effects of prostacyclin receptor agonists on multiple aspects of PAH pathology contribute to the clinical outcomes in patients with PAH.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/therapeutic use
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Animals
- Cell Proliferation/drug effects
- Collagen Type I/metabolism
- Disease Models, Animal
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Hypoxia/physiopathology
- Indoles
- Lung/drug effects
- Lung/pathology
- Lung/physiopathology
- Male
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/etiology
- Pulmonary Arterial Hypertension/physiopathology
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- Pyrroles
- Rats, Sprague-Dawley
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/metabolism
- Systole/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Yohei Honda
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
- * E-mail:
| | - Keiji Kosugi
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Chiaki Fuchikami
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Kazuya Kuramoto
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Yuki Numakura
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Keiichi Kuwano
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| |
Collapse
|
22
|
Tanabe N, Fukuda K, Matsubara H, Nakanishi N, Tahara N, Ikeda S, Kishi T, Satoh T, Hirata KI, Inoue T, Kimura H, Okano Y, Okazaki O, Sata M, Tsujino I, Ueno S, Yamada N, Yao A, Kuriyama T. Selexipag for Chronic Thromboembolic Pulmonary Hypertension in Japanese Patients - A Double-Blind, Randomized, Placebo-Controlled, Multicenter Phase II Study. Circ J 2020; 84:1866-1874. [PMID: 32879152 DOI: 10.1253/circj.cj-20-0438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Selexipag is an oral prostacyclin receptor (IP receptor) agonist with a non-prostanoid structure. This study examined its efficacy and safety in Japanese patients with non-operated or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH). METHODS AND RESULTS This Phase II study was a randomized, double-blind, placebo-controlled parallel-group comparison. The primary endpoint was a change in pulmonary vascular resistance (PVR) from baseline to week 17. The main analysis involved a per-protocol set group of 28 subjects. The change in PVR (mean±SD) after 17 weeks of treatment in the selexipag group was -104±191 dyn·s/cm5, whereas that in the placebo group was 26±180 dyn·s/cm5. Thus, the treatment effect after 17 weeks of selexipag treatment was calculated as -130±189 dyn·s/cm5(P=0.1553). Although the primary endpoint was not met, for the group not concomitantly using a pulmonary vasodilator the PVR in the selexipag group was significantly decreased compared with placebo group (P=0.0364). The selexipag group also showed improvement in total pulmonary resistance and cardiac index. CONCLUSIONS Selexipag treatment improved pulmonary hemodynamics in Japanese patients with CTEPH, but PVR did not show a significant difference between the selexipag and placebo groups. (Trial registration: JAPIC Clinical Trials Information [JapicCTI-111667]).
Collapse
Affiliation(s)
- Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine
| | - Hiromi Matsubara
- Director of Entire Medical Departments, National Hospital Organization Okayama Medical Center
| | | | - Nobuhiro Tahara
- Department of Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Takuya Kishi
- Department of Cardiology, Graduate School of Medical Sciences, International University of Health and Welfare
| | - Toru Satoh
- Department of Cardiovascular Medicine, Kyorin University Hospital
| | - Ken-Ichi Hirata
- Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| | | | - Yoshiaki Okano
- Department of Intermal Medicine, Hanwa Dai-ni Senboku Hospital
| | - Osamu Okazaki
- Department of Cardiology, National Center for Global Health and Medecine
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Ichizo Tsujino
- The First Department of Medicine, Hokkaido University School of Medicine
| | - Shuichi Ueno
- Department of Internal Medicine Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
- Ueno Clinic
| | | | - Atsushi Yao
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | | |
Collapse
|
23
|
Bravo-Valenzuela NJM, Navarro F, Silva SP. Use of selexipag in a teenage patient with pulmonary arterial hypertension. Ann Pediatr Cardiol 2020; 14:75-78. [PMID: 33679065 PMCID: PMC7918021 DOI: 10.4103/apc.apc_63_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/24/2019] [Accepted: 07/08/2020] [Indexed: 12/01/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive, multifactorial disease. Currently, combination therapy is an attractive option for PAH management because three pathways (endothelin, nitric oxide, and prostacyclin) are involved in this disease. Selexipag is a novel oral prostacyclin pathway drug and is a highly selective IP prostacyclin receptor agonist with vasodilatory and antiproliferative effects. We report the case of a teenage patient with idiopathic PAH who presented in World Health Organization functional Class IV and showed no clinical improvement with dual therapy. We added oral selexipag to the treatment regimen and observed substantial improvement in her quality of life at the short-time follow-up. Despite the lack of childhood data regarding the use of selexipag in pediatric patients with PAH, the use of this drug in the current teenage patient improved her quality of life and exercise capacity.
