1
|
Lin CM, Ding YX, Huang SM, Chen YC, Lee HJ, Sung CC, Lin SH. Identification and characterization of a novel CASR mutation causing familial hypocalciuric hypercalcemia. Front Endocrinol (Lausanne) 2024; 15:1291160. [PMID: 38487341 PMCID: PMC10937390 DOI: 10.3389/fendo.2024.1291160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Context Although a monoallelic mutation in the calcium-sensing receptor (CASR) gene causes familial hypocalciuric hypercalcemia (FHH), the functional characterization of the identified CASR mutation linked to the clinical response to calcimimetics therapy is still limited. Objective A 45-year-old male presenting with moderate hypercalcemia, hypocalciuria, and inappropriately high parathyroid hormone (PTH) had a good response to cinacalcet (total serum calcium (Ca2+) from 12.5 to 10.1 mg/dl). We identified the genetic mutation and characterized the functional and pathophysiological mechanisms, and then linked the mutation to calcimimetics treatment in vitro. Design Sanger sequencing of the CASR, GNA11, and AP2S1 genes was performed in his family. The simulation model was used to predict the function of the identified mutant. In vitro studies, including immunoblotting, immunofluorescence, a cycloheximide chase study, Calbryte™ 520 Ca2+ detection, and half-maximal effective concentration (EC50), were examined. Results This proband was found to carry a de novo heterozygous missense I554N in the cysteine-rich domain of CASR, which was pathogenic based on the different software prediction models and ACGME criteria. The simulation model showed that CASR I554N mutation decreased its binding energy with Ca2+. Human CASR I554N mutation attenuated the stability of CASR protein, reduced the expression of p-ERK 1/2, and blunted the intracellular Ca2+ response to gradient extracellular Ca2+ (eCa2+) concentration. The EC50 study also demonstrated the correctable effect of calcimimetics on the function of the CASR I554N mutation. Conclusion This novel CASR I554N mutation causing FHH attenuates CASR stability, its binding affinity with Ca2+, and the response to eCa2+ corrected by therapeutic calcimimetics.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Xuan Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
3
|
Sun X, Huang L, Wu J, Tao Y, Yang F. Novel homozygous inactivating mutation of the calcium-sensing receptor gene in neonatal severe hyperparathyroidism responding to cinacalcet therapy: A case report and literature review. Medicine (Baltimore) 2018; 97:e13128. [PMID: 30407334 PMCID: PMC6250440 DOI: 10.1097/md.0000000000013128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Calcium-sensing receptor (CaSR) mutations can cause life-threatening neonatal severe hyperparathyroidism (NSHPT). The medical management of NSHPT is often challenging and complex. Here, we present a case of NSHPT caused by a novel homozygous CaSR mutation. PATIENT CONCERNS A Chinese female infant presented with poor feeding, constipation, severe hypotonia, and periodic bradycardia. Biochemistry tests revealed markedly elevated serum levels of Ca and parathyroid hormone (PTH). DIAGNOSES Genetic sequencing revealed a previously undescribed CaSR mutation in exon 3 (c.242T>A; p.I81K). A diagnosis of NSHPT secondary to homozygously inherited familial hypocalciuric hypercalcemia syndrome was established. INTERVENTIONS Cinacalcet was administered after the common treatments (low-calcium intake, hydration, and furosemide), calcitonin, and pamidronate therapy all failed. OUTCOMES Serum Ca decreased and stabilized with cinacalcet therapy. During a 10-month follow-up, total calcium was maintained within the high-normal range and PTH was normalized. LESSONS A trial of cinacalcet therapy might be undertaken in cases of NSHPT while definitive results of the genetic analysis are awaited.
