1
|
Peverini L, Shi S, Medjebeur K, Corringer PJ. Mapping the molecular motions of 5-HT 3 serotonin-gated channel by voltage-clamp fluorometry. eLife 2024; 12:RP93174. [PMID: 38913422 PMCID: PMC11196107 DOI: 10.7554/elife.93174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The serotonin-gated ion channel (5-HT3R) mediates excitatory neuronal communication in the gut and the brain. It is the target for setrons, a class of competitive antagonists widely used as antiemetics, and is involved in several neurological diseases. Cryo-electron microscopy (cryo-EM) of the 5-HT3R in complex with serotonin or setrons revealed that the protein has access to a wide conformational landscape. However, assigning known high-resolution structures to actual states contributing to the physiological response remains a challenge. In the present study, we used voltage-clamp fluorometry (VCF) to measure simultaneously, for 5-HT3R expressed at a cell membrane, conformational changes by fluorescence and channel opening by electrophysiology. Four positions identified by mutational screening report motions around and outside the serotonin-binding site through incorporation of cysteine-tethered rhodamine dyes with or without a nearby quenching tryptophan. VCF recordings show that the 5-HT3R has access to four families of conformations endowed with distinct fluorescence signatures: 'resting-like' without ligand, 'inhibited-like' with setrons, 'pre-active-like' with partial agonists, and 'active-like' (open channel) with partial and strong agonists. Data are remarkably consistent with cryo-EM structures, the fluorescence partners matching respectively apo, setron-bound, 5-HT bound-closed, and 5-HT-bound-open conformations. Data show that strong agonists promote a concerted motion of all fluorescently labeled sensors during activation, while partial agonists, especially when loss-of-function mutations are engineered, stabilize both active and pre-active conformations. In conclusion, VCF, though the monitoring of electrophysiologically silent conformational changes, illuminates allosteric mechanisms contributing to signal transduction and their differential regulation by important classes of physiological and clinical effectors.
Collapse
Affiliation(s)
- Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Sophie Shi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Karima Medjebeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| |
Collapse
|
2
|
Esaki H, Deyama S, Izumi S, Katsura A, Nishikawa K, Nishitani N, Kaneda K. Varenicline enhances recognition memory via α7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology 2023; 239:109672. [PMID: 37506875 DOI: 10.1016/j.neuropharm.2023.109672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4β2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4β2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ayano Katsura
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Kamens HM, Flarend G, Horton WJ. The role of nicotinic receptors in alcohol consumption. Pharmacol Res 2023; 190:106705. [PMID: 36813094 PMCID: PMC10083870 DOI: 10.1016/j.phrs.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The use of alcohol causes significant morbidity and mortality across the globe. Alcohol use disorder (AUD) is defined by the excessive use of this drug despite a negative impact on the individual's life. While there are currently medications available to treat AUD, they have limited efficacy and several side effects. As such, it is essential to continue to look for novel therapeutics. One target for novel therapeutics is nicotinic acetylcholine receptors (nAChRs). Here we systematically review the literature on the involvement of nAChRs in alcohol consumption. Data from both genetic and pharmacology studies provide evidence that nAChRs modulate alcohol intake. Interestingly, pharmacological modulation of all nAChR subtypes examined can decrease alcohol consumption. The reviewed literature demonstrates that nAChRs should continue to be investigated as novel therapeutics for AUD.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
4
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
5
|
A Phase I, Open-label, Randomized, 2-Way Crossover Study to Evaluate the Relative Bioavailability of Intranasal and Oral Varenicline. Clin Ther 2021; 43:1595-1607. [PMID: 34456060 DOI: 10.1016/j.clinthera.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE To estimate the systemic bioavailability of OC-01 (varenicline) nasal spray, an investigational treatment for dry eye disease, relative to oral varenicline approved for smoking cessation. METHODS The Study to Evaluate the Relative Bioavailability of Varenicline Administered as OC-01 (Varenicline) Nasal Spray as Compared to Varenicline Administered Orally as Chantix (ZEN study) was a Phase I, open-label, randomized, single-center, 2-way crossover study. On day 1, 22 healthy participants were randomized 1:1 to a single intranasal dose of varenicline 0.12 mg in OC-01 nasal spray or a single oral dose of varenicline 1 mg. On day 15, all participants crossed over to receive a single dose of the alternate treatment. Plasma samples were collected for 6 days after each dose, and pharmacokinetic parameters were estimated using noncompartmental analysis. Tolerability was monitored throughout. FINDINGS After a single dose of intranasal varenicline 0.12 mg in OC-01 nasal spray, peak systemic exposure (mean plasma Cmax) was 0.34 ng/mL, which occurred at a median Tmax of 2.0 hours. In comparison, mean plasma Cmax after oral varenicline 1 mg was 4.63 ng/mL at a median Tmax of 3.0 hours. On the basis of geometric mean ratio point estimates, peak exposure (Cmax) and total exposure (AUC0-∞) after intranasal varenicline 0.12 mg were 7.0% and 7.5%, respectively, of the systemic exposure associated with oral varenicline 1 mg. Dose-normalized Cmax and AUC0-∞ for intranasal varenicline remained 39% and 33% lower versus oral varenicline, respectively. No new or unexpected tolerability signals were detected. IMPLICATIONS At its highest intended single dose in OC-01 nasal spray, intranasal varenicline delivered less drug to the systemic circulation than oral varenicline at its highest approved single dose. ClinicalTrials.gov identifier: NCT04072146.
Collapse
|
6
|
de Moura FB, Bergman J. Enhancement of Opioid Antinociception by Nicotinic Ligands. J Pharmacol Exp Ther 2021; 377:100-107. [PMID: 33441370 PMCID: PMC7985615 DOI: 10.1124/jpet.120.000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
Nicotine has previously been shown to augment the antinociceptive effects of μ-opioid agonists in squirrel monkeys without producing a concomitant increase in behavioral disruption. The present studies were conducted to extend these findings by determining the ability of the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline to selectively augment the antinociceptive effects of the μ-opioid receptor (MOR) full agonist fentanyl, the MOR partial agonist nalbuphine, and the κ-opioid receptor (KOR) agonist U69,593 in male squirrel monkeys. Results indicate that both nAChR ligands selectively increased the antinociceptive effects of nalbuphine and that epibatidine increased the antinociceptive effects of U69,593 without altering effects on operant behavior. However, neither epibatidine nor varenicline enhanced the antinociceptive effects of fentanyl, perhaps due to its high efficacy. The enhancement of nalbuphine's antinociceptive effects by epibatidine, but not varenicline, could be antagonized by either mecamylamine or dihydro-β-erythroidine, consistent with α4β2 mediation of epibatidine's effects but suggesting the involvement of non-nAChR mechanisms in the effects of varenicline. The present results support previous findings showing that an nAChR agonist can serve as an adjuvant for MOR antinociception and, based on results with U69,593, further indicate that the adjuvant effects of nAChR drugs may also apply to antinociception produced by KOR. Our findings support the further evaluation of nAChR agonists as adjuvants of opioid pharmacotherapy for pain management and point out the need for further investigation into the mechanisms by which they produce opioid-adjuvant effects. SIGNIFICANCE STATEMENT: Nicotine has been shown to augment the antinociceptive effects of μ-opioid receptor analgesics without exacerbating their effects on operant performance. The present study demonstrates that the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline can also augment the antinociceptive effects of nalbuphine, as well as those of a κ-opioid receptor agonist, without concomitantly exacerbating their behaviorally disruptive effects. These findings support the view that nAChR agonists and partial agonists may have potential as adjuvant therapies for opioid-based analgesics.