Collapse
Affiliation(s)
- Nathalie Jeanne Magioli Bravo-Valenzuela
- Department of Pediatrics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,PEDICOR-Pediatric and Perinatal Cardiology Center, Sao José dos Campos, SP, Brazil
| | - Flavia Navarro
- Pulmonary Hypertension Center, Faculty of Medical Sciences, Santa Casa de Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Verlinden NJ, Walter C, Raina A, Benza RL. A Case Report of a Patient With Pulmonary Arterial Hypertension Transitioned From Inhaled Iloprost to Selexipag. J Pharm Pract 2020; 34:980-983. [PMID: 32912036 DOI: 10.1177/0897190020958242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary vascular resistance that can lead to right ventricular failure and death. The use of medications that affect the prostacyclin pathway is an important treatment strategy in PAH. Inhaled iloprost is a prostacyclin analogue, and selexipag is an oral, non-prostanoid, prostacyclin IP receptor agonist. Data are limited on transitioning patients from inhaled iloprost to selexipag. In this case report, we describe the successful transition of a 57-year-old female with heritable PAH from inhaled iloprost to selexipag over 8 weeks in an out-patient setting. After initiation of selexipag, the patient's inhaled iloprost dose was gradually reduced and eventually discontinued. The patient tolerated the transition well with stable symptoms, 6-minute walk distance, and pulmonary hemodynamics. Additional studies are needed to better define the comparative efficacy and safety of inhaled iloprost and selexipag.
Collapse
Affiliation(s)
- Nathan J Verlinden
- Cardiovascular Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Claire Walter
- Department of Pharmacy, University of Michigan Health System, Ann Arbor, MI, USA
| | - Amresh Raina
- Cardiovascular Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Raymond L Benza
- Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a disease that carries a significant mortality left untreated. This article aims to review pharmacotherapeutics for PAH. RECENT FINDINGS PAH-specific therapies have evolved over the last three decades and have expanded from one therapy in the 1990s to 14 FDA-approved medications. Current therapies are directed at restoring the imbalance of vasoactive mediators that include nitric oxide, endothelin and prostacyclin. Although these agents are effective as monotherapy, recent trials have promulgated the strategy of upfront combination therapy. The availability of oral prostacyclin agonists has also allowed for expanded treatment options. Risk assessment is vital in guiding therapy for PAH patients. There is ongoing focus on targeting pathological mechanisms of the disease via novel therapies and repurposing existing drugs. SUMMARY There is an array of medications available for the treatment of PAH. Prudent combination of therapies to maximize treatment effect can improve morbidity and mortality. This article reviews the data supporting these therapies and attempts to outline an approach to patient management.
Collapse
|
26
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
27
|
van Nuland M, Rosing H, Huitema ADR, Beijnen JH. Predictive Value of Microdose Pharmacokinetics. Clin Pharmacokinet 2020; 58:1221-1236. [PMID: 31030372 DOI: 10.1007/s40262-019-00769-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase 0 microdose trials are exploratory studies to early assess human pharmacokinetics of new chemical entities, while limiting drug exposure and risks for participants. The microdose concept is based on the assumption that microdose pharmacokinetics can be extrapolated to pharmacokinetics of a therapeutic dose. However, it is unknown whether microdose pharmacokinetics are actually indicative of the pharmacokinetics at therapeutic dose. The aim of this review is to investigate the predictive value of microdose pharmacokinetics and to identify drug characteristics that may influence the scalability of these parameters. The predictive value of microdose pharmacokinetics was determined for 46 compounds and showed adequate predictability for 28 of 41 orally administered drugs (68%) and 15 of 16 intravenously administered drugs (94%). Microdose pharmacokinetics were considered predictive if the mean observed values of the microdose and the therapeutic dose were within twofold. Nonlinearity may be caused by saturation of enzyme and transporter systems, such as intestinal and hepatic efflux and uptake transporters. The high degree of success regarding linear pharmacokinetics shows that phase 0 microdose trials can be used as an early human model for determination of drug pharmacokinetics.
Collapse
Affiliation(s)
- Merel van Nuland
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands. .,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Panagiotidou E, Boutou A, Pitsiou G. An evaluation of selexipag for the treatment of pulmonary hypertension. Expert Opin Pharmacother 2020; 22:29-36. [PMID: 32867545 DOI: 10.1080/14656566.2020.1812579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Selexipag is a first-in-class, oral, long-acting, selective, non-prostanoid agonist of the prostacyclin receptor (IP receptor), indicated for the treatment of symptomatic adult pulmonary arterial hypertension (PAH). It was designed with the objective to surpass the inconveniences associated with standard prostanoid therapy, presenting fewer adverse effects and comparable hemodynamic benefits. AREAS COVERED This review describes the pharmacologic properties of selexipag and presents the clinical trials that have been completed or are currently ongoing regarding its clinical efficacy, safety, and tolerability. The pivotal GRIPHON study is extensively presented. EXPERT OPINION Selexipag is the first IP receptor to reduce the morbidity/mortality composite endpoint of the GRIPHON study, a large, randomized, placebo-controlled study. The TRITON study failed to demonstrate a clear benefit of initial triple oral therapy including selexipag compared to initial double oral therapy. Current guidelines do not provide definitive recommendations regarding the place of selexipag in the treatment algorithm of PAH. Finally, the possibility of transition between the several drugs acting in the prostacyclin pathway, and the potential role of selexipag in chronic thromboembolic pulmonary hypertension and pediatric PAH is currently being examined, possibly expanding its future use.
Collapse
Affiliation(s)
| | - Afroditi Boutou
- Department of Respiratory Failure, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Georgia Pitsiou
- Department of Respiratory Medicine, G. Papanikolaou Hospital , Thessaloniki, Greece
| |
Collapse
|
29
|
He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, Liu G, Li J, Wang Y, Chen G, Yan S, Xiao B, Zhang J, Piao L, Li Y, Deng Y, Li B, Roux PP, Andreasson KI, Breyer RM, Su Y, Wang J, Lyu A, Shen Y, Yu Y. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am J Respir Crit Care Med 2020; 201:1263-1276. [PMID: 31917615 DOI: 10.1164/rccm.201911-2137oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.