Collapse
MESH Headings
- Calcimimetic Agents/therapeutic use
- Calcium/blood
- Cinacalcet/therapeutic use
- Female
- Genetic Testing
- Homozygote
- Humans
- Hyperparathyroidism, Primary/diagnosis
- Hyperparathyroidism, Primary/drug therapy
- Hyperparathyroidism, Primary/genetics
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Mutation
- Parathyroid Hormone/blood
- Receptors, Calcium-Sensing/genetics
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Liang Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
- Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wu
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yuhong Tao
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Fan Yang
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| |
Collapse
|
4
|
Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br J Pharmacol 2018; 175:4083-4094. [PMID: 29127708 PMCID: PMC6177618 DOI: 10.1111/bph.14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The calcium-sensing receptor (CaS receptor) plays a pivotal role in extracellular calcium homeostasis, and germline loss-of-function and gain-of-function mutations cause familial hypocalciuric hypercalcaemia (FHH) and autosomal dominant hypocalcaemia (ADH), respectively. CaS receptor signal transduction in the parathyroid glands is probably regulated by G-protein subunit α11 (Gα11 ) and adaptor-related protein complex-2 σ-subunit (AP2σ), and recent studies have identified germline mutations of these proteins as a cause of FHH and/or ADH. Calcimimetics and calcilytics are positive and negative allosteric modulators of the CaS receptor that have potential efficacy for symptomatic forms of FHH and ADH. Cellular studies have demonstrated that these compounds correct signalling and/or trafficking defects caused by mutant CaS receptor, Gα11 or AP2σ proteins. Moreover, mouse model studies indicate that calcilytics can rectify the hypocalcaemia and hypercalciuria associated with ADH, and patient-based studies reveal calcimimetics to ameliorate symptomatic hypercalcaemia caused by FHH. Thus, calcimimetics and calcilytics represent targeted therapies for inherited disorders of the CaS receptor signalling pathway. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Mie K Olesen
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Capozza M, Chinellato I, Guarnieri V, Di Lorgi N, Accadia M, Traggiai C, Mattioli G, Di Mauro A, Laforgia N. Case report: acute clinical presentation and neonatal management of primary hyperparathyroidism due to a novel CaSR mutation. BMC Pediatr 2018; 18:340. [PMID: 30376845 PMCID: PMC6208175 DOI: 10.1186/s12887-018-1319-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Background Neonatal severe primary hyperparathyroidism (NSHPT) is a rare autosomal recessive disorder of calcium homeostasis, characterized by striking hyperparathyroidism, marked hypercalcemia and hyperparathyroid bone disease. We report the case of a newborn with a novel homozygous mutation of the CaSR, treated by successful subtotal parathyroidectomy, who had an acute presentation of the disease, i.e. out-of hospital cardiorespiratory arrest. . Case presentation A 8-day-old female newborn was admitted to the NICU of University of Bari “Aldo Moro” (Italy) after a cardiorespiratory arrest occurred at home. Severe hypercalcemia was found and different drug therapies were employed (Furosemide, Cinacalcet and bisphosphonate), as well as hyperhydration, until subtotal parathyroidectomy, was performed at day 32. Our patient’s mutation was never described before so that a strict and individualized long-term follow-up was started. Conclusions This case of NSHPT suggests that a near-miss event, labelled as a possible case of SIDS, could also be due to severe hypercalcemia and evidentiates the difficulties of the neonatal management of NSHPT. Furthermore, the identification of the specific CaSR mutation provides the substrate for prenatal diagnosis.
Collapse
Affiliation(s)
- Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy. .,Policlinico Hospital, Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| | | | - Vito Guarnieri
- Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Natascia Di Lorgi
- Department of Pediatrics, Endocrine, Diabetes and Metabolic Unit, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | - Maria Accadia
- Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Traggiai
- Neonatology and Neonatal Intensive Care Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Girolamo Mattioli
- Pediatric Surgery Unit, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Colella M, Gerbino A, Hofer AM, Curci S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res 2016; 5. [PMID: 27803801 PMCID: PMC5074356 DOI: 10.12688/f1000research.8963.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR), a ubiquitous class C G-protein-coupled receptor (GPCR), is responsible for the control of calcium homeostasis in body fluids. It integrates information about external Ca
2+ and a surfeit of other endogenous ligands into multiple intracellular signals, but how is this achieved? This review will focus on some of the exciting concepts in CaR signaling and pharmacology that have emerged in the last few years.
Collapse
Affiliation(s)
- Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Aldebaran M Hofer
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| | - Silvana Curci
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
8
|
Mayr B, Schnabel D, Dörr HG, Schöfl C. GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. Eur J Endocrinol 2016; 174:R189-208. [PMID: 26646938 DOI: 10.1530/eje-15-1028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The calcium-sensing receptor (CASR) is the main calcium sensor in the maintenance of calcium metabolism. Mutations of the CASR, the G protein alpha 11 (GNA11) and the adaptor-related protein complex 2 sigma 1 subunit (AP2S1) genes can shift the set point for calcium sensing causing hyper- or hypo-calcemic disorders. Therapeutic concepts for these rare diseases range from general therapies of hyper- and hypo-calcemic conditions to more pathophysiology oriented approaches such as parathyroid hormone (PTH) substitution and allosteric CASR modulators. Cinacalcet is a calcimimetic that enhances receptor function and has gained approval for the treatment of hyperparathyroidism. Calcilytics in turn attenuate CASR activity and are currently under investigation for the treatment of various diseases. We conducted a literature search for reports about treatment