1
|
Alves VS, Cristina-Rodrigues F, Coutinho-Silva R. The P2Y 2 receptor as a sensor of nucleotides and cell recruitment during inflammatory processes of the liver. Purinergic Signal 2024; 20:465-467. [PMID: 38627279 PMCID: PMC11377366 DOI: 10.1007/s11302-024-10008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fabiana Cristina-Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Liu ZN, Su QQ, Wang YH, Wu X, Lv XW. Blockade of the P2Y2 Receptor Attenuates Alcoholic Liver Inflammation by Targeting the EGFR-ERK1/2 Signaling Pathway. Drug Des Devel Ther 2022; 16:1107-1120. [PMID: 35444406 PMCID: PMC9013714 DOI: 10.2147/dddt.s346376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Zhen-Ni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, People’s Republic of China
| | - Qian-Qian Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yu-Hui Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, People’s Republic of China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Xiong-Wen Lv, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province, 230032, People’s Republic of China, Email
| |
Collapse
|
3
|
El-Kordy EA. Effect of Suramin on Renal Proximal Tubular Cells Damage Induced by Cisplatin in Rats (Histological and Immunohistochemical Study). J Microsc Ultrastruct 2019; 7:153-164. [PMID: 31803569 PMCID: PMC6880320 DOI: 10.4103/jmau.jmau_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Renal toxicity is the most common complication of cispaltin therapy that has broad-spectrum antitumor activity against a variety of human solid tumor. Suramin, a Food and Drug Administration-approved old drug is a polysulfonated compound of napthylurea originally designed to treat trypanosomiasis. Aim: The current work aimed to investigate the possible protective effect of different doses of suramin against cisplatin-induced renal proximal tubular cells (RPTCs) damage. Material and Methods: Fifty adult male rats were used and divided into five equal groups. Group I served as a control, group II received suramin alone (10 mg/kg). Groups III, IV and V were administered cisplatin once (5 mg/kg, intraperitoneally) alone or combined with low dosage suramin (5 mg/kg) or high dosage suramin (10 mg/kg) once intravenously respectively. Results: Compared with control rats, cisplatin administration caused proximal tubules damage, RPTCs vacuolation with pyknotic nuclei, loss of brush border and widespread caspase-3 immunostaining. Cisplatin-induced RPTCs toxicity was further confirmed morphometrically (a significantly decreased proximal tubular epithelium height and increased mean number of caspase-3-immunopositive cells). These changes were accompanied by biochemical alteration manifested as a significant increase of blood urea nitrogen and serum creatinine. Simultaneous administration of high-dose but not low-dose suramin to the cisplatin-treated rats improved the deleterious morphological and morphometrical effects on RPTCs and restored the aforementioned biochemical parameters to control values. Conclusion: In conclusion suramin in a dose dependant manner protects RPTCs from damage induced by cisplatin.
Collapse
Affiliation(s)
- Eman Ali El-Kordy
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt.,Department of Anatomy, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Xiong C, Liu N, Shao X, Sharif S, Zou H, Zhuang S. Delayed administration of suramin attenuates peritoneal fibrosis in rats. BMC Nephrol 2019; 20:411. [PMID: 31727005 PMCID: PMC6854809 DOI: 10.1186/s12882-019-1597-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peritoneal fibrosis is the most common complication of peritoneal dialysis, but there is currently no effective treatment. We previously reported that suramin pretreatment prevents the development of peritoneal fibrosis in a rat model of peritoneal fibrosis induced by chlorhexidine gluconate (CG). Here, we further examined the effectiveness of delayed administration of suramin on peritoneal fibrosis and the mechanism (s) involved in this process. METHODS In the rat model of peritoneal fibrosis induced by CG, suramin or saline was administered at day 21 and 28. All rats were then sacrificed to collect peritoneal tissues for Western