Collapse
Affiliation(s)
- Yuhu He
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caojian Zuo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Shanghai General Hospital, and
| | - Daile Jia
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Bai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juanjuan Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Xiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjuan Piao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Deng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Orthopedic Institute, Soochow University, Jiangsu, China
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer and.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Armstrong PC, Ferreira PM, Chan MV, Lundberg Slingsby MH, Crescente M, Shih CC, Kirkby NS, Hobbs AJ, Warner TD. Combination of cyclic nucleotide modulators with P2Y 12 receptor antagonists as anti-platelet therapy. J Thromb Haemost 2020; 18:1705-1713. [PMID: 32278335 DOI: 10.1111/jth.14826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic nucleotide levels and maintain quiescence. We previously demonstrated that a synergistic relationship exists between cyclic nucleotides and P2Y12 receptor inhibition. A number of clinically approved drug classes can modulate cyclic nucleotide tone in platelets including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase (PDE) inhibitors. However, the doses required to inhibit platelets produce numerous side effects including headache. OBJECTIVE We investigated using GC-activators in combination with P2Y12 receptor antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. METHODS In vitro light transmission aggregation and platelet adhesion under flow were performed on washed platelets and platelet rich plasma. Aggregation in whole blood and a ferric chloride-induced arterial thrombosis model were also performed. RESULTS The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor prasugrel active metabolite in aggregation and adhesion studies and was associated with raised intra-platelet cyclic nucleotide levels. Furthermore, mice administered sub-maximal doses of the GC activator cinaciguat together with the PDE inhibitor dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet aggregation and significantly reduced in vivo arterial thrombosis in response to injury without alteration in basal carotid artery blood flow. CONCLUSIONS Using in vitro, ex vivo, and in vivo functional studies, we show that low dose GC activators synergize with P2Y12 inhibition to produce powerful anti-platelet effects without altering blood flow. Therefore, modulation of intra-platelet cyclic nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-thrombotic regimen while minimizing vasodilator side effects.
Collapse
Affiliation(s)
- Paul C Armstrong
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Plinio M Ferreira
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Melissa V Chan
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Martina H Lundberg Slingsby
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Marilena Crescente
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Chih-Chin Shih
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Zolty R. Pulmonary arterial hypertension specific therapy: The old and the new. Pharmacol Ther 2020; 214:107576. [PMID: 32417272 DOI: 10.1016/j.pharmthera.2020.107576] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disorder associated with high morbidity and mortality rate and is characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in right ventricular failure and death. Over the past few decades, significant advances in the understanding of the epidemiology, pathogenesis, and pathophysiology of pulmonary arterial hypertension have occured. This has led to the development of disease specific treatment including prostanoids, endothelin receptor antagonists, phosphodiesterase inhibitors, and soluble guanylate cyclase stimulators. These therapies significantly improve exercise capacity, quality of life, pulmonary hemodynamics, but none of the current treatments are actually curative and long-term prognosis remains poor. Thus, there is a clear need to develop new therapies. Several potential pharmacologic agents for the treatment of pulmonary arterial hypertension are under clinical development and some promising results with these treatments have been reported. These agents include tyrosine protein kinase inhibitors, rho-kinase inhibitors, synthetically produced vasoactive intestinal peptide, antagonists of the 5-HT2 receptors, and others. This article will review several of these promising new therapies and will discuss the current evidence regarding their potential benefit in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ronald Zolty
- Cardiovascular Divisions, 982265 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
32
|
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease in infants and children that is associated with significant morbidity and mortality. The disease is characterized by progressive pulmonary vascular functional and structural changes resulting in increased pulmonary vascular resistance and eventual right heart failure and death. In many pediatric patients, PAH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. PAH associated with developmental lung diseases such as bronchopulmonary dysplasia or congenital diaphragmatic hernia is increasingly more recognized in infants and children. Although treatment of the underlying disease and reversal of advanced structural changes have not yet been achieved with current therapy, quality of life and survival have improved significantly. Targeted pulmonary vasodilator therapies, including endothelin receptor antagonists, prostacyclin analogs, and phosphodiesterase type 5 inhibitors have resulted in hemodynamic and functional improvement in children. The management of pediatric PAH remains challenging as treatment decisions depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts. This article reviews the current drug therapies and their use in the management of PAH in children.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erika E Vorhies
- Division of Pediatric Cardiology, Department of Pediatrics, University of Calgary Cumming School of Medicine, Alberta Children's Hospital, Calgary, Canada
| | - David Dunbar Ivy
- B100, Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Picken C, Laing P, Shen L, Clapp LH, Brocchini S. Synthetic routes to treprostinil N-acyl methylsulfonamide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|
35
|
Abstract
Pulmonary arterial hypertension (PAH) is a condition associated with substantial morbidity and mortality. Over the last 25 years there has been a significant evolution in the therapies to treat PAH. These therapies are effective for patients with group I PAH and group IV PH [chronic thromboembolic pulmonary hypertension (CTEPH)]. PAH is characterized by an imbalance of nitric oxide, prostacyclin and endothelin levels, and current pharmacotherapy involves these three pathways. Earlier clinical trials involving PAH-specific therapies evaluated improvements in 6-minute walk time as a primary improvement whereas contemporary trials have been larger and focused on morbidity and mortality reductions. While there may be a role for monotherapy in disease management, most patients should be considered for dual or triple therapy.