of patients harboring inactivating or activating CASR, GNA11 or AP2S1 mutants and about in vitro effects of allosteric CASR modulators on mutated CASR. The therapeutic concepts for patients with familial hypocalciuric hypercalcemia (FHH), neonatal hyperparathyroidism (NHPT), neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant hypocalcemia (ADH) are reviewed. FHH is usually benign, but symptomatic patients benefit from cinacalcet. In NSHPT patients pamidronate effectively lowers serum calcium, but most patients require parathyroidectomy. In some patients cinacalcet can obviate the need for surgery, particularly in heterozygous NHPT. Symptomatic ADH patients respond to vitamin D and calcium supplementation but this may increase calciuria and renal complications. PTH treatment can reduce relative hypercalciuria. None of the currently available therapies for ADH, however, prevent tissue calcifications and complications, which may become possible with calcilytics that correct the underlying pathophysiologic defect.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Schnabel
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
10
|
Murphy H, Patrick J, Báez-Irizarry E, Lacassie Y, Gómez R, Vargas A, Barkemeyer B, Kanotra S, Zambrano RM. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: A rare cause of life-threatening hypercalcemia. Eur J Med Genet 2016; 59:227-31. [PMID: 26855056 DOI: 10.1016/j.ejmg.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/15/2022]
Abstract
Neonatal severe hyperparathyroidism (NSHPT) is a rare, life-threatening condition that presents with severe hypercalcemia, hyperparathyroidism, and osteopenia in the newborn period. Treatment of NSHPT traditionally includes hydration and bisphosphonates; however newer calcimimetic agents, such as cinacalcet, are now being utilized to prevent or delay parathyroidectomy which is technically difficult in the newborn. Medical treatment success is related to calcium sensing receptor (CaSR) genotype. We report a 4-day-old infant who presented with hyperbilirubinemia, poor feeding, weight loss, severe hypotonia and was ultimately diagnosed with NSHPT. The patient's total serum calcium level of 36.8 mg/dL (reference range: 8.5-10.4 mg/dL) is, to our knowledge, the highest ever documented in this setting. Exome data previously obtained on the infant's parents was re-analyzed demonstrating bi-parental heterozygosity for a mutation of the CASR gene: c.206G > A, and Sanger sequencing data confirmed the patient was a homozygote for the same mutation. Though a patient with the same CaSR gene mutation described here has responded to cinacalcet, our patient did not respond and required parathyroidectomy. Though this case has previously been published as a surgical case report, a full report of the medical management and underlying genetic etiology is warranted; this case underscores the importance of disclosing bi-parental heterozygosity for a gene causing severe neonatal disease particularly when treatment is available and illustrates the need for further in vitro studies of this CaSR mutation.
Collapse
Affiliation(s)
- Heidi Murphy
- Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Jessica Patrick
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Eileen Báez-Irizarry
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Genetics, Children's Hospital of New Orleans, USA
| | - Ricardo Gómez
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Endocrinology, Children's Hospital of New Orleans, USA
| | - Alfonso Vargas
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Endocrinology, Children's Hospital of New Orleans, USA
| | - Brian Barkemeyer
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Neonatology, Children's Hospital of New Orleans, USA
| | - Sohit Kanotra
- Division of Otorlaryngology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Otolaryngology Children's Hospital of New Orleans, USA
| | - Regina M Zambrano
- Division of Genetics, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Genetics, Children's Hospital of New Orleans, USA.
| |
Collapse
|
11
|
Carmosino M, Gerbino A, Hendy GN, Torretta S, Rizzo F, Debellis L, Procino G, Svelto M. NKCC2 activity is inhibited by the Bartter's syndrome type 5 gain-of-function CaR-A843E mutant in renal cells. Biol Cell 2015; 107:98-110. [PMID: 25631355 DOI: 10.1111/boc.201400069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy; Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Atay Z, Bereket A, Haliloglu B, Abali S, Ozdogan T, Altuncu E, Canaff L, Vilaça T, Wong BYL, Cole DEC, Hendy GN, Turan S. Novel homozygous inactivating mutation of the calcium-sensing receptor gene (CASR) in neonatal severe hyperparathyroidism-lack of effect of cinacalcet. Bone 2014; 64:102-7. [PMID: 24735972 DOI: 10.1016/j.bone.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND NSHPT is a life-threatening disorder caused by homozygous inactivating calcium-sensing receptor (CASR) mutations. In some cases, the CaSR allosteric activator, cinacalcet, may reduce serum PTH and calcium levels, but surgery is the treatment of choice. OBJECTIVE To describe a case of NSHPT unresponsive to cinacalcet. PATIENT AND RESULTS A 23-day-old girl was admitted with hypercalcemia, hypotonia, bell-shaped chest and respiratory distress. The parents were first-degree cousins once removed. Serum Ca was 4.75 mmol/l (N: 2.10-2.62), P: 0.83 mmol/l (1.55-2.64), PTH: 1096 pg/ml (9-52) and urinary Ca/Cr ratio: 0.5mg/mg. First, calcitonin was given (10 IU/kg × 4/day), and then 2 days later, pamidronate (0.5mg/kg) for 2 days. Doses of cinacalcet were given daily from day 28 of life starting at 30 mg/m2 and increasing to 90 mg/m2 on day 43. On day 33, 6 days after pamidronate, serum Ca levels had fallen to 2.5 mmol/l but, thereafter, rose to 5 mmol/l despite the cinacalcet. Total parathyroidectomy was performed at day 45. Hungry bone disease after surgery required daily Ca replacement and calcitriol for 18 days. At 3 months, the girl was mildly hypercalcemic, with no supplementation, and at 6 months, she developed hypocalcemia and has since been maintained on Ca and calcitriol. By CASR mutation analysis, the infant was homozygous and both parents heterozygous for a deletion-frameshift mutation. CONCLUSION The predicted nonfunctional CaSR is consistent with lack of response to cinacalcet, but total parathyroidectomy was successful. An empiric trial of the drug and/or prompt mutation testing should help minimize the period of unnecessary pharmacotherapy.
