1
|
Wei JS, Yang S, Wei Y, Shamsaddinimotlagh S, Tavakol H, Shi M. Gold( i)-catalyzed cycloisomerization of alcohol or amine tethered-vinylidenecyclopropanes providing access to morpholine, piperazine or oxazepane derivatives: a carbene versus non-carbene process. Org Chem Front 2023. [DOI: 10.1039/d3qo00085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A gold(i)-catalyzed adjustable intramolecular cyclization of alcohol or amine tethered-vinylidenecyclopropanes (VDCPs).
Collapse
Affiliation(s)
- Jun-Sheng Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Song Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | - Hossein Tavakol
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
3
|
Nirogi R, Mohammed AR, Shinde AK, Ravella SR, Bogaraju N, Subramanian R, Mekala VR, Palacharla RC, Muddana N, Thentu JB, Bhyrapuneni G, Abraham R, Jasti V. Discovery and Development of 3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane Hydrochloride (SUVN-911): A Novel, Potent, Selective, and Orally Active Neuronal Nicotinic Acetylcholine α4β2 Receptor Antagonist for the Treatment of Depression. J Med Chem 2020; 63:2833-2853. [PMID: 32026697 DOI: 10.1021/acs.jmedchem.9b00790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of chemical optimizations guided by in vitro affinity at the α4β2 receptor in combination with selectivity against the α3β4 receptor, pharmacokinetic evaluation, and in vivo efficacy in a forced swim test resulted in identification of 3-(6-chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane hydrochloride (9h, SUVN-911) as a clinical candidate. Compound 9h is a potent α4β2 receptor ligand with a Ki value of 1.5 nM. It showed >10 μM binding affinity toward the ganglionic α3β4 receptor apart from showing selectivity over 70 other targets. It is orally bioavailable and showed good brain penetration in rats. Marked antidepressant activity and dose-dependent receptor occupancy in rats support its potential therapeutic utility in the treatment of depression. It does not affect the locomotor activity at doses several folds higher than its efficacy dose. It is devoid of cardiovascular and gastrointestinal side effects. Successful long-term safety studies in animals and phase-1 evaluation in healthy humans for safety, tolerability, and pharmacokinetics paved the way for its further development.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Abdul Rasheed Mohammed
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Anil K Shinde
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Srinivasa Rao Ravella
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Narsimha Bogaraju
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Ramkumar Subramanian
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Reddy Mekala
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Raghava Choudary Palacharla
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Nageswararao Muddana
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Jagadeesh Babu Thentu
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Gopinadh Bhyrapuneni
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Renny Abraham
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Jasti
- Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| |
Collapse
|
4
|
Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev 2019; 40:709-752. [PMID: 31512284 DOI: 10.1002/med.21634] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Morpholine is a heterocycle featured in numerous approved and experimental drugs as well as bioactive molecules. It is often employed in the field of medicinal chemistry for its advantageous physicochemical, biological, and metabolic properties, as well as its facile synthetic routes. The morpholine ring is a versatile and readily accessible synthetic building block, it is easily introduced as an amine reagent or can be built according to a variety of available synthetic methodologies. This versatile scaffold, appropriately substituted, possesses a wide range of biological activities. There are many examples of molecular targets of morpholine bioactive in which the significant contribution of the morpholine moiety has been demonstrated; it is an integral component of the pharmacophore for certain enzyme active-site inhibitors whereas it bestows selective affinity for a wide range of receptors. A large body of in vivo studies has demonstrated morpholine's potential to not only increase potency but also provide compounds with desirable drug-like properties and improved pharamacokinetics. In this review we describe the medicinal chemistry/pharmacological activity of morpholine derivatives on various therapeutically related molecular targets, attempting to highlight the importance of the morpholine ring in drug design and development as well as to justify its classification as a privileged structure.