Collapse
Affiliation(s)
- Vishal Parikh
- Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Anju Bhardwaj
- Center for Advanced Cardiopulmonary Therapies and Transplantation at McGovern Medical School, Houston, TX, USA
| | - Ajith Nair
- Winters Center for Heart Failure Research, Michael E. DeBakey VA Medical Center, Texas Heart Institute Educational Faculty, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Mercurio V, Bianco A, Campi G, Cuomo A, Diab N, Mancini A, Parrella P, Petretta M, Hassoun PM, Bonaduce D. New Drugs, Therapeutic Strategies, and Future Direction for the Treatment of Pulmonary Arterial Hypertension. Curr Med Chem 2019; 26:2844-2864. [DOI: 10.2174/0929867325666180201095743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Despite recent advances in Pulmonary Arterial Hypertension (PAH) treatment, this condition is still characterized by an extremely poor prognosis. In this review, we discuss the use of newly-approved drugs for PAH treatment with already known mechanisms of action (macitentan), innovative targets (riociguat and selexipag), and novel therapeutic approaches with initial up-front combination therapy. Secondly, we describe new potential signaling pathways and investigational drugs with promising role in the treatment of PAH.
Collapse
Affiliation(s)
- Valentina Mercurio
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Anna Bianco
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Giacomo Campi
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Alessandra Cuomo
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Nermin Diab
- University of Ottawa, Department of Medicine, Ottawa, ON, Canada
| | - Angela Mancini
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Paolo Parrella
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Mario Petretta
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Paul M. Hassoun
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Domenico Bonaduce
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| |
Collapse
|
37
|
Coghlan JG, Picken C, Clapp LH. Selexipag in the management of pulmonary arterial hypertension: an update. DRUG HEALTHCARE AND PATIENT SAFETY 2019; 11:55-64. [PMID: 31496830 PMCID: PMC6689562 DOI: 10.2147/dhps.s181313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Selexipag is a compound that was designed to overcome the issues associated with oral administration of prostanoid compounds, beraprost and treprostinil in the treatment of pulmonary hypertension (PAH). As a selective IP agonist, it was designed to avoid the off-target prostanoid effects especially in the gastrointestinal system. To place this compound in context, this paper briefly reviews the efficacy, tolerability, and safety of subcutaneous, inhaled, and oral prostanoid preparations and comparesthemto selexipag. Selexipag is the first agent targeting a prostanoid receptor where a reduction in the primary efficacy morbidity/mortality composite end-point has been demonstrated. While safety outcomes favor selexipag over placebo, tolerability issues remain. Efficacy in terms of improvement in effort tolerance, hemodynamic and mortality benefit is less than seen with IV therapy. This is the first prostanoid demonstrated in a clinical trial to have added benefit in those on background double combination therapy and the first non IV prostanoid to demonstrate outcome benefit in the connective tissue disease (CTD) population in a randomized controlled trial.
Collapse
Affiliation(s)
- J Gerry Coghlan
- Department of Cardiology, Royal Free Hospital, London NW3 2QG, UK
| | - Christina Picken
- Institute of Cardiovascular Sciences, University College London, London WC1E 6JF, UK
| | - Lucie H Clapp
- Institute of Cardiovascular Sciences, University College London, London WC1E 6JF, UK
| |
Collapse
|
38
|
Shen L, Patel JA, Norel X, Moledina S, Whittle BJ, von Kessler K, Sista P, Clapp LH. Pharmacology of the single isomer, esuberaprost (beraprost-314d) on pulmonary vascular tone, IP receptors and human smooth muscle proliferation in pulmonary hypertension. Biochem Pharmacol 2019; 166:242-252. [DOI: 10.1016/j.bcp.2019.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
|
39
|
Picken C, Fragkos KC, Eddama M, Coghlan G, Clapp LH. Adverse Events of Prostacyclin Mimetics in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:E481. [PMID: 30970653 PMCID: PMC6517977 DOI: 10.3390/jcm8040481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Prostacyclin mimetics (PMs) are effective for the treatment of pulmonary arterial hypertension (PAH). However, their clinical use may be limited by their adverse events. This study aims to quantify the different PM adverse events (AEs) with regard to their selectivity towards the prostacyclin (IP) receptor and their administrative routes. The study included randomised, placebo-controlled trials comparing iloprost, beraprost, treprostinil, and selexipag to placebo (published 2002–2016). We report the group efficacy differences between treatment and placebo by weighted and standardised mean difference. The probability of adverse events was determined by the odds ratio (OR). Of the 14 randomised clinical trials involving 3518 PAH patients, outcome and adverse event data were meta-analysed by drug type and route of administration. Prostacyclin mimetics comparison demonstrated a more significant discontinuation of the IP-selective agonist, selexipag, due to an adverse event (OR = 2.2; 95% CI: 1.5, 3.3). Compared to placebo, site pain associated with subcutaneously administered treprostinil was the most significant likely adverse event (OR = 17.5; 95% CI: 11.1, 27.1). Parenteral PMs were associated with fewer adverse effects overall. The overall efficacy of PMs to improve 6-minute walk distance by 16.3 meters was significant (95% CI: 13.0, 19.7). Decreases in pulmonary vascular resistance index (SMD = -5.5; 95% CI: -10.1, -0.9; I² = 98%) and mean pulmonary arterial pressure (SMD = -1.0; 95% CI: -2.6, -0.7; I² = 99%) in treatment groups were found to be significant. Adverse event profiles varied in response to administration route and PM type but were not negated by use of a selective IP agonist. Prostacyclin mimetics exposure to non-target IP receptors may underpin some AEs reported.