Collapse
Affiliation(s)
- Zeynep Atay
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey.
| | - Abdullah Bereket
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Belma Haliloglu
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Saygin Abali
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Tutku Ozdogan
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Emel Altuncu
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Lucie Canaff
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Tatiane Vilaça
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Betty Y L Wong
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - David E C Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - Geoffrey N Hendy
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| |
Collapse
|
13
|
Nemeth EF. Allosteric modulators of the extracellular calcium receptor. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e277-84. [PMID: 24050279 DOI: 10.1016/j.ddtec.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The extracellular calcium receptor (CaR) is a Family C G protein-coupled receptor that controls systemic Ca2+ homeostasis, largely by regulating the secretion of parathyroid hormone (PTH). Ligands that activate the CaR have been termed calcimimetics and are classified as either Type I (agonists) or Type II (allosteric activators) and effectively inhibit the secretion of PTH. CaR antagonists have been termed calcilytics and all act allosterically to stimulate secretion of PTH. The calcimimetic cinacalcet has been approved for treating parathyroid cancer and secondary hyperparathyroidism in patients on renal replacement therapy. Cinacalcet was the first allosteric modulator of a G proteincoupled receptor to achieve regulatory approval. This review will focus on the technologies used to discover and develop allosterically acting calcimimetics and calcilytics as novel therapies for bone and mineral-related disorders.
Collapse
|
14
|
Gannon AW, Monk HM, Levine MA. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case study and review. J Clin Endocrinol Metab 2014; 99:7-11. [PMID: 24203066 PMCID: PMC3879678 DOI: 10.1210/jc.2013-2834] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Neonatal severe hyperparathyroidism (NSHPT) is a severe form of familial hypocalciuric hypercalcemia characterized by severe hypercalcemia and skeletal demineralization. In most cases, NSHPT is due to biallelic loss-of-function mutations in the CASR gene encoding the calcium-sensing receptor (CaSR), but some patients have heterozygous mutations. Conventional treatment consists of iv saline, bisphosphonates, and parathyroidectomy. OBJECTIVE The aim of this project was to characterize the molecular basis for NSHPT in an affected newborn and to describe the response to monotherapy with cinacalcet. METHODS Clinical and biochemical features were monitored as cinacalcet therapy was initiated and maintained. Genomic DNA was obtained from the proband and parents. The CASR gene was amplified by PCR and sequenced directly. RESULTS The patient was a full-term male who developed hypotonia and respiratory failure soon after birth. He was found to have multiple fractures and diffuse bone demineralization, with a marked elevation in serum ionized calcium (1.99 mmol/L) and elevated serum levels of intact PTH (1154 pg/mL); serum 25-hydroxyvitamin D was low, and fractional excretion of calcium was reduced. The serum calcium level was not reduced by iv saline infusion. Based on an extensive family history of autosomal dominant hypercalcemia, a diagnosis of NSHPT was made, and cinacalcet therapy was initiated with a robust and durable effect. Molecular studies revealed a heterozygous R185Q missense mutation in the CASR in the patient and his father, whereas normal sequences for the CASR gene were present in the patient's mother. CONCLUSIONS We describe the first use of cinacalcet as monotherapy for severe hypercalcemia in a newborn with NSHPT. The rapid and durable response to cinacalcet suggests that a trial of calcimimetic therapy should be considered early in the course of NSHPT.
Collapse
Affiliation(s)
- Anthony W Gannon
- Division of Endocrinology and Diabetes (A.W.G., M.A.L.), and Department of Pharmacy Services (H.M.M.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and Department of Pediatrics (A.W.G., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
15
|
Breitwieser GE. Pharmacoperones and the calcium sensing receptor: exogenous and endogenous regulators. Pharmacol Res 2013; 83:30-7. [PMID: 24291533 DOI: 10.1016/j.phrs.2013.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/05/2023]
Abstract
Calcium sensing receptor (CaSR) mutations or altered expression cause disorders of calcium handling. Recent studies suggest that reduced targeting to the plasma membrane is a feature common to many CaSR loss-of-function mutations. Allosteric agonists (calcimimetics) can rescue signaling of a subset of CaSR mutants. This review evaluates our current understanding of the subcellular site(s) for allosteric modulator rescue of CaSR mutants. Studies to date make a strong case for calcimimetic potentiation of signaling not only at plasma membrane-localized CaSR, but at the endoplasmic reticulum, acting as pharmacoperones to assist in navigation of multiple quality control checkpoints. The possible role of endogenous pharmacoperones, calcium and glutathione, in folding and stabilization of the CaSR extracellular and transmembrane domains are considered. Finally, the possibility that dihydropyridines act as unintended pharmacoperones of CaSR is proposed. While our understanding of pharmacoperone rescue of CaSR requires refinement, promising results to date argue that this may be a fruitful avenue for drug discovery.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100N. Academy Avenue, Danville PA 17822-2604, USA.
