1
|
Drakopoulos A, Koszegi Z, Seier K, Hübner H, Maurel D, Sounier R, Granier S, Gmeiner P, Calebiro D, Decker M. Design, Synthesis, and Characterization of New δ Opioid Receptor-Selective Fluorescent Probes and Applications in Single-Molecule Microscopy of Wild-Type Receptors. J Med Chem 2024; 67:12618-12631. [PMID: 39044606 PMCID: PMC11386433 DOI: 10.1021/acs.jmedchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The delta opioid receptor (δOR or DOR) is a G protein-coupled receptor (GPCR) showing a promising profile as a drug target for nociception and analgesia. Herein, we design and synthesize new fluorescent antagonist probes with high δOR selectivity that are ideally suited for single-molecule microscopy (SMM) applications in unmodified, untagged receptors. Using our new probes, we investigated wild-type δOR localization and mobility at low physiological receptor densities for the first time. Furthermore, we investigate the potential formation of δOR homodimers, as such a receptor organization might exhibit distinct pharmacological activity, potentially paving the way for innovative pharmacological therapies. Our findings indicate that the majority of δORs labeled with these probes exist as freely diffusing monomers on the cell surface in a simple cell model. This discovery advances our understanding of OR behavior and offers potential implications for future therapeutic research.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology, Julius-Maximilians University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Harald Hübner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Peter Gmeiner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Tentolouris A, Ntanasis-Stathopoulos I, Terpos E. Obesity and multiple myeloma: emerging mechanisms and perspectives. Semin Cancer Biol 2023; 92:45-60. [PMID: 37030643 DOI: 10.1016/j.semcancer.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023]
Abstract
Obesity is a global pandemic that has been associated with the development of breast, endometrial, large intestine, renal, esophageal, and pancreatic cancer. Obesity is also involved in the development of cardiovascular disease and type 2 diabetes mellitus. Recently, an increase in the incidence of obesity-related cancers has been reported. Multiple myeloma (MM) is the second most common hematological malignancy, after lymphoma. The aim of this review is to examine the epidemiological data on obesity and MM, assess the effect of obesity on MM outcomes, evaluate the possible mechanisms through which obesity might increase the incidence of MM and provide the effects of obesity management on MM. Current evidence indicates that obesity may have an impact on the progression of monoclonal gammopathy of undetermined significance (MGUS) to MM and increase the prevalence of MM. However, data regarding the effect of obesity on MGUS incidence are controversial; further studies are needed to examine whether obesity affects the development of MGUS or the progression of MGUS to MM. In addition, obesity affects MM outcomes. Increased BMI is associated with decreased survival in patients with MM, while data regarding the effect of obesity on newly diagnosed MM subjects and autologous stem cell transplantation are limited. Interestingly, the obesity paradox may also apply to patients with relapsed/refractory MM who are overweight or obese, because they may have a survival advantage. The pathophysiological pathways linking obesity to MM are very complicated and include bone marrow adipose tissue; adipokines, such as adiponectin, leptin, resistin, and visfatin; inflammatory cytokines and growth factors, such as TNF-α and IL-6; hormones including insulin and the insulin-like growth factor system as well as sex hormones. In terms of the effect of pharmacological management of obesity, orlistat has been shown to alter the proliferation of MM cells, whereas no data exist on glucagon-like peptide-1 receptor agonists, naltrexone/bupropion, or phentermine/topiramate. Bariatric surgery may be associated with a reduction in the incidence of MM, however, further studies are needed.
Collapse
|
3
|
Characterization of IL-2 Stimulation and TRPM7 Pharmacomodulation in NK Cell Cytotoxicity and Channel Co-Localization with PIP 2 in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211879. [PMID: 34831634 PMCID: PMC8618557 DOI: 10.3390/ijerph182211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystemic disorder responsible for significant disability. Although a unifying etiology for ME/CFS is uncertain, impaired natural killer (NK) cell cytotoxicity represents a consistent and measurable feature of this disorder. Research utilizing patient-derived NK cells has implicated dysregulated calcium (Ca2+) signaling, dysfunction of the phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent cation channel, transient receptor potential melastatin (TRPM) 3, as well as altered surface expression patterns of TRPM3 and TRPM2 in the pathophysiology of ME/CFS. TRPM7 is a related channel that is modulated by PIP2 and participates in Ca2+ signaling. Though TRPM7 is expressed on NK cells, the role of TRPM7 with IL-2 and intracellular signaling mechanisms in the NK cells of ME/CFS patients is unknown. This study examined the effect of IL-2 stimulation and TRPM7 pharmacomodulation on NK cell cytotoxicity using flow cytometric assays as well as co-localization of TRPM7 with PIP2 and cortical actin using confocal microscopy in 17 ME/CFS patients and 17 age- and sex-matched healthy controls. The outcomes of this investigation are preliminary and indicate that crosstalk between IL-2 and TRMP7 exists. A larger sample size to confirm these findings and characterization of TRPM7 in ME/CFS using other experimental modalities are warranted.