Collapse
Affiliation(s)
- Christina Picken
- Institute of Cardiovascular Sciences, University College London, 5 University Street, London, WC1E 6JF, UK.
| | | | - Mohammad Eddama
- Division of Surgery and Interventional Sciences, University College London, 21 University Street, London, WC1E 6AU, UK.
| | - Gerry Coghlan
- Department of Cardiology, Royal Free hospital, London, NW3 2QG, UK.
| | - Lucie H Clapp
- Institute of Cardiovascular Sciences, University College London, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
40
|
Imai S, Ichikawa T, Sugiyama C, Nonaka K, Yamada T. Contribution of Human Liver and Intestinal Carboxylesterases to the Hydrolysis of Selexipag In Vitro. J Pharm Sci 2018; 108:1027-1034. [PMID: 30267780 DOI: 10.1016/j.xphs.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/01/2023]
Abstract
In liver microsomes, selexipag (NS-304; ACT-293987) mainly undergoes hydrolytic removal of the sulfonamide moiety by carboxylesterase 1 (CES1) to yield the pharmacologically active metabolite MRE-269 (ACT-333679). However, it is not known how much CES in the liver and intestine contributes to the hydrolysis of selexipag or how selexipag is metabolized in the intestine, including by hydrolysis. To obtain a better understanding of selexipag metabolism in humans, we determined the percentage contribution of CES1 and carboxylesterase 2 (CES2) to the hydrolysis of selexipag and 7 of its analogs with different sulfonamide moieties and evaluated its nonhydrolytic metabolism in human liver microsomes and human intestinal microsomes (HIMS). For selexipag, the percentage contributions of CES1 and CES2 in human liver microsomes were 77.0% and 9.99%, respectively, while the percentage contribution of CES2 in HIMS was 100%. In HIMS, the rate of hydrolysis of selexipag was the lowest among the compounds tested, and no difference between the presence and absence of nicotinamide adenine dinucleotide phosphate was noted. We infer from these results that selexipag is likely to be hydrolyzed by CES2 as well as CES1, and only selexipag itself and the MRE-269 produced by hydrolysis in the intestine would be absorbed after oral administration.
Collapse
Affiliation(s)
- Shunji Imai
- Pharmacokinetics and Safety Assessment Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan.
| | - Tomohiko Ichikawa
- Pharmacokinetics and Safety Assessment Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Chihiro Sugiyama
- Pharmacokinetics and Safety Assessment Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Kiyoko Nonaka
- Pharmacokinetics and Safety Assessment Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Tetsuhiro Yamada
- Pharmacokinetics and Safety Assessment Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| |
Collapse
|
41
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
42
|
Prostanoid EP₂ Receptors Are Up-Regulated in Human Pulmonary Arterial Hypertension: A Key Anti-Proliferative Target for Treprostinil in Smooth Muscle Cells. Int J Mol Sci 2018; 19:ijms19082372. [PMID: 30103548 PMCID: PMC6121445 DOI: 10.3390/ijms19082372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Prostacyclins are extensively used to treat pulmonary arterial hypertension (PAH), a life-threatening disease involving the progressive thickening of small pulmonary arteries. Although these agents are considered to act therapeutically via the prostanoid IP receptor, treprostinil is the only prostacyclin mimetic that potently binds to the prostanoid EP₂ receptor, the role of which is unknown in PAH. We hypothesised that EP₂ receptors contribute to the anti-proliferative effects of treprostinil in human pulmonary arterial smooth muscle cells (PASMCs), contrasting with selexipag, a non-prostanoid selective IP agonist. Human PASMCs from PAH patients were used to assess prostanoid receptor expression, cell proliferation, and cyclic adenosine monophosphate (cAMP) levels following the addition of agonists, antagonists or EP₂ receptor small interfering RNAs (siRNAs). Immunohistochemical staining was performed in lung sections from control and PAH patients. We demonstrate using selective IP (RO1138452) and EP₂ (PF-04418948) antagonists that the anti-proliferative actions of treprostinil depend largely on EP₂ receptors rather than IP receptors, unlike MRE-269 (selexipag-active metabolite). Likewise, EP₂ receptor knockdown selectively reduced the functional responses to treprostinil but not MRE-269. Furthermore, EP₂ receptor levels were enhanced in human PASMCs and in lung sections from PAH patients compared to controls. Thus, EP₂ receptors represent a novel therapeutic target for treprostinil, highlighting key pharmacological differences between prostacyclin mimetics used in PAH.