Collapse
Affiliation(s)
- Fernando B de Moura
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Gibbs E, Chakrapani S. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Subcell Biochem 2021; 96:373-408. [PMID: 33252737 DOI: 10.1007/978-3-030-58971-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
8
|
Horenstein NA, Quadri M, Stokes C, Shoaib M, Papke RL. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine Tob Res 2020; 21:805-812. [PMID: 29059390 DOI: 10.1093/ntr/ntx187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The use of betel quid is the most understudied major addiction in the world. The neuropsychological activity of betel quid has been attributed to alkaloids of Areca catechu. With the goal of developing novel addiction treatments, we evaluate the muscarinic and nicotinic activity of the four major Areca alkaloids: arecoline, arecaidine, guvacoline, and guvacine and four structurally related compounds. METHODS Acetylcholine receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. RESULTS Both arecoline- and guvacoline-activated muscarinic acetylcholine receptors (mAChR), while only arecoline produced significant activation of nicotinic AChR (nAChR). We characterized four additional arecoline-related compounds, seeking an analog that would retain selective activity for a α4* nAChR, with diminished effects on mAChR and not be a desensitizer of α7 nAChR. We show that this profile is largely met by isoarecolone. Three additional arecoline analogs were characterized. While the quaternary dimethyl analog had a broad range of activities, including activation of mAChR and muscle-type nAChR, the methyl analog only activated a range of α4* nAChR, albeit with low potency. The ethyl analog had no detectable cholinergic activity. CONCLUSIONS Evidence indicates that α4* nAChR are at the root of nicotine addiction, and this may also be the case for betel addiction. Our characterization of isoarecolone and 1-(4-methylpiperazin-1-yl) ethanone as truly selective α4*nAChR selective partial agonists with low muscarinic activity may point toward a promising new direction for the development of drugs to treat both nicotine and betel addiction. IMPLICATIONS Nearly 600 million people use Areca nut, often with tobacco. Two of the Areca alkaloids are muscarinic acetylcholine receptor agonists, and one, arecoline, is a partial agonist for the α4* nicotinic acetylcholine receptors (nAChR) associated with tobacco addiction. The profile of arecoline activity suggested its potential to be used as a scaffold for developing new tobacco cessation drugs if analogs can be identified that retain the same nicotinic receptor selectivity without muscarinic activity. We report that isoarecolone is a selective partial agonist for α4* nAChR with minimal muscarinic activity and 1-(4-methylpiperazin-1-yl) ethanone has similar nAChR selectivity and no detectable muscarinic action.
Collapse
Affiliation(s)
| | - Marta Quadri
- Department of Chemistry, University of Florida, Gainesville, FL.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Wang J, Blasio A, Chapman HL, Doebelin C, Liaw V, Kuryatov A, Giovanetti SM, Lindstrom J, Lin L, Cameron MD, Kamenecka TM, Pomrenze MB, Messing RO. Promoting activity of (α4) 3(β2) 2 nicotinic cholinergic receptors reduces ethanol consumption. Neuropsychopharmacology 2020; 45:301-308. [PMID: 31394567 PMCID: PMC6901472 DOI: 10.1038/s41386-019-0475-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
There is increasing interest in developing drugs that act at α4β2 nicotinic acetylcholine receptors (nAChRs) to treat alcohol use disorder. The smoking cessation agent varenicline, a partial agonist of α4β2 nAChRs, reduces alcohol intake, but its use can be limited by side effects at high therapeutic doses. There are two stoichiometric forms of α4β2 nAChRs, (α4)3(β2)2 and (α4)2(β2)3. Here we investigated the hypothesis that NS9283, a positive allosteric modulator selective for the (α4)3(β2)2 form, reduces ethanol consumption. NS9283 increased the potency of varenicline to activate and desensitize (α4)3(β2)2 nAChRs in vitro without affecting other known targets of varenicline. In male and female C57BL/6J mice, NS9283 (10 mg/kg) reduced ethanol intake in a two-bottle choice, intermittent drinking procedure without affecting saccharin intake, ethanol-induced incoordination or ethanol-induced loss of the righting reflex. Subthreshold doses of NS9283 (2.5 mg/kg) plus varenicline (0.1 mg/kg) synergistically reduced ethanol intake in both sexes. Finally, despite having no aversive valence of its own, NS9283 enhanced ethanol-conditioned place aversion. We conclude that compounds targeting the (α4)3(β2)2 subtype of nAChRs can reduce alcohol consumption, and when administered in combination with varenicline, may allow use of lower varenicline doses to decrease varenicline side effects.
Collapse
Affiliation(s)
- Jingyi Wang
- Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX, USA.
| | - Angelo Blasio
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Holly L. Chapman
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Christelle Doebelin
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Victor Liaw
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Alexander Kuryatov
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Simone M. Giovanetti
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Jon Lindstrom
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Li Lin
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Michael D. Cameron
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Theodore M. Kamenecka
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Matthew B. Pomrenze
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Robert O. Messing
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
10
|
Laikowski MM, Reisdorfer F, Moura S. NAChR α4β2 Subtype and their Relation with Nicotine Addiction, Cognition, Depression and Hyperactivity Disorder. Curr Med Chem 2019; 26:3792-3811. [PMID: 29637850 DOI: 10.2174/0929867325666180410105135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neuronal α4β2 nAChRs are receptors involved in the role of neurotransmitters regulation and release, and this ionic channel participates in biological process of memory, learning and attention. This work aims to review the structure and functioning of the α4β2 nAChR emphasizing its role in the treatment of associated diseases like nicotine addiction and underlying pathologies such as cognition, depression and attention-deficit hyperactivity disorder. METHODS The authors realized extensive bibliographic research using the descriptors "Nicotine Receptor α4β2" and "cognition", "depression", "attention-deficit hyperactivity disorder", besides cross-references of the selected articles and after analysis of references in the specific literature. RESULTS As results, it was that found 179 relevant articles presenting the main molecules with affinity to nAChR α4β2 related to the cited diseases. The α4β2 nAChR subtype is a remarkable therapeutic target since this is the most abundant receptor in the central nervous system. CONCLUSION In summary, this review presents perspectives on the pharmacology and therapeutic targeting of α4β2 nAChRs for the treatment of cognition and diseases like nicotine dependence, depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Manuela M Laikowski
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fávero Reisdorfer
- Laboratory of Drug Development and Quality Control, University Federal of Pampa, Brazil
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
11
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
12
|
Crnjar A, Comitani F, Melis C, Molteni C. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Interface Focus 2019; 9:20180067. [PMID: 31065340 PMCID: PMC6501341 DOI: 10.1098/rsfs.2018.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
Collapse
Affiliation(s)
- Alessandro Crnjar
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudio Melis
- Universitá degli Studi di Cagliari, Complesso Universitario di Monserrato, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700, Monserrato (CA) 09042, Italy
| | - Carla Molteni
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| |
Collapse
|
13
|
Waeiss RA, Knight CP, Hauser SR, Pratt LA, McBride WJ, Rodd ZA. Therapeutic challenges for concurrent ethanol and nicotine consumption: naltrexone and varenicline fail to alter simultaneous ethanol and nicotine intake by female alcohol-preferring (P) rats. Psychopharmacology (Berl) 2019; 236:1887-1900. [PMID: 30758525 PMCID: PMC6606358 DOI: 10.1007/s00213-019-5174-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES Simultaneous alcohol and nicotine consumption occurs in the majority of individuals with alcohol use disorder (AUD) and nicotine dependence. Varenicline (Var) is used to assist in the cessation of nicotine use, while naltrexone (Nal) is the standard treatment for AUD. Despite evidence that ethanol (EtOH) and nicotine (NIC) co-use produces unique neuroadaptations, preclinical research has focused on the effects of pharmacotherapeutics on a single reinforcer. The current experiments examined the effects of Var and Nal on EtOH, NIC, or EtOH+NIC intake. METHODS Animals were randomly assigned to one of four drinking conditions of 24-h access to a three-bottle choice paradigm, one of which always contained water. Drinking conditions were water only, 0.07 and 0.14 mg/mL NIC (NIC only), 15% and 30% EtOH (EtOH only), or 15% and 30% EtOH with 0.14 mg/mL NIC (EtOH+NIC). The effects of Var (0, 1, or 2 mg/kg) or Nal (0, 1, or 10 mg/kg) injections on maintenance and relapse consumption were determined during four consecutive days. RESULTS Var reduced maintenance and relapse NIC intake but had no effect on EtOH or EtOH+NIC drinking. Conversely, Nal reduced EtOH maintenance and relapse drinking, but had no effect on NIC or EtOH+NIC drinking. DISCUSSION The results indicate the standard pharmacological treatments for nicotine dependence and AUD were effective at reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. These findings suggest that co-abuse may promote unique neuroadaptations that require models of polysubstance abuse to develop pharmacotherapeutics to treat AUD and nicotine dependence.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Lauren A Pratt
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA.
| |
Collapse
|
14
|
Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, Ramirez MH, Hu X, Galvan A, Basu J, Michaelides M, Sternson SM. Ultrapotent chemogenetics for research and potential clinical applications. SCIENCE (NEW YORK, N.Y.) 2019; 364:science.aav5282. [PMID: 30872534 DOI: 10.1126/science.aav5282] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Chemogenetics enables noninvasive chemical control over cell populations in behaving animals. However, existing small-molecule agonists show insufficient potency or selectivity. There is also a need for chemogenetic systems compatible with both research and human therapeutic applications. We developed a new ion channel-based platform for cell activation and silencing that is controlled by low doses of the smoking cessation drug varenicline. We then synthesized subnanomolar-potency agonists, called uPSEMs, with high selectivity for the chemogenetic receptors. uPSEMs and their receptors were characterized in brains of mice and a rhesus monkey by in vivo electrophysiology, calcium imaging, positron emission tomography, behavioral efficacy testing, and receptor counterscreening. This platform of receptors and selective ultrapotent agonists enables potential research and clinical applications of chemogenetics.