blot analysis and histological staining at day 35. RESULTS Our results demonstrated that delayed administration of suramin starting at 21 days following CG injection can ameliorate peritoneal damage, with greater efficacy after two injections. Suramin also reduced the expression of α-smooth muscle actin, Collagen 1, and Fibronectin and suppressed phosphorylation of Smad-3, epidermal growth factor receptor (EGFR), signal transducers, activator of transcription 3 (STAT3) as well as extracellular signal-regulated kinases 1/2 (ERK 1/2) in the peritoneum injured with CG. Moreover, delayed administration of suramin inhibited overproduction of transforming growth factor-β1(TGF-β1) and expression of several pro-inflammatory cytokines, including monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-1, and interleukin-6. CONCLUSIONS Our results indicated that suramin can attenuate progression of peritoneal fibrosis by a mechanism involving inhibition of the TGF-β1/Smad3 and EGFR signaling pathways as well as suppression of multiple proinflammatory cytokines. Thus, suramin may have the potential to offer an effective treatment for peritoneal fibrosis.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Na Liu
- Deparment of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China Shanghai, 200120, China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Sairah Sharif
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, 02903, USA.,Deparment of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China Shanghai, 200120, China
| |
Collapse
|
5
|
Wang A, Wang J, Wu J, Deng X, Zou Y. Suramin protects hepatocytes from LPS-induced apoptosis by regulating mitochondrial stress and inactivating the JNK-Mst1 signaling pathway. J Physiol Sci 2019; 69:489-502. [PMID: 30771091 PMCID: PMC10717776 DOI: 10.1007/s12576-019-00666-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/03/2019] [Indexed: 12/27/2022]
Abstract
An uncontrolled inflammatory response has been implicated in the progression of acute liver failure through poorly understood mechanisms. The aim of our study was to investigate whether suramin attenuates inflammation-mediated hepatocyte apoptosis by modulating mitochondrial homeostasis. Primary hepatocytes were isolated from mice and treated with LPS in vitro in the presence or absence of suramin. Western blotting, immunofluorescence staining, and ELISAs were used to evaluate the mitochondrial stress. The LPS treatment caused hepatocyte death via apoptosis. Interestingly, suramin supplementation attenuated LPS-mediated hepatocyte death by reducing Mst1 expression; the overexpression of Mst1 abolished the anti-apoptotic effects of suramin on LPS-treated hepatocytes. At the molecular level, suramin treatment repressed mitochondrial oxidative stress, sustained mitochondrial dynamics and blocked the caspase-9-mediated mitochondrial apoptosis pathway; these effects of suramin were achieved by reversing Mst1 expression. Furthermore, our study found that suramin modulated Mst1 expression via the JNK signaling pathway. Activation of JNK prevented the suramin-mediated Mst1 downregulation and concomitantly increased hepatocyte apoptosis and mitochondrial dysfunction. Taken together, our results confirmed the anti-apoptotic and anti-inflammatory effects of suramin on LPS-challenged hepatocytes. Suramin sustained hepatocyte viability and attenuated mitochondrial stress via repressing the JNK-Mst1 signaling pathway.
Collapse
Affiliation(s)
- Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine and Health Sciences, No. 222 Huanhuxisan Road, Pudong, 201306, Shanghai, China
| | - Jiali Wang
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine and Health Sciences, No. 222 Huanhuxisan Road, Pudong, 201306, Shanghai, China
| | - Jun Wu
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine and Health Sciences, No. 222 Huanhuxisan Road, Pudong, 201306, Shanghai, China
| | - Xiaojun Deng
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine and Health Sciences, No. 222 Huanhuxisan Road, Pudong, 201306, Shanghai, China
| | - Yan Zou
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine and Health Sciences, No. 222 Huanhuxisan Road, Pudong, 201306, Shanghai, China.