Collapse
|
43
|
Pedersen J, Hedegaard ER, Simonsen U, Krüger M, Infanger M, Grimm D. Current and Future Treatments for Persistent Pulmonary Hypertension in the Newborn. Basic Clin Pharmacol Toxicol 2018; 123:392-406. [PMID: 29855164 DOI: 10.1111/bcpt.13051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/27/2018] [Indexed: 01/18/2023]
Abstract
Persistent pulmonary hypertension in newborn (PPHN) is a serious and possibly fatal syndrome characterized by sustained foetal elevation of pulmonary vascular resistance at birth. PPHN may manifest secondary to other conditions as meconium aspiration syndrome, infection and congenital diaphragmatic hernia. This MiniReview provides the reader with an overview of current and future treatment options for patients with PPHN without congenital diaphragmatic hernia. The study is based on systematic searches in the databases PubMed and Cochrane Library and registered studies on Clinicaltrials.gov investigating PPHN. Inhaled nitric oxide (iNO) is well documented for treatment of PPHN, but 30% fail to respond to iNO. Other current treatment options could be sildenafil, milrinone, prostaglandin analogues and bosentan. There are several ongoing trials with sildenafil, but evidence is lacking for the other treatments and/or for the combination with iNO. Currently, there is no evidence for effect in PPHN of other treatments, for example tadalafil, macitentan, ambrisentan, riociguat and selexipag used for pulmonary arterial hypertension in adults. Experimental studies in animal models for PPHN suggest effect of a series of approaches including recombinant human superoxide dismutase, L-citrulline, Rho-kinase inhibitors and peroxisome proliferator-activated receptor-γ agonists. We conclude that iNO is the most investigated and the only approved pulmonary vasodilator for infants with PPHN. In the iNO non-responders, sildenafil currently seems to be the best alternative either alone or in combination with iNO. Systematic and larger clinical studies are required for testing the other potential treatments of PPHN.
Collapse
Affiliation(s)
- Jonas Pedersen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Elise R Hedegaard
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
44
|
Mous DS, Kool HM, Burgisser PE, Buscop-van Kempen MJ, Nagata K, Boerema-de Munck A, van Rosmalen J, Dzyubachyk O, Wijnen RMH, Tibboel D, Rottier RJ. Treatment of rat congenital diaphragmatic hernia with sildenafil and NS-304, selexipag's active compound, at the pseudoglandular stage improves lung vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315:L276-L285. [PMID: 29745254 DOI: 10.1152/ajplung.00392.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Patients with congenital diaphragmatic hernia (CDH) often suffer from severe pulmonary hypertension, and the choice of current vasodilator therapy is mostly based on trial and error. Because pulmonary vascular abnormalities are already present early during development, we performed a study to modulate these pulmonary vascular changes at an early stage during gestation. Pregnant Sprague-Dawley rats were treated with nitrofen at day 9.5 of gestation (E9.5) to induce CDH in the offspring, and subsequently, the phosphodiesterase-5 inhibitor sildenafil and/or the novel prostaglandin-I receptor agonist selexipag (active compound NS-304) were administered from E17.5 until E20.5. The clinical relevant start of the treatment corresponds to week 20 of gestation in humans, when CDH is usually detected by ultrasound. CDH pups showed increased density of air saccules that was reverted after the use of only sildenafil. The pulmonary vascular wall was thickened, and right ventricular hypertrophy was present in the CDH group and improved both after single treatment with sildenafil or selexipag, whereas the combination therapy with both compounds did not have additive value. In conclusion, antenatal treatment with sildenafil improved airway morphogenesis and pulmonary vascular development, whereas selexipag only acted positively on pulmonary vascular development. The combination of both compounds did not act synergistically, probably because of a decreased efficiency of both compounds caused by cytochrome- P450 3A4 interaction and induction. These new insights create important possibilities for future treatment of pulmonary vascular abnormalities in CDH patients already in the antenatal period of life.
Collapse
Affiliation(s)
- Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Heleen M Kool
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Petra E Burgisser
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Koji Nagata
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands.,Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands.,Department of Cell Biology, Erasmus Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
45
|
Morrison K, Haag F, Ernst R, Iglarz M, Clozel M. Selective Prostacyclin Receptor Agonist Selexipag, in Contrast to Prostacyclin Analogs, Does Not Evoke Paradoxical Vasoconstriction of the Rat Femoral Artery. J Pharmacol Exp Ther 2018; 365:727-733. [PMID: 29588339 DOI: 10.1124/jpet.117.246058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is a selective nonprostanoid prostacyclin (PGI2) receptor (IP receptor) agonist that is approved for the treatment of pulmonary arterial hypertension (PAH). In contrast to selexipag, PGI2 analogs used in the clinic are nonselective agonists at prostanoid receptors and can also activate contractile prostaglandin E receptor 3 (EP3) receptors. Leg pain is a common side effect in patients receiving treatment with PGI2 analogs and peripheral vasoconstriction can be responsible for side effects related to muscular ischemia. This study tested the hypothesis that PGI2 analogs could cause paradoxical vasoconstriction of the femoral artery via EP3 receptor activation but that only vasorelaxation would be observed in response to selexipag and its active metabolite ACT-333679 [{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid]. Selexipag and ACT-333679 relaxed rings of the isolated rat femoral artery contracted with either prostaglandin F2α (PGF2α ) or the α1 adrenoceptor (α1AR) agonist phenylephrine. ACT-333679 also inhibited contraction of the femoral artery to sympathetic nerve stimulation. In contrast, PGI2 analogs (iloprost, beraprost, and treprostinil) caused additional contraction of arterial rings precontracted with phenylephrine, which was reverted to relaxation by antagonism of EP3 receptors. Treprostinil augmented contraction of the femoral artery to sympathetic nerve stimulation in an EP3 receptor-dependent manner. Mechanistically, concomitant EP3 and α1AR receptor activation synergistically constricted femoral arteries. It is concluded that selexipag and ACT-333679 are vasorelaxants of the rat femoral artery and, unlike PGI2 analogs, do not cause paradoxical vasoconstriction via activation of EP3 receptors. EP3 receptor-mediated vasoconstriction may contribute to the well documented peripheral muscle pain reported in patients with PAH receiving PGI2 analogs. Leg pain may be less in patients treated with selexipag.