| |
Collapse
|
16
|
Marcucci G, Masi L, Cavalli L, Fossi C, Franceschelli F, Brandi ML. Is calcium signaling relevant for long bone growth? Bone 2013; 57:105-10. [PMID: 23891851 DOI: 10.1016/j.bone.2013.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neonatal severe hyperparathyroidism (NSHPT) is a rare autosomal recessive disorder of calcium homeostasis, more often induced by homozygous inactivating mutations of the calcium-sensing receptor gene. This rare syndrome can be lethal if total parathyroidectomy is not performed within the first weeks of life. CLINICAL REPORT We report the clinical case of a male patient, son of consanguineous hypercalcemic parents, with clinical and biochemical features of NSHPT, followed until the age of 21 years. The patient underwent total parathyroidectomy, and then, due to the low compliance to calcium and calcitriol supplementation, an attempt was made with recombinant human parathyroid hormone [rhPTH (1-84)]. The patient did not reach the predicted height with an increased ratio of the upper and lower segments. CONCLUSIONS While this case is unique for the length of follow-up, the continuous and detailed description of NSHPT after total parathyroidectomy in its adult phenotype, and the treatment of hypoparathyroidism with rhPTH (1-84). Following this first description of a statural defect due to shortening of long bones in NSHPT, future investigations will attempt to uncover the role of calcium signaling in growth plate cartilage in humans.
Collapse
Affiliation(s)
- Gemma Marcucci
- Bone and Mineral Metabolism Unit, Department of Internal Medicine, University of Florence Medical School, Florence, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Leach K, Wen A, Cook AE, Sexton PM, Conigrave AD, Christopoulos A. Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology 2013; 154:1105-16. [PMID: 23372019 DOI: 10.1210/en.2012-1887] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cinacalcet is predominantly used to treat secondary hyperparathyroidism due to end-stage renal failure, but, more recently, its potential clinical efficacy in treating patients with loss-of-function mutations in the calcium-sensing receptor (CaSR) has been recognized. Many clinically relevant CaSR mutations are located in the heptahelical membrane spanning and extracellular loop regions of the receptor, where allosteric modulators are predicted to bind. The aim of the present study was to investigate the impact of such mutations on the pharmacoregulation of the CaSR by the positive and negative allosteric modulators, cinacalcet and NPS-2143, respectively. Both cinacalcet and NPS-2143 effectively rescued mutants whose cell surface expression was substantially impaired, suggesting that both classes of drug can stabilize a receptor conformation that is trafficked more effectively to the cell surface. In addition, functional impairments in almost all mutant CaSRs were rescued by either cinacalcet or NPS-2143 via restoration of intracellular signaling. There was a significantly greater ability of both compounds to modulate agonist-stimulated intracellular Ca(2+) mobilization than ERK1/2 phosphorylation, indicating that the allosteric modulators engender bias in agonist-stimulated CaSR signaling to different pathways. Three mutations (G(670)R, P(748)R, and L(773)R) altered the binding affinity of allosteric modulators to the CaSR, and 3 mutations (V(817)I, L(773)R, and E(767)K) altered the cooperativity between the allosteric modulator and Ca(2+)(o). These findings have important implications for the treatment of diseases associated with CaSR mutations using allosteric CaSR modulators and for analyzing the effects of mutations on the function and pharmacoregulation of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, 3052, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Grant MP, Stepanchick A, Breitwieser GE. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor. Mol Endocrinol 2012; 26:2081-91. [PMID: 23077345 DOI: 10.1210/me.2012-1232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Michael P Grant
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA
| | | | | |
Collapse
|
19
|
Cavanaugh A, Huang Y, Breitwieser GE. Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors. Br J Pharmacol 2012; 165:1670-1677. [PMID: 21470201 DOI: 10.1111/j.1476-5381.2011.01403.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca(2+) homeostasis. Altered expression levels or mutations in CaSR cause Ca(2+) handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling.