| |
Collapse
|
6
|
Czigány Z, Iwasaki J, Yagi S, Nagai K, Szijártó A, Uemoto S, Tolba RH. Improving Research Practice in Rat Orthotopic and Partial Orthotopic Liver Transplantation: A Review, Recommendation, and Publication Guide. Eur Surg Res 2015; 55:119-38. [DOI: 10.1159/000437095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022]
Abstract
Background: Due to a worldwide shortage of donor organs for liver transplantation, alternative approaches, such as split and living donor liver transplantations, were introduced to increase the donor pool and reduce mortality on liver transplant waiting lists. Numerous details concerning the mechanisms and pathophysiology of liver regeneration, small-for-size syndrome, rejection, and tolerance in partial liver transplantation facilitated the development of various animal models. The high number of preclinical animal studies contributed enormously to our understanding of many clinical aspects of living donor and partial liver transplantations. Summary: Microsurgical rat models of partial orthotopic liver transplantation are well established and widely used. Nevertheless, several issues regarding this procedure are controversial, not clarified, or not yet properly standardized (graft rearterialization, size reduction techniques, etc.). The major aim of this literature review is to give the reader a current overview of rat orthotopic liver transplantation models with a special focus on partial liver transplantation. The aspects of model evolution, microsurgical training, and different technical problems are analyzed and discussed in detail. Our further aim in this paper is to elaborate a detailed publication guide in order to improve the quality of reporting in the field of rat liver transplantation according to the ARRIVE guidelines and the 3R principle. Key Messages: Partial orthotopic liver transplantation in rats is an indispensable, reliable, and cost-efficient model for transplantation research. A certain consensus on different technical issues and a significant improvement in scientific reporting are essential to improve transparency and comparability in this field as well as to foster refinement.
Collapse
|
7
|
Madrigal-Santillán E, Bautista M, Gayosso-De-Lucio JA, Reyes-Rosales Y, Posadas-Mondragón A, Morales-González &A, Soriano-Ursúa MA, García-Machorro J, Madrigal-Bujaidar E, Álvarez-González I, Morales-González JA. Hepatoprotective effect of Geranium schiedeanum against ethanol toxicity during liver regeneration. World J Gastroenterol 2015; 21:7718-7729. [PMID: 26167072 PMCID: PMC4491959 DOI: 10.3748/wjg.v21.i25.7718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of an extract of Geranium schiedeanum (Gs) as a hepatoprotective agent against ethanol (EtOH)-induced toxicity in rats.
METHODS: Male Wistar rats weighing 200-230 g were subjected to a 70% partial hepatectomy (PH); they were then divided into three groups (groups 1-3). During the experiment, animals in group 1 drank only water. The other two groups (2-3) drank an aqueous solution of EtOH (40%, v/v). Additionally, rats in group 3 received a Gs extract daily at a dose of 300 mg/kg body weight intragastically. Subsequently, to identify markers of liver damage in serum, alanine aminotransferase, aspartate aminotransferase, albumin and bilirubin were measured by colorimetric methods. Glucose, triglyceride and cholesterol concentrations were also determined. In addition, oxidative damage was estimated by measuring lipid peroxidation [using thiobarbituric-acid reactive substances (TBARS)] in both plasma and the liver and by measuring the total concentration of antioxidants in serum and the total antioxidant capacity in the liver. In addition, a liver mass gain assessment, total DNA analysis and a morpho-histological analysis of the liver from animals in all three groups were performed and compared. Finally, the number of deaths observed in the three groups was analyzed.
RESULTS: Administration of the Geranium shiedeanum extract significantly reduced the unfavorable effect of ethanol on liver regeneration (restitution liver mass: PH-EtOH group 60.68% vs PH-Gs-EtOH group 69.22%). This finding was congruent with the reduced levels of hepatic enzymes and the sustained or increased levels of albumin and decreased bilirubin in serum. The extract also modified the metabolic processes that regulate glucose and lipid levels, as observed from the serum measurements. Lower antioxidant levels and the liver damage induced by EtOH administration appeared to be mitigated by the extract, as observed from the TBARs (PH-EtOH group 200.14 mmol/mg vs PH-Gs-EtOH group 54.20 mmol/mg; P < 0.05), total status of antioxidants (PH-EtOH group 1.43 mmol/L vs PH-Gs-EtOH group 1.99 mmol/L; P < 0.05), total antioxidant capacity values, liver mass gain and total DNA determination (PH-EtOH group 4.80 mg/g vs PH-Gs-EtOH 9.10 mg/g; P < 0.05). Overall, these processes could be related to decreased mortality in these treated animals.
CONCLUSION: The administered extract showed a hepatoprotective effect, limiting the EtOH-induced hepatotoxic effects. This effect can be related to modulating oxido-reduction processes.