Collapse
Affiliation(s)
- Keith Morrison
- Drug Discovery Department, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Franck Haag
- Drug Discovery Department, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Roland Ernst
- Drug Discovery Department, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Marc Iglarz
- Drug Discovery Department, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Martine Clozel
- Drug Discovery Department, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
46
|
Ichikawa T, Yamada T, Treiber A, Gnerre C, Segrestaa J, Seeland S, Nonaka K. Cross-species comparison of the metabolism and excretion of selexipag. Xenobiotica 2018; 49:284-301. [PMID: 29468921 DOI: 10.1080/00498254.2018.1444814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The metabolism of the prostacyclin receptor agonist selexipag (NS-304; ACT-293987) and its active metabolite MRE-269 (ACT-333679) has been investigated in liver microsomes and hepatocytes of rats, dogs, and monkeys. MRE-269 formation is the main pathway of selexipag metabolism, irrespective of species. Some interspecies differences were evident for both compounds in terms of both metabolic turnover and metabolic profiles. The metabolism of MRE-269 was slower than that of selexipag in all three species. 2. The metabolism of selexipag was also studied in bile-duct-cannulated rats and dogs after a single oral and intravenous dose of [14C]selexipag. MRE-269 acyl glucuronide was found in both rat and dog bile. Internal acyl migration reactions of MRE-269 glucuronide were identified in an experiment with the synthetic standard MRE-6001. 3. MRE-269 was the major component in the faeces of rats and dogs. In ex vivo study using rat and dog faeces, selexipag hydrolysis to MRE-269 by the intestinal microflora is considered to be a contributory factor in rats and dogs. 4. A taurine conjugate of MRE-269 was identified in rat bile sample. Overall, selexipag was eliminated via multiple routes in animals, including hydrolysis, oxidative metabolism, conjugation, intestinal deconjugation, and gut flora metabolism.
Collapse
Affiliation(s)
- Tomohiko Ichikawa
- a Department of Pharmacokinetics and Safety Assessment , Nippon Shinyaku Co., Ltd , Kyoto , Japan
| | - Tetsuhiro Yamada
- a Department of Pharmacokinetics and Safety Assessment , Nippon Shinyaku Co., Ltd , Kyoto , Japan
| | - Alexander Treiber
- b Preclinical Pharmacokinetics and Metabolism , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Carmela Gnerre
- b Preclinical Pharmacokinetics and Metabolism , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Jérôme Segrestaa
- b Preclinical Pharmacokinetics and Metabolism , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Swen Seeland
- b Preclinical Pharmacokinetics and Metabolism , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Kiyoko Nonaka
- a Department of Pharmacokinetics and Safety Assessment , Nippon Shinyaku Co., Ltd , Kyoto , Japan
| |
Collapse
|
47
|
Pulido T, Zayas N, de Mendieta MA, Plascencia K, Escobar J. Medical therapies for pulmonary arterial hypertension. Heart Fail Rev 2018; 21:273-83. [PMID: 26791159 DOI: 10.1007/s10741-016-9527-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulmonary Arterial hypertension (PAH) is a chronic and progressive disease characterized by an increase in pulmonary vascular resistance due to severe remodeling of the small pulmonary arteries. In PAH, the endothelial cells fail to maintain their homeostatic balance, with the consequent impaired production of vasodilators and over-expression of vasoconstrictors and proliferators. Current treatment of PAH is based on the discovery of three main pathways of endothelial dysfunction (prostacyclin, nitric oxide and endothelin-1), and includes drugs such as prostacyclin analogs, phosphodiesterase-5 inhibitors and endothelin receptor antagonists (ERAs). Recently approved drugs that act through these classic pathways include riociguat (cyclic GMP stimulator) and macitentan (a tissue specific dual ERA). However, several new drugs and new pathways are under study. New targeted therapies include tyrosine kinase inhibitors, Rho kinase inhibitors and serotonin receptor blockers. There are now ten drugs approved for the treatment of PAH that, alone or in combination, have changed the natural history of this disease. The new drugs will allow us to further modified the patients' life expectancy and move towards a cure.
Collapse
Affiliation(s)
- Tomas Pulido
- Cardiopulmonary Department, Ignacio Chavez National Heart Institute, 1 Juan Badiano, 4th Floor, 14080, Mexico City, Mexico.