Collapse
Affiliation(s)
- Alice Cavanaugh
- Weis Center for Research, Geisinger Clinic, Danville, PA, USACancer Drug Research Laboratory, McGill University/Royal Victoria Hospital, Montreal, QC, Canada
| | - Ying Huang
- Weis Center for Research, Geisinger Clinic, Danville, PA, USACancer Drug Research Laboratory, McGill University/Royal Victoria Hospital, Montreal, QC, Canada
| | - Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, Danville, PA, USACancer Drug Research Laboratory, McGill University/Royal Victoria Hospital, Montreal, QC, Canada
| |
Collapse
|
20
|
Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol 2012; 26:1482-95. [PMID: 22745192 DOI: 10.1210/me.2011-1370] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-sensing receptor (CaSR) regulates organismal Ca(2+) homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca(2+) homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA.
| |
Collapse
|
21
|
Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A. Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 2012; 153:1232-41. [PMID: 22210744 DOI: 10.1210/en.2011-1426] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor whose function can be allosterically modulated in a positive or negative manner by calcimimetics or calcilytics, respectively. Indeed, the second-generation calcimimetic, cinacalcet, has proven clinically useful in the treatment of chronic kidney disease patients with secondary hyperparathyroidism but is not widely used in earlier stages of renal disease due to the potential to predispose such patients to hypocalcaemia and hyperphosphatemia. The development of a biased CaSR ligand that is more selective for specific signaling pathway(s) leading only to beneficial effects may overcome this limitation. The detection of such stimulus-bias at a G protein-coupled receptor requires investigation across multiple signaling pathways and the development of methods to quantify the effects of allosteric ligands on orthosteric ligand affinity and cooperativity at each pathway. In the current study, we determined the effects of the calcimimetics, NPS-R568 or cinacalcet, and the calcilytic, NPS-2143, on Ca(o)(2+)-mediated intracellular Ca(2+) mobilization, ERK1/2 phosphorylation, and plasma membrane ruffling in a stably transfected human embryonic kidney 293-TREx c-myc-CaSR cell line and applied a novel analytical model to quantify these modulator effects. We present quantitative evidence for the generation of stimulus bias by both positive and negative allosteric modulators of the CaSR, manifested as greater allosteric modulation of intracellular Ca(2+) mobilization relative to ERK1/2 phosphorylation, and a higher affinity of the modulators for the state of the CaSR mediating plasma membrane ruffling relative to the other two pathways. Our findings provide the first evidence that an allosteric modulator used in clinical practice exhibits stimulus bias.
Collapse
Affiliation(s)
- Anna E Davey
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
23
|
Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 2012; 55:1445-64. [PMID: 22148748 DOI: 10.1021/jm201139r] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Parathyroidectomy is currently the only curative treatment for primary hyperparathyroidism (PHPT). There are few alternative treatment options in patients who are ineligible for, or unwilling to undergo, surgery and those in whom parathyroidectomy has failed. Current options include the recently approved drug cinacalcet. Cinacalcet is an allosteric modulator of the calcium-sensing receptor, acting to sensitize this receptor to extracellular calcium. Cinacalcet has been found to be effective in reducing or normalizing serum calcium levels in several groups of PHPT patients, including those with mild-to-moderate PHPT, intractable disease, parathyroid carcinoma and multiple endocrine neoplasia Type 1. Cinacalcet slightly reduces parathyroid hormone levels and has no effect on bone mineral density. Cinacalcet is well tolerated when used at low doses, but side effects are not uncommon when relatively high doses are needed to control hypercalcemia. The current evidence indicates that cinacalcet may be of benefit in a wide spectrum of PHPT severities, offering a novel therapeutic option for the control of hypercalcemia in PHPT patients who are not able to undergo parathyroidectomy. It is presently unknown how much of the biochemical benefit of cinacalcet treatment translates into a clinical benefit, particularly in patients with mild-to-moderate hypercalcemia. Moreover, there are no data as to whether long-term treatment with cinacalcet can prevent the complications of PHPT.
Collapse
Affiliation(s)
- Filomena Cetani
- a Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | | |
Collapse
|
25
|
Henley C, Yang Y, Davis J, Lu JYL, Morony S, Fan W, Florio M, Sun B, Shatzen E, Pretorius JK, Richards WG, St Jean DJ, Fotsch C, Reagan JD. Discovery of a calcimimetic with differential effects on parathyroid hormone and calcitonin secretion. J Pharmacol Exp Ther 2011; 337:681-91. [PMID: 21422163 DOI: 10.1124/jpet.110.178681] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Calcimimetics are positive allosteric modulators to the calcium-sensing receptor (CaSR). Activation of the CaSR inhibits the secretion of parathyroid hormone (PTH), stimulates the secretion of calcitonin, and decreases serum calcium (Ca(2+)). Cinacalcet, a second-generation calcimimetic, is used therapeutically to control PTH in patients with chronic kidney disease who are on dialysis with secondary hyperparathyroidism. A calcimimetic that displays increased separation of PTH versus Ca(2+) lowering in patients would potentially allow the use of calcimimetics to treat patients in earlier stages of renal disease because hypocalcemia can develop in this population. Toward this end, we developed a third-generation calcimimetic, determined the molecular pharmacological properties of it using an operation model of allosteric modulation/agonism, and measured the compound effects on PTH, serum ionized Ca(2+), and calcitonin levels in 5/6 nephrectomized rats. We found the new molecule effectively reduced PTH levels without promoting calcitonin secretion or hypocalcemia. Furthermore, our third-generation molecule was less efficacious at promoting calcitonin secretion from human thyroid carcinoma cells compared with 3-(2-chlorophenyl)-N-((1R)-1-(3-methoxyphenyl)ethyl)-1-propanamine (R-568), a first-generation calcimimetic. These data provide evidence that calcimimetics with increased potency can be used to lower PTH without production of significant hypocalcemia because the threshold for inhibition of PTH secretion is much lower than the threshold for calcitonin secretion.