Collapse
Affiliation(s)
- Christopher J Magnus
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Peter H Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Roland Zemla
- Neuroscience Institute, New York University, New York, NY 10016, USA.,Medical Scientist Training Program, New York University School of Medicine, New York, NY 10016, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Melissa H Ramirez
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Xing Hu
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA 30329, USA
| | - Adriana Galvan
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA 30329, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University, New York, NY 10016, USA.,Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
15
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Quik M, Boyd JT, Bordia T, Perez X. Potential Therapeutic Application for Nicotinic Receptor Drugs in Movement Disorders. Nicotine Tob Res 2019; 21:357-369. [PMID: 30137517 PMCID: PMC6379038 DOI: 10.1093/ntr/nty063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Emerging studies indicate that striatal cholinergic interneurons play an important role in synaptic plasticity and motor control under normal physiological conditions, while their disruption may lead to movement disorders. Here we discuss the involvement of the cholinergic system in motor dysfunction, with a focus on the role of the nicotinic cholinergic system in Parkinson's disease and drug-induced dyskinesias. Evidence for a role for the striatal nicotinic cholinergic system stems from studies showing that administration of nicotine or nicotinic receptor drugs protects against nigrostriatal degeneration and decreases L-dopa-induced dyskinesias. In addition, nicotinic receptor drugs may ameliorate tardive dyskinesia, Tourette's syndrome and ataxia, although further study is required to understand their full potential in the treatment of these disorders. A role for the striatal muscarinic cholinergic system in movement disorders stems from studies showing that muscarinic receptor drugs acutely improve Parkinson's disease motor symptoms, and may reduce dyskinesias and dystonia. Selective stimulation or lesioning of striatal cholinergic interneurons suggests they are primary players in this regulation, although multiple central nervous systems appear to be involved. IMPLICATIONS Accumulating data from preclinical studies and clinical trials suggest that drugs targeting CNS cholinergic systems may be useful for symptomatic treatment of movement disorders. Nicotinic cholinergic drugs, including nicotine and selective nAChR receptor agonists, reduce L-dopa-induced dyskinesias, as well as antipsychotic-induced tardive dyskinesia, and may be useful in Tourette's syndrome and ataxia. Subtype selective muscarinic cholinergic drugs may also provide effective therapies for Parkinson's disease, dyskinesias and dystonia. Continued studies/trials will help address this important issue.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - James T Boyd
- University of Vermont Medical Center Neurology, Burlington, VT
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Xiomara Perez
- Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
17
|
Ladefoged LK, Munro L, Pedersen AJ, Lummis SCR, Bang-Andersen B, Balle T, Schiøtt B, Kristensen AS. Modeling and Mutational Analysis of the Binding Mode for the Multimodal Antidepressant Drug Vortioxetine to the Human 5-HT 3A Receptor. Mol Pharmacol 2018; 94:1421-1434. [PMID: 30257860 DOI: 10.1124/mol.118.113530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 02/14/2025] Open
Abstract
5-Hydroxytryptamine3 (5-HT3) receptors are ligand-gated ion channels that mediate neurotransmission by serotonin in the central nervous system. Pharmacological inhibition of 5-HT3 receptor activity has therapeutic potential in several psychiatric diseases, including depression and anxiety. The recently approved multimodal antidepressant vortioxetine has potent inhibitory activity at 5-HT3 receptors. Vortioxetine has an inhibitory mechanism that differs from classic 5-HT3 receptor competitive antagonists despite being believed to bind in the same binding site. Specifically, vortioxetine shows partial agonist activity followed by persistent and insurmountable inhibition. We have investigated the binding mode of vortioxetine at the human 5-HT3A receptor through computational and in vitro experiments to provide insight into the molecular mechanisms behind the unique pharmacological profile of the drug. We find that vortioxetine binds in a manner different from currently known 5-HT3A orthosteric ligands. Specifically, while the binding pattern of vortioxetine mimics some aspects of both the setron class of competitive antagonists and 5-hydroxytryptamine (5-HT) with regards to interactions with residues of the aromatic box motif in the orthosteric binding site, vortioxetine also forms interactions with residues not previously described to be important for the binding of either setrons or 5-HT such as Val202 on Loop F. Our results expand the framework for understanding how orthosteric ligands drive 5-HT3 receptor function, which is of importance for the potential future development of novel classes of 5-HT3 receptor antagonists.
Collapse
Affiliation(s)
- Lucy Kate Ladefoged
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Lachlan Munro
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Anders J Pedersen
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Sarah C R Lummis
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Benny Bang-Andersen
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Thomas Balle
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| | - Anders S Kristensen
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark (L.K.L., B.S.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., A.J.P., A.S.K.); Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (S.C.R.L.); Lundbeck Research, H. Lundbeck A/S, Valby, Denmark (B.B.-A.); and Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia (T.B.)
| |
Collapse
|
18
|
Exercise-induced hippocampal neurogenesis: 5-HT 3 receptor antagonism by antipsychotics as a potential limiting factor in Schizophrenia. Mol Psychiatry 2018; 23:2252-2253. [PMID: 29422519 DOI: 10.1038/s41380-018-0022-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 11/09/2022]
|
19
|
Rollema H, Hurst RS. The contribution of agonist and antagonist activities of α4β2* nAChR ligands to smoking cessation efficacy: a quantitative analysis of literature data. Psychopharmacology (Berl) 2018; 235:2479-2505. [PMID: 29980822 DOI: 10.1007/s00213-018-4921-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/29/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVE Two mechanisms underlie smoking cessation efficacies of α4β2* nicotinic acetylcholine receptor (nAChR) agonists: a "nicotine-like" agonist activity reduces craving by substituting for nicotine during a quit attempt, and a "nicotine-blocking" antagonist activity attenuates reinforcement by competing with inhaled nicotine during a relapse. To evaluate the contribution of each mechanism to clinical efficacy, we estimated the degree of agonist and antagonist activities of nicotine replacement therapy (NRT), varenicline, cytisine, and the discontinued nAChR agonists dianicline, ABT-418, ABT-089, CP-601927, and CP-601932, relative to the functional effects of nicotine from smoking. METHODS Functional activities that occur in vivo with clinical doses were predicted from literature data on binding and functional potencies at the target α4β2 nAChR, as well as at α6β2* nAChRs, and from estimates of free drug exposures in human brain. Agonist activity is comprised of nAChR activation and desensitization, which were expressed as percentages of desensitization and activation by nicotine from smoking. Antagonist activity was expressed as the reduction in nAChR occupancy by nicotine during smoking in the presence of an agonist. RESULTS Comparisons with odds ratios at end of treatment suggest that extensive α4β2 and α6β2* nAChR desensitization combined with α6β2* nAChR activation at similar levels as nicotine from smoking is associated with clinical efficacy (NRT, varenicline, cytisine, ABT-418). Effective competition with inhaled nicotine for α4β2 and α6β2* nAChRs further improves clinical efficacy (varenicline). Other discontinued nAChR agonists have lower agonist and antagonist activities at α4β2 nAChRs and are inactive or less efficacious than NRT (dianicline, ABT-089, CP-601927, CP-601932). CONCLUSION Three pharmacological effects appear to be key factors underlying smoking cessation efficacy: the degree of activation of α6β2* nAChRs, desensitization of α4β2 and α6β2* nAChRs (agonist activity), and the reduction of nicotine occupancy at α4β2 and α6β2* nAChRs (antagonist activity). No single activity is dominant, and the level of smoking cessation efficacy depends on the profile of these activities achieved at clinical doses. While adequate agonist activity alone seems sufficient for a clinical effect (e.g., NRT, cytisine), clinical efficacy is improved with substantial competitive antagonism of α4β2 nAChRs, i.e., if the drug has a dual agonist-antagonist mechanism of action (e.g., varenicline).