Collapse
Affiliation(s)
- Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Xanthopoulos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
6
|
Arias HR, Feuerbach D, Schmidt B, Heydenreich M, Paz C, Ortells MO. Drimane Sesquiterpenoids Noncompetitively Inhibit Human α4β2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human α3β4 and α7 Subtypes. JOURNAL OF NATURAL PRODUCTS 2018; 81:811-817. [PMID: 29634269 DOI: 10.1021/acs.jnatprod.7b00893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree ( Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7. In the case of hα4β2 AChRs, the following potency rank order was determined (IC50's in μM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4β2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-β2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4β2 AChR by a cooperative mechanism, as shown experimentally ( nH > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4β2 AChR.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences , California Northstate University College of Medicine , Elkgrove , California 95757 , United States
| | - Dominik Feuerbach
- Novartis Institutes for Biomedical Research , Basel CH-4057 , Switzerland
| | - Bernd Schmidt
- Department of Chemistry , University of Potsdam , D-14469 Potsdam , Germany
| | | | - Cristian Paz
- Departamento de Química y Recursos Naturales , Universidad de La Frontera , Francisco Salazar 01145 , Temuco , Chile
| | - Marcelo O Ortells
- Facultad de Medicina , Universidad de Morón and CONICET , Morón 1708 , Argentina
| |
Collapse
|
7
|
Bupropion and its photoreactive analog (±)-SADU-3-72 interact with luminal and non-luminal sites at human α4β2 nicotinic acetylcholine receptors. Neurochem Int 2016; 100:67-77. [DOI: 10.1016/j.neuint.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022]
|
8
|
Arias HR, Feuerbach D, Targowska-Duda K, Kaczor AA, Poso A, Jozwiak K. Pharmacological and molecular studies on the interaction of varenicline with different nicotinic acetylcholine receptor subtypes. Potential mechanism underlying partial agonism at human α4β2 and α3β4 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:731-41. [PMID: 25475645 DOI: 10.1016/j.bbamem.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
To determine the structural components underlying differences in affinity, potency, and selectivity of varenicline for several human (h) nicotinic acetylcholine receptors (nAChRs), functional and structural experiments were performed. The Ca2+ influx results established that: (a) varenicline activates (μM range) nAChR subtypes with the following rank sequence: hα7>hα4β4>hα4β2>hα3β4>>>hα1β1γδ; (b) varenicline binds to nAChR subtypes with the following affinity order (nM range): hα4β2~hα4β4>hα3β4>hα7>>>Torpedo α1β1γδ. The molecular docking results indicating that more hydrogen bond interactions are apparent for α4-containing nAChRs in comparison to other nAChRs may explain the observed higher affinity; and that (c) varenicline is a full agonist at hα7 (101%) and hα4β4 (93%), and a partial agonist at hα4β2 (20%) and hα3β4 (45%), relative to (±)-epibatidine. The allosteric sites found at the extracellular domain (EXD) of hα3β4 and hα4β2 nAChRs could explain the partial agonistic activity of varenicline on these nAChR subtypes. Molecular dynamics simulations show that the interaction of varenicline to each allosteric site decreases the capping of Loop C at the hα4β2 nAChR, suggesting that these allosteric interactions limit the initial step in the gating process. In conclusion, we propose that in addition to hα4β2 nAChRs, hα4β4 nAChRs can be considered as potential targets for the clinical activity of varenicline, and that the allosteric interactions at the hα3β4- and hα4β2-EXDs are alternative mechanisms underlying partial agonism at these nAChRs.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Katarzyna Targowska-Duda
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Medical University of Lublin, Lublin, Poland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Krzysztof Jozwiak
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
10
|
Arias HR, De Rosa MJ, Bergé I, Feuerbach D, Bouzat C. Differential Pharmacological Activity of JN403 between α7 and Muscle Nicotinic Acetylcholine Receptors. Biochemistry 2013; 52:8480-8. [DOI: 10.1021/bi4012572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo R. Arias
- Department
of Medical Education, California Northstate University College of Medicine, Elk Grove, California 95757, United States
| | - Maria Jose De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, 8000 Bahia Blanca, Argentina
| | - Ignacio Bergé
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, 8000 Bahia Blanca, Argentina
| | - Dominik Feuerbach
- Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, 8000 Bahia Blanca, Argentina
| |
Collapse
|
11
|
Arias HR, Ortells MO, Feuerbach D. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites. Neurochem Int 2013; 63:423-31. [PMID: 23917086 DOI: 10.1016/j.neuint.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
Abstract
The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | | | | |
Collapse
|