Collapse
Affiliation(s)
- Charles Henley
- Department of Metabolic Disorders, Amgen Thousand Oaks, Thousand Oaks, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol Sci 2011; 32:189-96. [DOI: 10.1016/j.tips.2011.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/23/2010] [Accepted: 01/10/2011] [Indexed: 01/14/2023]
|
27
|
Ma JN, Owens M, Gustafsson M, Jensen J, Tabatabaei A, Schmelzer K, Olsson R, Burstein ES. Characterization of highly efficacious allosteric agonists of the human calcium-sensing receptor. J Pharmacol Exp Ther 2011; 337:275-84. [PMID: 21239511 DOI: 10.1124/jpet.110.178194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
We discovered structurally novel human calcium-sensing receptor (CaSR) allosteric agonists and compared their pharmacology to phenylalkylamine calcimimetics. 1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol (AC-265347) activated CaSR signaling in cellular proliferation and phosphatidylinositol (PI) hydrolysis assays with potencies of 30 and 10 nM, respectively. (S)-1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(S)-AC-265347], the S-enantiomer of AC-265347, was approximately 10- to 20-fold more potent than (R)-1-benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(R)-AC-265347]. The phenylalkylamines cinacalcet and calindol had activity similar to that of AC-265347 in cellular proliferation assays but less activity in PI assays. All compounds had reduced activity when extracellular Ca(2+) was removed, indicating that they cooperate with Ca(2+) to activate CaSRs, and all activated CaSR isoforms with the N-terminal extracellular domain deleted, indicating that they interact with the transmembrane domains. In both cases, AC-265347 and therefore (S)-AC-265347 were significantly more efficacious than the phenylalkylamines. Mutations E837A(7.39) and I841A(7.43) strongly reduced phenylalkylamine-induced signaling, but not AC-265347- or (S)-AC-265347-induced signaling, suggesting different modes of binding. AC-265347 and (S)-AC-265347 stimulated significantly greater responses than cinacalcet or calindol at each of four loss-of-function human polymorphic CaSR variants. AC-265347 did not inhibit the CYP2D6 cytochrome P450 isozyme, unlike cinacalcet, which is a potent CYP2D6 inhibitor. In rats, AC-265347, (S)-AC-265347, and (R)-AC-265347 each reduced serum parathyroid hormone (PTH) with a rank order potency correlated with their in vitro potencies. AC-265347 and (S)-AC-265347 also reduced plasma ionizable calcium ([Ca(2+)](o)). AC-265347 was orally active, and its plasma concentrations correlated well with its effects on serum PTH. Thus, these highly efficacious CaSR allosteric agonists represent leads for developing therapeutic agents with potential advantages over existing therapies.
Collapse
Affiliation(s)
- Jian-Nong Ma
- ACADIA Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Reh CMS, Hendy GN, Cole DEC, Jeandron DD. Neonatal hyperparathyroidism with a heterozygous calcium-sensing receptor (CASR) R185Q mutation: clinical benefit from cinacalcet. J Clin Endocrinol Metab 2011; 96:E707-12. [PMID: 21289269 DOI: 10.1210/jc.2010-1306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
UNLABELLED Neonatal hyperparathyroidism can be caused by a heterozygous inactivating mutation in the calcium-sensing receptor. Calcimimetics, allosteric activators of the calcium-sensing receptor, may provide an effective means of reducing PTH secretion in such patients. OBJECTIVE/PATIENT: The objective of the study was to identify the molecular defect and to monitor the postnatal course of a 1-wk-old infant with elevated blood ionized calcium, serum PTH, and alkaline phosphatase and low calcium excretion. The parents were normocalcemic. METHODS CASR gene mutation analysis was performed on genomic DNA of the proband and her parents. The infant was treated initially with pamidronate and then cinacalcet. RESULTS A heterozygous mutation (R185Q, CGA > CAA) in exon 4 of the CASR gene was identified in the proband. The CASR gene of both parents was normal. At 1 wk of age, iv fluids and furosemide were initiated, but hypercalcemia, hyperparathyroidism, and low calcium excretion persisted. At 2 wk of age, a single iv dose of pamidronate resulted in hypocalcemia and further increase in PTH levels, but hypercalcemia recurred within 1 wk. At 3 wk of age, a single oral dose of cinacalcet resulted in decreased PTH levels at 2 h; blood-ionized calcium reached a nadir at 10 h. Three days later daily cinacalcet was initiated, resulting in normalization of ionized calcium. The suppression of serum PTH and reduction in total serum calcium was maintained long term. CONCLUSIONS In neonatal hyperparathyroidism secondary to presumed de novo heterozygous CASR mutation, treatment with cinacalcet decreases PTH secretion and serum calcium levels and mitigates the need for parathyroidectomy.