Collapse
Affiliation(s)
- Hans Rollema
- Rollema Biomedical Consulting, 20 Holdridge Court, Mystic, CT, 06355, USA.
| | - Raymond S Hurst
- Hurst Neuropharmacology Consulting, 30 Brook Trail Road, Wayland, MA, 01778, USA
- Concert Pharmaceuticals, Inc., 99 Hayden Avenue, Suite 500, Lexington, MA, 02421, USA
| |
Collapse
|
20
|
Price KL, Lummis SCR. Characterization of a 5-HT 3-ELIC Chimera Revealing the Sites of Action of Modulators. ACS Chem Neurosci 2018; 9:1409-1415. [PMID: 29508995 DOI: 10.1021/acschemneuro.8b00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cys-loop receptors are major sites of action for many important therapeutically active compounds, but the sites of action of those that do not act at the orthosteric binding site or at the pore are mostly poorly understood. To help understand these, we here describe a chimeric receptor consisting of the extracellular domain of the 5-HT3A receptor and the transmembrane domain of a prokaryotic homologue, ELIC. Alterations of some residues at the coupling interface are required for function, but the resulting receptor expresses well and responds to 5-HT with a lower EC50 (0.34 μM) than that of the 5-HT3A receptor. Partial agonists and competitive antagonists of the 5-HT3A receptor activate and inhibit the chimera as expected. Examination of a range of receptor modulators, including ethanol, thymol, 5-hydroxyindole, and 5-chloroindole, which can affect the 5-HT3A receptor and ELIC, suggest that these compounds act via the transmembrane domain, except for 5-hydroxyindole, which can compete with 5-HT at the orthosteric binding site. The data throw further light on the importance of coupling interface in Cys-loop receptors and provide a platform for examining the mechanism of action of compounds that act in the extracellular domain of the 5-HT3A receptor and the transmembrane domain of ELIC.
Collapse
Affiliation(s)
- Kerry L. Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| |
Collapse
|
21
|
Touchette JC, Maertens JJ, Mason MM, O'Rourke KY, Lee AM. The nicotinic receptor drug sazetidine-A reduces alcohol consumption in mice without affecting concurrent nicotine consumption. Neuropharmacology 2018; 133:63-74. [PMID: 29355641 PMCID: PMC5858984 DOI: 10.1016/j.neuropharm.2018.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
Alcohol and nicotine addiction are frequently co-morbid. The nicotinic acetylcholine receptors (nAChRs) are critical for both alcohol and nicotine addiction mechanisms, since nAChR drugs that reduce nicotine consumption have been shown to also reduce alcohol consumption. Sazetidine-A, a pre-clinical nAChR drug with agonist and desensitizing effects at α4β2 and α7 nAChRs, has been reported to reduce alcohol consumption and nicotine self-administration in rats when administered at high doses. However, this effect has not been replicated in mice. In this study, we examined the effect of sazetidine-A on alcohol and nicotine consumption in male and female mice utilizing voluntary oral consumption procedures previously developed in our lab. We found that sazetidine-A (1 mg/kg, i.p) reduced overnight alcohol consumption, but did not affect nicotine consumption when presented either alone or concurrently with alcohol. Sazetidine-A did not reduce water or saccharin consumption at any dose tested. In a chronic co-consumption experiment in which either alcohol or nicotine was re-introduced after one week of forced abstinence, sazetidine-A attenuated post-abstinence consumption of alcohol but not nicotine. Sazetidine-A also significantly reduced alcohol consumption in an acute, binge drinking-in-the-dark procedure. Finally, we tested the effect of sazetidine-A on alcohol withdrawal, and found that sazetidine-A significantly reduced handling-induced convulsions during alcohol withdrawal. Collectively, these data suggest a novel role for the nAChR targets of sazetidine-A in specifically mediating alcohol consumption, separate from the involvement of nAChRs in mediating nicotine consumption. Delineation of this pathway may provide insight into novel therapies for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Jamie J Maertens
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Margaret M Mason
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyu Y O'Rourke
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Czachowski CL, Froehlich JC, DeLory M. The Effects of Long-Term Varenicline Administration on Ethanol and Sucrose Seeking and Self-Administration in Male P Rats. Alcohol Clin Exp Res 2018; 42:453-460. [PMID: 29168193 PMCID: PMC5785421 DOI: 10.1111/acer.13562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/16/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Varenicline, a partial agonist at α4β2 and full agonist at α7 nicotinic cholinergic receptors, is FDA-approved for treatment of smoking cessation and has been found to reduce alcohol craving in clinical populations. In rodents, varenicline decreases free-choice ethanol (EtOH) intake with somewhat mixed findings in operant paradigms that utilize a combined appetitive/consummatory response. METHODS The present experiment utilized an operant paradigm that procedurally separates appetitive from consummatory responding and a "reward-blocking" approach (i.e., rats were able to consume EtOH during treatment) to better understand the efficacy of varenicline as a treatment for EtOH self-administration and subsequent EtOH seeking. Separate groups of EtOH- and sucrose-reinforced alcohol-preferring, male P rats experienced alternating cycles of vehicle (2-week cycles) and varenicline (0.3, 1.0, and 2.0 mg/kg self-administered in a gelatin preparation) treatment (3-week cycles) prior to daily sessions where a single lever press resulted in 20 minutes of reinforcer access. At the end of each cycle, a single extinction session assessed the seeking response in the absence of drug pretreatment. RESULTS Varenicline dose dependently decreased EtOH intake. Sucrose intake was largely unaffected, with no overall treatment effects and only sporadic days where the medium and high dose differed from vehicle. Neither sucrose nor EtOH seeking was significantly decreased by varenicline, and there were no treatment effects on either lick or lever-press latency. Overall effect sizes were much greater for both drinking and seeking in the EtOH group as compared to the sucrose group. CONCLUSIONS Varenicline effectively attenuates EtOH self-administration during treatment, but the experience with EtOH consumption while varenicline is "on board" is not sufficient to alter subsequent EtOH seeking. The overall pattern of findings indicates that varenicline blocks the rewarding properties of EtOH while not substituting for EtOH, that the nonspecific effects on an alternate reinforcer are negligible, and that blood levels of varenicline need to be maintained in order for treatment to remain effective.
Collapse
Affiliation(s)
- Cristine L Czachowski
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Janice C Froehlich
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael DeLory
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
23
|
Chen S, Bennet L, McGregor AL. Delayed Varenicline Administration Reduces Inflammation and Improves Forelimb Use Following Experimental Stroke. J Stroke Cerebrovasc Dis 2017; 26:2778-2787. [PMID: 28797614 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/21/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pharmacological activation of the cholinergic anti-inflammatory pathway (CAP), specifically by activating α7 nicotinic acetylcholine receptors, has been shown to confer short-term improvements in outcome. Most studies have investigated administration within 24 hours of stroke, and few have investigated drugs approved for use in human patients. We investigated whether delayed administration of varenicline, a high-affinity agonist at α7 nicotinic receptors and an established therapy for nicotine addiction, decreased brain inflammation and improved functional performance in a mouse model of experimental stroke. METHODS CSF-1R-EGFP (MacGreen) mice were subjected to transient middle cerebral artery occlusion and administered varenicline (2.5 mg/kg/d for 7 days) or saline (n = 10 per group) 3 days after stroke. Forelimb asymmetry was assessed in the Cylinder test every 2 days after surgery, and structural lesions were quantified at day 10. Enhanced green fluorescent protein (EGFP) and growth associated protein 43 (GAP43) immunohistochemistry were used to evaluate the effect of varenicline on inflammation and axonal regeneration, respectively. RESULTS Varenicline-treated animals showed a significant increase in impaired forelimb use compared with saline-treated animals 10 days after stroke. Varenicline treatment was associated with reduced EGFP expression and increased GAP43 expression in the striatum of MacGreen mice. CONCLUSION Our results show that delayed administration of varenicline promotes recovery of function following experimental stroke. Motor function improvements were accompanied by decreased brain inflammation and increased axonal regeneration in nonpenumbral areas. These results suggest that the administration of an exogenous nicotinic agonist in the subacute phase following stroke may be a viable therapeutic strategy for stroke patients.
Collapse
Affiliation(s)
- Siyi Chen
- School of Pharmacy, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ailsa L McGregor
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Division of Health Sciences, School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
24
|
Price KL, Hirayama Y, Lummis SCR. Subtle Differences among 5-HT 3AC, 5-HT 3AD, and 5-HT 3AE Receptors Are Revealed by Partial Agonists. ACS Chem Neurosci 2017; 8:1085-1091. [PMID: 28367632 DOI: 10.1021/acschemneuro.6b00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
5-HT3 receptors are members of the Cys-loop family of ligand-gated ion channels, and, like most members of this family, there are multiple subunits that can contribute to functional pentameric receptors. 5-HT3A and 5-HT3AB receptors have been extensively characterized, but there are few studies on 5-HT3AC, 5-HT3AD, and 5-HT3AE receptors. Here we explore the properties of a range of partial agonists at 5-HT3AC, 5-HT3AD, and 5-HT3AE receptors following expression in Xenopus oocytes. The data show that the characteristics of receptor activation differ in the different heteromeric receptors when they are challenged with 5-HT, m-chlorophenylbiguanide (mCPBG), varenicline, 5-fluorotryptamine (5-FT), or thymol. 5-HT, 5-FT, varenicline, and mCPBG activation of 5-HT3AC, 5-HT3AD, and 5-HT3AE receptors yields similar EC50s to homomeric 5-HT3A receptors, but maximal responses differ. There are also differences in the levels of potentiation by thymol, which is greater at 5-HT3A receptors than 5-HT3AB, 5-HT3AC, 5-HT3AD, or 5-HT3AE receptors. Docking thymol into the receptor indicates a different residue in the transmembrane domain could provide an explanation for these data. Overall our study suggests that 5-HT3AC, 5-HT3AD, and 5-HT3AE have distinct pharmacological profiles to those of 5-HT3A and 5-HT3AB receptors; this is likely related to their distinct roles in the nervous system, consistent with their differential association with various disorders. Thus, these data pave the way for drugs that can specifically target these proteins.