Collapse
|
8
|
Wei W, Dirsch O, Mclean AL, Zafarnia S, Schwier M, Dahmen U. Rodent models and imaging techniques to study liver regeneration. Eur Surg Res 2014; 54:97-113. [PMID: 25402256 DOI: 10.1159/000368573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/19/2014] [Indexed: 12/16/2022]
Abstract
The liver has the unique capability of regeneration from various injuries. Different animal models and in vitro methods are used for studying the processes and mechanisms of liver regeneration. Animal models were established either by administration of hepatotoxic chemicals or by surgical approach. The administration of hepatotoxic chemicals results in the death of liver cells and in subsequent hepatic regeneration and tissue repair. Surgery includes partial hepatectomy and portal vein occlusion or diversion: hepatectomy leads to compensatory regeneration of the remnant liver lobe, whereas portal vein occlusion leads to atrophy of the ipsilateral lobe and to compensatory regeneration of the contralateral lobe. Adaptation of modern radiological imaging technologies to the small size of rodents made the visualization of rodent intrahepatic vascular anatomy possible. Advanced knowledge of the detailed intrahepatic 3D anatomy enabled the establishment of refined surgical techniques. The same technology allows the visualization of hepatic vascular regeneration. The development of modern histological image analysis tools improved the quantitative assessment of hepatic regeneration. Novel image analysis tools enable us to quantify reliably and reproducibly the proliferative rate of hepatocytes using whole-slide scans, thus reducing the sampling error. In this review, the refined rodent models and the newly developed imaging technology to study liver regeneration are summarized. This summary helps to integrate the current knowledge of liver regeneration and promises an enormous increase in hepatological knowledge in the near future.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Tayel A, Abd El Galil KH, Ebrahim MA, Ibrahim AS, El-Gayar AM, Al-Gayyar MMH. Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur J Pharmacol 2014; 728:151-60. [PMID: 24530413 DOI: 10.1016/j.ejphar.2014.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapy, and is rarely amenable to radiotherapy. Heparanase, enzyme attacks heparan sulfate proteoglycans (HSPGs), is preferentially expressed in human tumors and its overexpression in low-metastatic tumor confers a highly invasive phenotype in experimental animals. Meanwhile, high doses of suramin dramatically increase tissue glycosaminoglycans due, in part, to inhibition of heparanase enzymes. Therefore, the following study was conducted to evaluate the chemopreventive and hepatoprotective effects of suramin in in-vivo model of HCC. Therefore, HCC was induced in SD rats by thioacetamide (200mg/kg) in presence/absence of suramin (20mg/kg). Liver impairment was assessed by measuring serum α-fetoprotein and investigating liver sections stained with Hematoxylin/Eosin. Hepatic HSPGs and heparanse were measured by ELISA. Glucosamine and glucuronic acid were measured by chemical methods. Gene expression of fibroblast growth factor (FGF)-2 and caspase-3 was measured. Apoptotic pathway was evaluated by measuring the activity of caspase-3/8/9. Suramin increased the animal survival and decreased serum α-fetoprotein. In addition, suramin ameliorated fibrosis and massive hepatic tissue breakdown. Suramin restored hepatic HSPGs and reduced the activity of hepatic heparanase leading to decreased hepatic levels of glucosamine and glucuronic acid. Moreover, suramin reduced the gene expression of FGF-2 and caspase-3. Finally, suramin blocked the elevated activity of caspase-3/8/9. In conclusion, surmain showed antitumor activity as well as hepatoprotective effects. Besides its antioxidant activity, other mechanisms are involved including restoration of HSPGs and inhibition of heparanase and FGF-2. Suramin inhibits intrinsic and extrinsic apoptotic pathway. Targeting HSPGs expression is potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ahmed Tayel
- Deptment of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Khaled H Abd El Galil
- Deptment of Microbiology, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | | | - Ahmed S Ibrahim
- Deptment of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Amal M El-Gayar
- Deptment of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Mohammed M H Al-Gayyar
- Deptment of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
10
|
Naviaux RK. Metabolic features of the cell danger response. Mitochondrion 2013; 16:7-17. [PMID: 23981537 DOI: 10.1016/j.mito.2013.08.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivity syndromes, emphysema, Tourette's syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TBI), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA; Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA.
| |
Collapse
|