Collapse
Affiliation(s)
- Christina M S Reh
- The Center for Endocrinology, Diabetes, and Metabolism at Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
29
|
Messa P, Alfieri C, Brezzi B. Clinical utilization of cinacalcet in hypercalcemic conditions. Expert Opin Drug Metab Toxicol 2011; 7:517-28. [PMID: 21361849 DOI: 10.1517/17425255.2011.562196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Cinacalcet has recently been introduced as a treatment for secondary hyperparathyroidism in dialysis patients and for parathyroid carcinoma. However, there has been an increasing interest in finding out whether cinacalcet can be used as a treatment for other parathyroid hormone (PTH)-dependent hypercalcemic conditions also. AREAS COVERED The article reports the most relevant recent contributions dealing with calcium sensing receptor (CaSR) physiology as well as cinacalcet pharmacokinetics and pharmacodynamics. It also looks at the different hypercalcemic conditions where the use of cinacalcet has been proposed. This article was researched using clinical trials, case reports and outstanding basic research published in the last 3 years (MEDLINE database up to 31 November 2010). It provides the reader with an insight into the many unaddressed issues regarding cinacalcet that need to be resolved before it can be used in newly proposed fields. EXPERT OPINION Since cinacalcet may not only have an effect on parathyroid CaSR but also on CaSR expressed at bone and renal levels, it can currently only be considered a good alternative to parathyroidectomy in PTH-dependent hypercalcemic conditions when surgical intervention is burdened by a high failure rate or when it can be considered a risky procedure. At present, cinacalcet cannot be considered the first choice treatment in asymptomatic primary hyperparathyroidism or in mild-to-moderate forms of familial hypocalciuric hypocalcemia.
Collapse
Affiliation(s)
- Piergiorgio Messa
- Division of Nephrology, Dialysis, and Renal Transplant, Fondazione Ca' Granda-IRCCS, OspedaleMaggiore-Policlinico, v. Commenda 15, 20122 Milano, Italy.
| | | | | |
Collapse
|
30
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
31
|
Allosteric modulation of G protein-coupled receptors: A pharmacological perspective. Neuropharmacology 2011; 60:24-35. [DOI: 10.1016/j.neuropharm.2010.07.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 01/08/2023]
|
32
|
Alon US, VandeVoorde RG. Beneficial effect of cinacalcet in a child with familial hypocalciuric hypercalcemia. Pediatr Nephrol 2010; 25:1747-50. [PMID: 20495831 DOI: 10.1007/s00467-010-1547-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 12/30/2022]
Abstract
We describe a child with familial hypocalciuric hypercalcemia (FHH) in whom the hypercalcemia seemed to interfere with tissue healing after tympanoplasty. Consequently, he was placed on cinacalcet (30 mg/day), changed after 2 weeks to 60 mg/day. The treatment resulted in a decrease in serum parathyroid hormone (PTH) from 148 to 32 pg/mL (normal 7-75) and ionized calcium from 1.48 to 1.23 mmol/L (1.13-1.34), as well as successful healing of the revised surgical scar. Over the 12-month treatment period no complications were noted. We conclude that cinacalcet may be considered a new, and currently the only, tool in treating children with symptomatic FHH.
Collapse
Affiliation(s)
- Uri S Alon
- Section of Pediatric Nephrology, Bone and Mineral Disorders Clinic, Children's Mercy Hospitals and Clinics, University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MI 64108, USA.
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In this review, we define hypercalcemia levels, common causes for hypercalcemia in children, and treatment in order to aid the practicing pediatrician. RECENT FINDINGS One rare cause of hypercalcemia in the child is familial hypocalciuric hypercalcemia (also termed familial benign hypercalcemia). Mutations that inactivate the Ca-sensing receptor gene FHH have been described as an autosomal dominant disorder, but recently milder mutations in the CASR have been shown to cause hypercalcemia when homozygous. SUMMARY Normal serum levels of calcium are maintained through the interplay of parathyroid, renal, and skeletal factors. In this review, we have distinguished the neonate and infant from the older child and adolescent because the causes and clinical features of hypercalcemia can differ in these two age groups. However, the initial approach to the medical treatment of severe or symptomatic hypercalcemia is to increase the urinary excretion of calcium in both groups. In most cases, hypercalcemia is due to osteoclastic bone resorption, and agents that inhibit or destroy osteoclasts are, therefore, effective treatments. Parathyroid surgery, the conventional treatment for adults with symptomatic primary hyperparathyroidism, is recommended for all children with primary hyperparathyroidism.
Collapse
|