Collapse
Affiliation(s)
- Kerry L. Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Yuri Hirayama
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
25
|
de Moura FB, McMahon LR. The contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors to the discriminative stimulus effects of nicotine and varenicline in mice. Psychopharmacology (Berl) 2017; 234:781-792. [PMID: 28028600 PMCID: PMC5309148 DOI: 10.1007/s00213-016-4514-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE The extent to which non-α4β2 versus α4β2* nAChRs contribute to the behavioral effects of varenicline and other nAChR agonists is unclear. OBJECTIVES The purpose of this study was to characterize the discriminative stimulus effects of varenicline and nicotine using various nAChR agonists and antagonists to elucidate possible non-α4β2 nAChR mechanisms. METHODS Separate groups of male C57BL/6J mice were trained to discriminate varenicline (3.2 mg/kg) or nicotine (1 mg/kg). Test drugs included mecamylamine; the nAChR agonists epibatidine, nicotine, cytisine, varenicline, and RTI-102; the β2-containing nAChR antagonist dihydro-β-erythroidine (DHβE); the α7 nAChR agonist PNU-282987; the α7 antagonist methyllycaconitine (MLA); the α3β4 antagonist 18-methoxycoronaridine (18-MC); and the non-nAChR drugs midazolam and cocaine. RESULTS In nicotine-trained mice, maximum nicotine-appropriate responding was 95% nicotine, 94% epibatidine, 63% varenicline, 58% cytisine, and less than 50% for RTI-102, PNU-282987, midazolam, and cocaine. In varenicline-trained mice, maximum varenicline-appropriate responding was 90% varenicline, 86% epibatidine, 74% cytisine, 80% RTI-102, 50% cocaine, and 50% or less for nicotine, PNU-282987, and midazolam. Drugs were studied to doses that abolished operant responding. Mecamylamine antagonized the discriminative stimulus effects, but not the rate-decreasing effects, of nicotine and varenicline. DHβE antagonized the discriminative stimulus and rate-decreasing effects of nicotine but not varenicline in either the nicotine or varenicline discrimination assays. The discriminative stimulus, but not the rate-decreasing, effects of epibatidine were antagonized by DHβE regardless of the training drug. CONCLUSIONS These results suggest that α4β2* nAChRs differentially mediate the discriminative stimulus effects of nicotine and varenicline, and suggest that varenicline has substantial non-α4β2 nAChR activity.
Collapse
Affiliation(s)
- Fernando B de Moura
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
26
|
Thompson AJ, Metzger S, Lochner M, Ruepp MD. The binding orientation of epibatidine at α7 nACh receptors. Neuropharmacology 2017; 116:421-428. [PMID: 28089847 PMCID: PMC5390772 DOI: 10.1016/j.neuropharm.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 11/30/2022]
Abstract
Epibatidine is an alkaloid toxin that binds with high affinity to nicotinic and muscarinic acetylcholine receptors, and has been extensively used as a research tool. To examine binding interactions at the nicotinic receptor, it has been co-crystallised with the structural homologue acetylcholine binding protein (AChBP; PDB ID 2BYQ), and with an AChBP chimaera (3SQ6) that shares 64% sequence identity with the α7 nACh receptor. However, the binding orientations revealed by AChBP co-crystal structures may not precisely represent their receptor homologues and experimental evidence is needed to verify the ligand poses. Here we identify potential binding site interactions between epibatidine and AChBP residues, and substitute equivalent positions in the α7 nACh receptor. The effects of these are probed by [3H]epibatidine binding following the expression α7 nACh receptor cysteine mutants in HEK 293 cells. Of the sixteen mutants created, the affinity of epibatidine was unaffected by the substitutions Q55C, L106C, L116C, T146C, D160C and S162C, reduced by C186A and C187A, increased by Q114C and S144C, and abolished by W53C, Y91C, N104C, W145C, Y184C and Y191C. These results are consistent with the predicted orientations in AChBP and suggest that epibatidine is likely to occupy a similar location at α7 nACh receptors. We speculate that steric constraints placed upon the C-5 position of the pyridine ring in 3SQ6 may account for the relatively poor affinities of epibatidine derivatives that are substituted at this position.
Collapse
Affiliation(s)
| | - Simon Metzger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Differential antagonism and tolerance/cross-tolerance among nicotinic acetylcholine receptor agonists: scheduled-controlled responding and hypothermia in C57BL/6J mice. Behav Pharmacol 2016; 27:240-8. [PMID: 26910582 DOI: 10.1097/fbp.0000000000000233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tobacco-dependence pharmacotherapies varenicline and cytisine act as partial α4β2 nAChR agonists. However, the extent to which α4β2 nicotinic acetylcholine receptors (nAChRs) mediate their in-vivo effects remains unclear. Nicotine, varenicline, cytisine, and epibatidine were studied in male C57BL/6J mice for their effects on rates of fixed ratio responding and rectal temperature alone and in combination with the nonselective nAChR antagonist mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine. The effects of nicotine, varenicline, cytisine, epibatidine, and cocaine were assessed before and during chronic nicotine treatment. The rate-decreasing and hypothermic effects of nicotine, varenicline, cytisine, and epibatidine were antagonized by mecamylamine (1 mg/kg), but only the effects of nicotine and epibatidine were antagonized by dihydro-β-erythroidine (3.2 mg/kg). Chronic nicotine produced 4.7 and 5.1-fold rightward shifts in the nicotine dose-effect functions to decrease response rate and rectal temperature, respectively. Nicotine treatment decreased the potency of epibatidine to decrease response rate and rectal temperature 2.2 and 2.9-fold, respectively, and shifted the varenicline dose-effect functions 2.0 and 1.7-fold rightward, respectively. Cross-tolerance did not develop from nicotine to cytisine. These results suggest that the in-vivo pharmacology of tobacco cessation aids cannot be attributed to a single nAChR subtype; instead, multiple receptor subtypes differentially mediate their effects.
Collapse
|
28
|
Celli J, Rappold G, Niesler B. The Human Serotonin Type 3 Receptor Gene (HTR3A-E) Allelic Variant Database. Hum Mutat 2016; 38:137-147. [PMID: 27763704 DOI: 10.1002/humu.23136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 12/17/2022]
Abstract
Serotonin type 3 (5-HT3 ) receptors are ligand-gated ion channels formed by five subunits (5-HT3A-E), which are encoded by the HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E genes. Functional receptors are pentameric complexes of diverse composition. Different receptor subtypes confer a predisposition to nausea and vomiting during chemotherapy, pregnancy, and following surgery. In addition, different subtypes contribute to neurogastroenterologic disorders such irritable bowel syndrome (IBS) and eating disorders as well as comorbid psychiatric conditions. 5-HT3 receptor antagonists are established treatments for emesis and IBS and are beneficial in the treatment of psychiatric diseases. Several case-control and pharmacogenetic studies have demonstrated an association between HTR3 variants and psychiatric and neurogastroenterologic phenotypes. Recently, their potential as predictors of nausea and vomiting and treatment of psychiatric disorders became evident. This information is now available in the serotonin receptor 3 HTR3 gene allelic variant database (www.htr3.uni-hd.de), which contains five sub-databases, one for each of the five different serotonin receptor genes HTR3A-E. Information on HTR3 variants, their functional relevance, associated phenotypes, and pharmacogenetic data such as drug response and side effects are available. This central information pool should help clinicians as well as scientists to evaluate their findings and to use the relevant information for subsequent genotype-phenotype correlation studies and pharmacogenetic approaches.