Collapse
|
4
|
Peng Y, Zhang Q, Zielinski RM, Howells RD, Welsh WJ. Identification of an irreversible PPARγ antagonist with potent anticancer activity. Pharmacol Res Perspect 2020; 8:e00693. [PMID: 33280279 PMCID: PMC7719157 DOI: 10.1002/prp2.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is responsible for most skin cancer deaths, and its incidence continues to rise year after year. Different treatment options have been developed for melanoma depending on the stage of the disease. Despite recent advances in immuno- and targeted therapies, advanced melanoma remains incurable and thus an urgent need persists for safe and more effective melanoma therapeutics. In this study, we demonstrate that a novel compound MM902 (3-(3-(bromomethyl)-5-(4-(tert-butyl) phenyl)-1H-1,2,4-triazol-1-yl) phenol) exhibited potent efficacies in inhibiting the growth of different cancer cells, and suppressed tumor growth in a mouse xenograft model of malignant melanoma. Beginning with MM902 instead of specific targets, computational similarity- and docking-based approaches were conducted to search for known anticancer drugs whose structural features match MM902 and whose pharmacological target would accommodate an irreversible inhibitor. Peroxisome proliferator-activated receptor (PPAR) was computationally identified as one of the pharmacological targets and confirmed by in vitro biochemical assays. MM902 was shown to bind to PPARγ in an irreversible mode of action and to function as a selective antagonist for PPARγ over PPARα and PPARδ. It is hoped that MM902 will serve as a valuable research probe to study the functions of PPARγ in tumorigenesis and other pathological processes.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
| | - Qiang Zhang
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
- Present address:
Intra‐Cellular Therapies, Inc.430 East 29th StreetNew YorkNY10016USA
| | - Robert M. Zielinski
- Graduate School of Biomedical SciencesNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - Richard D. Howells
- Department of Biochemistry & Molecular BiologyNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - William J. Welsh
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
5
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
6
|
Yin C, Zhang Y, Hu L, Tian Y, Chen Z, Li D, Zhao F, Su P, Ma X, Zhang G, Miao Z, Wang L, Qian A, Xian CJ. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation. J Cell Physiol 2018; 233:5405-5419. [PMID: 29219183 DOI: 10.1002/jcp.26374] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/03/2023]
Abstract
Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Ge Zhang
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
7
|
Yi Z, Guo S, Hu X, Wang X, Zhang X, Griffin N, Shan F. Functional modulation on macrophage by low dose naltrexone (LDN). Int Immunopharmacol 2016; 39:397-402. [DOI: 10.1016/j.intimp.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
8
|
Hu L, Su P, Li R, Yan K, Chen Z, Shang P, Qian A. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells. BMB Rep 2016; 48:583-8. [PMID: 26277981 PMCID: PMC4911186 DOI: 10.5483/bmbrep.2015.48.10.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 01/12/2023] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Kun Yan
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhihao Chen
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
9
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Sen D, Huchital M, Chen YL. Crosstalk between delta opioid receptor and nerve growth factor signaling modulates neuroprotection and differentiation in rodent cell models. Int J Mol Sci 2013; 14:21114-39. [PMID: 24152443 PMCID: PMC3821661 DOI: 10.3390/ijms141021114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023] Open
Abstract
Both opioid signaling and neurotrophic factor signaling have played an important role in neuroprotection and differentiation in the nervous system. Little is known about whether the crosstalk between these two signaling pathways will affect neuroprotection and differentiation. Previously, we found that nerve growth factor (NGF) could induce expression of the delta opioid receptor gene (Oprd1, dor), mainly through PI3K/Akt/NF-κB signaling in PC12h cells. In this study, using two NGF-responsive rodent cell model systems, PC12h cells and F11 cells, we found the delta opioid neuropeptide [d-Ala2, d-Leu5] enkephalin (DADLE)-mediated neuroprotective effect could be blocked by pharmacological reagents: the delta opioid antagonist naltrindole, PI3K inhibitor LY294002, MAPK inhibitor PD98059, and Trk inhibitor K252a, respectively. Western blot analysis revealed that DADLE activated both the PI3K/Akt and MAPK pathways in the two cell lines. siRNA Oprd1 gene knockdown experiment showed that the upregulation of NGF mRNA level was inhibited with concomitant inhibition of the survival effects of DADLE in the both cell models. siRNA Oprd1 gene knockdown also attenuated the DADLE-mediated neurite outgrowth in PC12h cells as well as phosphorylation of MAPK and Akt in PC12h and F11 cells, respectively. These data together strongly suggest that delta opioid peptide DADLE acts through the NGF-induced functional G protein-coupled Oprd1 to provide its neuroprotective and differentiating effects at least in part by regulating survival and differentiating MAPK and PI3K/Akt signaling pathways in NGF-responsive rodent neuronal cells.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Biological Sciences, Binghamton University, the State University of New York at Binghamton, Binghamton, NY 13902, USA; E-Mails: (D.S.); (M.H.)
| | - Michael Huchital
- Department of Biological Sciences, Binghamton University, the State University of New York at Binghamton, Binghamton, NY 13902, USA; E-Mails: (D.S.); (M.H.)
| | - Yulong L. Chen
- Department of Biological Sciences, Binghamton University, the State University of New York at Binghamton, Binghamton, NY 13902, USA; E-Mails: (D.S.); (M.H.)
- The Center for Development and Behavioral Neurosciences, Binghamton University, the State University of New York at Binghamton, Binghamton, NY 13902, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-607-777-5218; Fax: +1-607-777-6521
| |
Collapse
|