| | - Nayeli Zayas
- Cardiopulmonary Department, Ignacio Chavez National Heart Institute, 1 Juan Badiano, 4th Floor, 14080, Mexico City, Mexico
| | - Maitane Alonso de Mendieta
- Cardiopulmonary Department, Ignacio Chavez National Heart Institute, 1 Juan Badiano, 4th Floor, 14080, Mexico City, Mexico
| | - Karen Plascencia
- Cardiopulmonary Department, Ignacio Chavez National Heart Institute, 1 Juan Badiano, 4th Floor, 14080, Mexico City, Mexico
| | - Jennifer Escobar
- Cardiopulmonary Department, Ignacio Chavez National Heart Institute, 1 Juan Badiano, 4th Floor, 14080, Mexico City, Mexico
| |
Collapse
|
48
|
What Is the Role of Oral Prostacyclin Pathway Medications in Pulmonary Arterial Hypertension Management? Curr Hypertens Rep 2017; 19:97. [PMID: 29071454 DOI: 10.1007/s11906-017-0796-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Prostacyclin pathway medications have been shown to be highly efficacious in the treatment of pulmonary arterial hypertension (PAH) through multiple prospective clinical trials and more than two decades of clinical experience. The strongest support for prostacyclin use in PAH management is with parenteral administration. Numerous risks and limitations of parenteral delivery systems as well as significant patient burdens restrict widespread parenteral use. Highly effective and tolerable oral prostacyclin preparations to manage PAH have long been sought. We review the development of the oral prostacyclin agents beraprost, treprostinil, and selexipag and including current indications and limitations. Research into new approaches to the management of PAH, expanding indications for existing agents, and development of novel agents are also discussed. RECENT FINDINGS Two oral prostacyclin pathway medications, oral treprostinil and selexipag, were FDA approved in December 2013 and 2015, respectively. Current guidelines recommend use of selexipag in WHO-FC II and III (class 1, level B recommendation) and oral treprostinil in WHO-FC III (class 2b, level B recommendation). The use of these medications is challenging due to complexity in dosing and their side effect profiles which limit patient tolerability and acceptance. There is a promising role for oral prostacyclin pathway medications in patients with PAH. Future investigations are underway of alternative dose regimens and transitioning from parenteral therapies in order to improve efficacy and tolerability.
Collapse
|
49
|
Preston IR, Channick RN, Chin K, Di Scala L, Farber HW, Gaine S, Galiè N, Ghofrani HA, Hoeper MM, Lang IM, McLaughlin VV, Preiss R, Simonneau G, Sitbon O, Tapson VF, Rubin LJ. Temporary treatment interruptions with oral selexipag in pulmonary arterial hypertension: Insights from the Prostacyclin (PGI 2) Receptor Agonist in Pulmonary Arterial Hypertension (GRIPHON) study. J Heart Lung Transplant 2017; 37:401-408. [PMID: 29096938 DOI: 10.1016/j.healun.2017.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Parenteral prostacyclin analogs that target the prostacyclin pathway have been used to treat pulmonary arterial hypertension (PAH) since the 1990s. Abrupt discontinuation of parenteral prostacyclin analogs can be associated with acute deterioration of PAH. Less is known about temporary interruption of oral therapies that target the prostacyclin pathway, such as selexipag. METHODS We evaluated the frequency, duration, reasons, and consequences of temporary selexipag interruptions among PAH patients enrolled in the Prostacyclin (PGI2) Receptor Agonist in Pulmonary Arterial Hypertension (GRIPHON) study. In GRIPHON, patients were randomized to selexipag or placebo and titrated to an individualized highest tolerated dose (200 to 1,600 µg twice daily) over 12 weeks, after which patients entered the maintenance phase. Treatment interruptions were allowed; if the interruption was < 3 days, treatment was restarted at the previous highest tolerated dose; if the interruption was ≥ 3 days, retitration from 200 µg twice daily was required. Descriptive analyses were performed. RESULTS At least 1 treatment interruption occurred in 111 of 574 patients (19.3%) in the selexipag group and in 58 of 582 (10.0%) in the placebo group. Baseline characteristics were similar between patients with and without an interruption. Of the 111 patients in whom selexipag was temporarily interrupted, 94 (85%) were receiving background PAH therapy. Adverse events were the most common reason for selexipag interruption. Selexipag interruptions and reinstitution of treatment were well tolerated. There were no episodes of acute deterioration during treatment interruption. CONCLUSIONS Based on observations from GRIPHON, selexipag interruptions can be expected in clinical practice. However, temporarily interrupting selexipag was well tolerated and manageable.
Collapse
Affiliation(s)
- Ioana R Preston
- Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts.
| | - Richard N Channick
- Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Kelly Chin
- Pulmonary and Critical Care Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Harrison W Farber
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Sean Gaine
- National Pulmonary Hypertension Unit, Mater Misericordiae Hospital, Dublin, Ireland
| | - Nazzareno Galiè
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University Hospital, Bologna, Italy
| | - Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany, member of the German Center of Lung Research, Giessen, Germany; Department of Medicine, Imperial College London, London, United Kingdom
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Hannover, member of the German Center of Lung Research, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Ralph Preiss
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Gérald Simonneau
- Faculté de Médecine, Hôpital Universitaire de Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Olivier Sitbon
- Faculté de Médecine, Hôpital Universitaire de Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Victor F Tapson
- Center for Pulmonary Vascular Diseases and Venous Thromboembolism, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lewis J Rubin
- Department of Medicine, University of California, San Diego Medical School, San Diego, California
| |
Collapse
|
50
|
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pathological hemodynamic elevation in pulmonary artery pressure. Development of international registries over the last decade has raised awareness about the disease, leading to the development of new and improved therapies. Paradigm shifts such as these warrant review of existing literature regarding PAH, especially in females, as the disease continues to affect women more than males. The aim of this review is to provide an update on the classification, pathophysiology, diagnosis, and treatment of PAH while focusing specifically on its impact on women.
Collapse
|