Collapse
Affiliation(s)
- Jacopo Celli
- Center of Human and Clinical Genetics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gudrun Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Lohning AE, Marx W, Isenring L. In silico investigation into the interactions between murine 5-HT 3 receptor and the principle active compounds of ginger (Zingiber officinale). J Mol Graph Model 2016; 70:315-327. [PMID: 27816008 DOI: 10.1016/j.jmgm.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022]
Abstract
Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors.
Collapse
Affiliation(s)
- Anna E Lohning
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, 4229, Australia.
| | - Wolfgang Marx
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, 4229, Australia.
| | - Liz Isenring
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, 4229, Australia.
| |
Collapse
|
30
|
The effect of varenicline on binge-like ethanol consumption in mice is β4 nicotinic acetylcholine receptor-independent. Neurosci Lett 2016; 633:235-239. [PMID: 27693436 DOI: 10.1016/j.neulet.2016.09.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our laboratory has previously shown that the smoking-cessation agent varenicline, an agonist/partial agonist of α4β2*, α3β4*, α3β2*, α6β2* (* indicates the possibility of additional subunits) and α7 subunits of nicotinic acetylcholine receptors (nAChRs), reduces ethanol consumption in rats only after long-term exposure (12 weeks). As compounds having partial agonistic activity on α3β4* nAChRs were shown to decrease ethanol consumption in rodents, we assessed here the involvement of the β4 subunit in the effect of varenicline in the reduction of short- and long-term binge-like ethanol drinking in mice. METHODS We used the well-validated drinking-in-the-dark (DID) paradigm to model chronic binge-like ethanol drinking in β4-/- and β4+/+ littermate mice and compare the effect of intraperitoneal injection of varenicline (2mg/kg) on ethanol intake following short- (4 weeks) or long-term (12 weeks) exposure. RESULTS Drinking pattern and amounts of ethanol intake were similar in β4-/- and β4+/+ mice. Interestingly, our results showed that varenicline reduces ethanol consumption following short- and long-term ethanol exposure in the DID. Although the effect of varenicline on the reduction of ethanol consumption was slightly more pronounced in β4-/- mice than their β4+/+ littermates no significant differences were observed between genotypes. CONCLUSION In mice, varenicline reduces binge-like ethanol consumption both after short- and long-term exposure in the DID and this effect is independent of β4 nAChR subunit.
Collapse
|
31
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Gasiorek A, Trattnig SM, Ahring PK, Kristiansen U, Frølund B, Frederiksen K, Jensen AA. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochem Pharmacol 2016; 110-111:92-108. [DOI: 10.1016/j.bcp.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
|
33
|
Lange-Asschenfeldt C, Schäble S, Suvorava T, Fahimi EG, Bisha M, Stermann T, Henning U, Kojda G. Effects of varenicline on alpha4-containing nicotinic acetylcholine receptor expression and cognitive performance in mice. Neuropharmacology 2016; 107:100-110. [PMID: 27012889 DOI: 10.1016/j.neuropharm.2016.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Nicotinic acetylcholine receptor (nAChR) subtypes containing the α4 subunit, particularly α4β2 nAChRs, play an important role in cognitive functioning. The impact of the smoking cessation aid varenicline, a selective partial α4β2 nAChR agonist, on (1) changes of central protein and mRNA expression of this receptor and (2) on memory deficits in a mouse model of cognitive impairment was investigated. Protein and mRNA expression of both the α4 and β2 receptor subunits in mouse brain endothelial and hippocampal cells as well as hippocampus and neocortex tissues were determined by western blot and realtime PCR, respectively. The β2 antibody showed low specificity, though. Tissues were examined following a 2-week oral treatment with various doses of varenicline (0.01, 0.1, 1, 3 mg/kg/day) or vehicle. In addition, episodic memory of mice was assessed following this treatment with an object recognition task using (1) normal mice and (2) animals with anticholinergic-induced memory impairment (i.p. injection of 0.5 mg/kg scopolamine). Varenicline dose-dependently increased protein expression of both the α4 and β2 subunit in cell cultures and brain tissues, respectively, but had no effect on mRNA expression of both subunits. Scopolamine injection induced a significant reduction of object memory in vehicle-treated mice. By contrast, cognitive performance was not altered by scopolamine in varenicline-treated mice. In conclusion, a 2-week oral treatment with varenicline prevented memory impairment in the scopolamine mouse model. In parallel, protein, but not mRNA expression was upregulated, suggesting a posttranscriptional mechanism. Our findings suggest a beneficial effect of varenicline on cognitive dysfunction.
Collapse
Affiliation(s)
| | - Sandra Schäble
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ehsan Gholamreza Fahimi
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marion Bisha
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Torben Stermann
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Uwe Henning
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Georg Kojda
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
34
|
Price KL, Lillestol RK, Ulens C, Lummis SCR. Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP. ACS Chem Neurosci 2015; 6:1151-7. [PMID: 25648658 PMCID: PMC4505686 DOI: 10.1021/cn500369h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here, we report the X-ray crystal structure of the 5-HT binding protein (5-HTBP) in complex with varenicline, and test the predicted interactions by probing the potency of varenicline in a range of mutant 5-HT3 receptors expressed in HEK293 cells and Xenopus oocytes. The structure reveals a range of interactions between varenicline and 5-HTBP. We identified residues within 5 Å of varenicline and substituted the equivalent residues in the 5-HT3 receptor with Ala or a residue with similar chemical properties. Functional characterization of these mutant 5-HT3 receptors, using a fluorescent membrane potential dye in HEK cells and voltage clamp in oocytes, supports interactions between varenicline and the receptor that are similar to those in 5-HTBP. The structure also revealed C-loop closure that was less than in the 5-HT-bound 5-HTBP, and hydrogen bonding between varenicline and the complementary face of the binding pocket via a water molecule, which are characteristics consistent with partial agonist behavior of varenicline in the 5-HT3 receptor. Together, these data reveal detailed insights into the molecular interaction of varenicline in the 5-HT3 receptor.
Collapse
Affiliation(s)
- Kerry L Price
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Reidun K Lillestol
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Chris Ulens
- ‡The Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PB 601, B-3000 Leuven, Belgium
| | - Sarah C R Lummis
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
35
|
Otvos RA, Krishnamoorthy Iyer J, van Elk R, Ulens C, Niessen WMA, Somsen GW, Kini RM, Smit AB, Kool J. Development of Plate Reader and On-Line Microfluidic Screening to Identify Ligands of the 5-Hydroxytryptamine Binding Protein in Venoms. Toxins (Basel) 2015; 7:2336-53. [PMID: 26114334 PMCID: PMC4516916 DOI: 10.3390/toxins7072336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
The 5-HT3 receptor is a ligand-gated ion channel, which is expressed in the nervous system. Its antagonists are used clinically for treatment of postoperative- and radiotherapy-induced emesis and irritable bowel syndrome. In order to better understand the structure and function of the 5-HT3 receptor, and to allow for compound screening at this receptor, recently a serotonin binding protein (5HTBP) was engineered with the Acetylcholine Binding Protein as template. In this study, a fluorescence enhancement assay for 5HTBP ligands was developed in plate-reader format and subsequently used in an on-line microfluidic format. Both assay types were validated using an existing radioligand binding assay. The on-line microfluidic assay was coupled to HPLC via a post-column split which allowed parallel coupling to a mass spectrometer to collect MS data. This high-resolution screening (HRS) system is well suitable for compound mixture analysis. As a proof of principle, the venoms of Dendroapsis polylepis, Pseudonaja affinis and Pseudonaja inframacula snakes were screened and the accurate masses of the found bioactives were established. To demonstrate the subsequent workflow towards structural identification of bioactive proteins and peptides, the partial amino acid sequence of one of the bioactives from the Pseudonaja affinis venom was determined using a bottom-up proteomics approach.
Collapse
Affiliation(s)
- Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Janaki Krishnamoorthy Iyer
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; E-Mails: (J.K.I.); (R.M.K.)
| | - René van Elk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Herestraat 49, PB 601, B-3000 Leuven, Belgium; E-Mail:
| | - Wilfried M. A. Niessen
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; E-Mails: (J.K.I.); (R.M.K.)
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-20-5987542; Fax: +31-20-5987543
| |
Collapse
|
36
|
Kasheverov IE, Shelukhina IV, Kudryavtsev DS, Makarieva TN, Spirova EN, Guzii AG, Stonik VA, Tsetlin VI. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar Drugs 2015; 13:1255-66. [PMID: 25775422 PMCID: PMC4377982 DOI: 10.3390/md13031255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Tatyana N Makarieva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Alla G Guzii
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| |
Collapse
|
37
|
Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol 2015; 9:917-926. [PMID: 24926542 DOI: 10.1097/jto.0000000000000191] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cigarette smoke associated polycyclic aromatic hydrocarbons can induce key drug-metabolizing enzymes of cytochrome P450 and isoforms of the glucuronyl transferases families. These enzymes metabolize several systemic therapies for lung cancer. Induction of these enzymes may lead to accelerated clearance with resultant impact on systemic therapy efficacy and toxicity in smokers compared with nonsmokers. This article reviews published literature regarding the influence of smoking as it relates to alteration of metabolism of systemic therapy in lung cancer. METHODS A structured search of the National Library of Medicine's PubMed/MEDLINE identified relevant articles. Data were abstracted and analyzed to summarize the findings. RESULTS Studies that analyzed pharmacokinetic data were prospective. Smokers receiving erlotinib exhibited rapid clearance, requiring a higher dose to reach equivalent systemic exposure compared with nonsmokers. Smokers receiving irinotecan also demonstrated increased clearance and lower systemic exposure. There was no difference in clearance of paclitaxel or docetaxel in smokers. Chemotherapy-associated neutropenia was worse in nonsmokers compared with smokers in patients treated with paclitaxel, docetaxel, irinotecan, and gemcitabine. CONCLUSIONS Systemic therapy for lung cancer has a narrow therapeutic index such that small changes in plasma concentrations or exposure in smokers may result in suboptimal therapy and poor outcomes. Smoking cessation must be emphasized at each clinical visit. However, prospective trials should take into consideration the effects of smoking history on drug pharmacokinetics and efficacy. The metabolizing enzyme phenotype in smokers may require individualized dose algorithms for specific agents.
Collapse
|
38
|
Gubner NR, McKinnon CS, Phillips TJ. Effects of varenicline on ethanol-induced conditioned place preference, locomotor stimulation, and sensitization. Alcohol Clin Exp Res 2014; 38:3033-42. [PMID: 25581658 PMCID: PMC4293040 DOI: 10.1111/acer.12588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/23/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Varenicline, a partial nicotinic acetylcholine receptor (nAChR) agonist, is a promising new drug for the treatment of alcohol (ethanol [EtOH]) dependence. Varenicline has been approved by the Food and Drug Administration as a smoking cessation therapeutic and has also been found to reduce EtOH consumption in humans and animal models of alcohol use. These studies examined the hypotheses that varenicline attenuates the stimulant and sensitizing effects of EtOH and reduces the motivational effects of EtOH-associated cues. The goal was to determine whether these effects of varenicline contribute to its pharmacotherapeutic effects for alcohol dependence. In addition, effects of varenicline on acute stimulation and/or on the acquisition of sensitization would suggest a role for nAChR involvement in these effects of EtOH. METHODS Dose-dependent effects of varenicline on the expression of EtOH-induced conditioned place preference (CPP), locomotor activation, and behavioral sensitization were examined. These measures model motivational effects of EtOH-associated cues, euphoric or stimulatory effects of EtOH, and EtOH-induced neuroadaptation. All studies used DBA/2J mice, an inbred strain with high sensitivity to these EtOH-related effects. RESULTS Varenicline did not significantly attenuate the expression of EtOH-induced CPP. Varenicline reduced locomotor activity and had the most pronounced effect in the presence of EtOH, with the largest effect on acute EtOH-induced locomotor stimulation and a trend for varenicline to attenuate the expression of EtOH-induced sensitization. CONCLUSIONS Because varenicline did not attenuate the expression of EtOH-induced CPP, it may not be effective at reducing the motivational effects of EtOH-associated cues. This outcome suggests that reductions in the motivational effects of EtOH-associated cues may not be involved in how varenicline reduces EtOH consumption. However, varenicline did have effects on locomotor behavior and significantly attenuated acute EtOH-induced locomotor stimulation. In humans who drink while taking varenicline, it might similarly reduce stimulant responses and have an impact on continued drinking. General sedative effects in such individuals should be carefully considered.
Collapse
Affiliation(s)
- Noah R. Gubner
- Department of Behavioral Neuroscience and Portland Alcohol Research Center,
Oregon Health & Science University, Portland, OR, USA
| | - Carrie S. McKinnon
- Department of Behavioral Neuroscience and Portland Alcohol Research Center,
Oregon Health & Science University, Portland, OR, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center,
Oregon Health & Science University, Portland, OR, USA
- VA Medical Center, Portland, OR, USA
| |
Collapse
|
39
|
Lochner M, Thompson AJ. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors. J Pharmacol Exp Ther 2014; 351:674-84. [PMID: 25277140 DOI: 10.1124/jpet.114.218461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.
Collapse
Affiliation(s)
- Martin Lochner
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| | - Andrew J Thompson
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| |
Collapse
|
40
|
Onajole OK, Eaton JB, Lukas RJ, Brunner D, Thiede L, Caldarone BJ, Kozikowski AP. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands. ACS Med Chem Lett 2014; 5:1196-201. [PMID: 25408831 DOI: 10.1021/ml500129k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 09/29/2014] [Indexed: 01/24/2023] Open
Abstract
We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2*-nAChRs) over β4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2- and α4β2*-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15.
Collapse
Affiliation(s)
- Oluseye K. Onajole
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - J. Brek Eaton
- Division
of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Ronald J. Lukas
- Division
of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Dani Brunner
- PsychoGenics, Inc., 765 Old Saw Mill
River Road, Tarrytown, New
York 10591, United States
| | - Lucinda Thiede
- PsychoGenics, Inc., 765 Old Saw Mill
River Road, Tarrytown, New
York 10591, United States
| | - Barbara J. Caldarone
- NeuroBehavior
Laboratory, Harvard NeuroDiscovery Center and Department of Neurology, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Alan P. Kozikowski
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
41
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hauser SR, Deehan GA, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Enhanced alcohol-seeking behavior by nicotine in the posterior ventral tegmental area of female alcohol-preferring (P) rats: modulation by serotonin-3 and nicotinic cholinergic receptors. Psychopharmacology (Berl) 2014; 231:3745-55. [PMID: 24599396 PMCID: PMC4516288 DOI: 10.1007/s00213-014-3508-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE Alcohol and nicotine co-use can reciprocally promote self-administration and drug-craving/drug-seeking behaviors. To date, the neurocircuitry in which nicotine influences ethanol (EtOH) seeking has not been elucidated. Clinical and preclinical research has suggested that the activation of the mesolimbic dopamine system is involved in the promotion of drug seeking. Alcohol, nicotine, and serotonin-3 (5-HT3) receptors interact within the posterior ventral tegmental area (pVTA) to regulate drug reward. Recently, our laboratory has reported that systemic administration of nicotine can promote context-induced EtOH seeking. OBJECTIVES The goals of the current study were to (1) determine if microinjections of pharmacologically relevant levels of nicotine into the pVTA would enhance EtOH seeking, (2) determine if coadministration of nicotinic cholinergic receptor antagonist (nACh) or 5-HT3 receptor antagonists would block the ability of nicotine microinjected into the pVTA to promote EtOH seeking, and (3) determine if 5-HT3 receptors in the pVTA can modulate EtOH seeking. RESULTS Nicotine (100 and 200 μM) microinjected into the pVTA enhanced EtOH seeking. Coinfusion with 200 μM mecamylamine (nACh antagonist) or 100 and 200 μM zacopride (5-HT3 receptor antagonist) blocked the observed nicotine enhancement of EtOH seeking. The data also indicated that microinjection of 1 μM CPBG (5-HT3 receptor agonist) promotes context-induced EtOH seeking; conversely, microinjection of 100 and 200 μM zacopride alone reduced context-induced EtOH seeking. CONCLUSIONS Overall, the results show that nicotine-enhanced EtOH-seeking behavior is modulated by 5-HT3 and nACh receptors within the pVTA and that the 5-HT3 receptor system within pVTA may be a potential pharmacological target to inhibit EtOH-seeking behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202-4887, USA,
| | | | | | | | | | | |
Collapse
|
43
|
Liu Y, Paige M, Olson TT, Al-Muhtasib N, Xie T, Hou S, White MP, Cordova A, Guo JL, Kellar KJ, Xiao Y, Brown ML. Synthesis and pharmacological characterization of new neuronal nicotinic acetylcholine receptor ligands derived from Sazetidine-A. Bioorg Med Chem Lett 2014; 24:2954-6. [DOI: 10.1016/j.bmcl.2014.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022]
|
44
|
Batsikadze G, Paulus W, Grundey J, Kuo MF, Nitsche MA. Effect of the Nicotinic α4β2-receptor Partial Agonist Varenicline on Non-invasive Brain Stimulation-Induced Neuroplasticity in the Human Motor Cortex. Cereb Cortex 2014; 25:3249-59. [PMID: 24917274 DOI: 10.1093/cercor/bhu126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nicotine alters cognitive functions in animals and humans most likely by modification of brain plasticity. In the human brain, it alters plasticity induced by transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS), probably by interference with calcium-dependent modulation of the glutamatergic system. We aimed to test this hypothesis further by exploring the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity, induced by PAS and tDCS, respectively. We administered low (0.1 mg), medium (0.3 mg), and high (1.0 mg) single doses of varenicline or placebo medication before PAS or tDCS on the left motor cortex of 25 healthy non-smokers. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes up to 36 h after plasticity induction. Whereas low-dose varenicline had no impact on stimulation-induced neuroplasticity, medium-dose abolished tDCS-induced facilitatory after-effects, favoring focal excitatory plasticity. High-dose application preserved cathodal tDCS-induced excitability diminution and focal excitatory PAS-induced facilitatory plasticity. These results are comparable to the impact of nicotine receptor activation and might help to further explain the involvement of specific receptor subtypes in the nicotinic impact on neuroplasticity and cognitive functions in healthy subjects and patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Jessica Grundey
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Min-Fang Kuo
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
45
|
Quik M, Zhang D, Perez XA, Bordia T. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 2014; 144:50-9. [PMID: 24836728 DOI: 10.1016/j.pharmthera.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
A large body of evidence using experimental animal models shows that the nicotinic cholinergic system is involved in the control of movement under physiological conditions. This work raised the question whether dysregulation of this system may contribute to motor dysfunction and whether drugs targeting nicotinic acetylcholine receptors (nAChRs) may be of therapeutic benefit in movement disorders. Accumulating preclinical studies now show that drugs acting at nAChRs improve drug-induced dyskinesias. The general nAChR agonist nicotine, as well as several nAChR agonists (varenicline, ABT-089 and ABT-894), reduces l-dopa-induced abnormal involuntary movements or dyskinesias up to 60% in parkinsonian nonhuman primates and rodents. These dyskinesias are potentially debilitating abnormal involuntary movements that arise as a complication of l-dopa therapy for Parkinson's disease. In addition, nicotine and varenicline decrease antipsychotic-induced abnormal involuntary movements in rodent models of tardive dyskinesia. Antipsychotic-induced dyskinesias frequently arise as a side effect of chronic drug treatment for schizophrenia, psychosis and other psychiatric disorders. Preclinical and clinical studies also show that the nAChR agonist varenicline improves balance and coordination in various ataxias. Lastly, nicotine has been reported to attenuate the dyskinetic symptoms of Tourette's disorder. Several nAChR subtypes appear to be involved in these beneficial effects of nicotine and nAChR drugs including α4β2*, α6β2* and α7 nAChRs (the asterisk indicates the possible presence of other subunits in the receptor). Overall, the above findings, coupled with nicotine's neuroprotective effects, suggest that nAChR drugs have potential for future drug development for movement disorders.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
46
|
Campling BG, Kuryatov A, Lindstrom J. Acute activation, desensitization and smoldering activation of human acetylcholine receptors. PLoS One 2013; 8:e79653. [PMID: 24244538 PMCID: PMC3828267 DOI: 10.1371/journal.pone.0079653] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/03/2013] [Indexed: 01/22/2023] Open
Abstract
The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained “smoldering activation” occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β2)2β2 and (α4β2)2α4. The (α4β2)2β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β2)2α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.
Collapse
Affiliation(s)
- Barbara G. Campling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Yenugonda VM, Xiao Y, Levin ED, Rezvani AH, Tran T, Al-Muhtasib N, Sahibzada N, Xie T, Wells C, Slade S, Johnson JE, Dakshanamurthy S, Kong HS, Tomita Y, Liu Y, Paige M, Kellar KJ, Brown ML. Design, synthesis and discovery of picomolar selective α4β2 nicotinic acetylcholine receptor ligands. J Med Chem 2013; 56:8404-21. [PMID: 24047231 DOI: 10.1021/jm4008455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing novel and selective compounds that desensitize α4β2 nicotinic acetylcholine receptors (nAChRs) could provide new effective treatments for nicotine addiction, as well as other disorders. Here we report a new class of nAChR ligands that display high selectivity and picomolar binding affinity for α4β2 nicotinic receptors. The novel compounds have Ki values in the range of 0.031-0.26 nM and properties that should make them good candidates as drugs acting in the CNS. The selected lead compound 1 (VMY-2-95) binds with high affinity and potently desensitizes α4β2 nAChRs. At a dose of 3 mg/kg, compound 1 significantly reduced rat nicotine self-administration. The overall results support further characterizations of compound 1 and its analogues in preclinical models of nicotine addiction and perhaps other disorders involving nAChRs.
Collapse
Affiliation(s)
- Venkata M Yenugonda
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW, Research Building, EP-07, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Michaelson SD, Paulsen IM, Kozuska JL, Martin IL, Dunn SMJ. Importance of recognition loops B and D in the activation of human 5-HT₃ receptors by 5-HT and meta-chlorophenylbiguanide. Neuropharmacology 2013; 73:398-403. [PMID: 23810831 DOI: 10.1016/j.neuropharm.2013.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
The 5-HT₃ receptor is a cation selective member of the pentameric Cys-loop ligand-gated ion channels. While five subunits are known to exist, only two receptor subtypes have been significantly characterized: the homomeric receptor consisting of five A subunits and the heteromeric receptor containing both A and B subunits. The agonist recognition and activation of these receptors is orchestrated by six recognition loops three, A-C, on the principal subunit, and three, D-F, on the complementary subunit. In this study we have focused on the B loop of the principal subunit and loop D of the complementary subunit where aligned amino acids differ between the two subunits. A mutational analysis has been carried out using both 5-HT and m-chlorophenylbiguanide (mCPBG) to characterize receptor activation in the mutant receptors using two-electrode voltage clamp in Xenopus oocytes. The results show that the B loop W178I mutation of the 5-HT3A subunit markedly reduces the efficacy of mCPBG in both the homomeric and heteromeric receptors, while activation by 5-HT remains intact. Replacement of the D loop amino acid triplet RQY of the 5-HT3A subunit, with the aligned residues from the 5-HT3B subunit, QEV, converts 5-HT to a weak partial agonist in both the homomer and heteromer, but does not compromise activation by mCPBG. Exchange of the RQY triplet for the 5-HT3B subunit homologue, QEV, increases the Hill coefficient and decreases the EC₅₀ of this mutant when expressed with the wild type 5-HT3A subunit.
Collapse
Affiliation(s)
- S D Michaelson
- Department of Pharmacology, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB, Canada T6H 2H7
| | | | | | | | | |
Collapse
|
49
|
Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S, Jordan K. α4β2 Nicotinic receptors play a role in the nAChR-mediated decline in L-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 2013; 71:191-203. [PMID: 23583932 DOI: 10.1016/j.neuropharm.2013.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 12/26/2022]
Abstract
L-Dopa-induced dyskinesias are a serious long-term side effect of dopamine replacement therapy for Parkinson's disease for which there are few treatment options. Our previous studies showed that nicotine decreased l-dopa-induced abnormal involuntary movements (AIMs). Subsequent work with knockout mice demonstrated that α6β2* nicotinic receptors (nAChRs) play a key role. The present experiments were done to determine if α4β2* nAChRs are also involved in l-dopa-induced dyskinesias. To approach this, we took advantage of the finding that α6β2* nAChRs are predominantly present on striatal dopaminergic nerve terminals, while a significant population of α4β2* nAChRs are located on other neurons. Thus, a severe dopaminergic lesion would cause a major loss in α6β2*, but not α4β2* nAChRs. Experiments were therefore done in which rats were unilaterally lesioned with 6-hydroxydopamine, at a dose that led to severe nigrostriatal damage. The dopamine transporter, a dopamine nerve terminal marker, was decreased by >99%. This lesion also decreased striatal α6β2* nAChRs by 97%, while α4β2* nAChRs were reduced by only 12% compared to control. A series of β2* nAChR compounds, including TC-2696, TI-10165, TC-8831, TC-10600 and sazetidine reduced l-dopa-induced AIMs in these rats by 23-32%. TC-2696, TI-10165, TC-8831 were also tested for parkinsonism, with no effect on this behavior. Tolerance did not develop with up to 3 months of treatment. Since α4α5β2 nAChRs are also predominantly on striatal dopamine terminals, these data suggest that drugs targeting α4β2 nAChRs may reduce l-dopa-induced dyskinesias in late stage Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Thompson AJ. Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol Sci 2013; 34:100-9. [DOI: 10.1016/j.tips.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022]
|