1
|
Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S. Signal Detection of Potential Hepatotoxic Drugs: Case-Control Study Using Both a Spontaneous Reporting System and Electronic Medical Records. Biol Pharm Bull 2021; 44:1514-1523. [PMID: 34602560 DOI: 10.1248/bpb.b21-00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug event. Spontaneous reporting systems such as the Japanese Adverse Event Report Database (JADER) have been used to evaluate the association between drugs and adverse drug events. However, the association of drugs with adverse drug events may be overestimated due to reporting biases. Therefore, it is important to objectively evaluate the association using liver function test values. The aim of the present study was to predict potential hepatotoxic drugs using real-world data including electronic medical records and the JADER database. A total of 70009 (2779 with DILI and 67230 without DILI) and 438515 (10235 with DILI and 428280 without DILI) Japanese adult patients were extracted from electronic medical records and the JADER database, respectively. Drugs with ≥100 DILI patients in both of the two databases were regarded as suspected drugs for DILI. We used multivariate logistic regression to evaluate the association between the suspected drugs and increased risk of DILI. Among the suspected drugs, broad-spectrum antibiotics such as meropenem, tazobactam/piperacillin and ceftriaxone were significantly associated with an increased risk of DILI, and meropenem had a greater risk of DILI in both of the two databases. Additionally, there were significant associations of mosapride and L-carbocisteine with increased risk of DILI. In addition to well-known associations between antibiotic drugs and DILI, mosapride and L-carbocisteine were found to be new potential signals of drugs causing hepatotoxicity. This study indicates potential hepatotoxic drugs that require further causality assessment.
Collapse
Affiliation(s)
- Hayato Akimoto
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Takuya Nagashima
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Kimino Minagawa
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine
| | - Takashi Hayakawa
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| |
Collapse
|
2
|
Therapeutic action against chronic cholestatic liver injury by low-dose fenofibrate involves anti-chemotaxis via JNK–AP1–CCL2/CXCL2 signaling. Pharmacol Rep 2020; 72:935-944. [DOI: 10.1007/s43440-019-00043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
3
|
Hypofibrinolysis induced by tranexamic acid does not influence inflammation and mortality in a polymicrobial sepsis model. PLoS One 2019; 14:e0226871. [PMID: 31891611 PMCID: PMC6938370 DOI: 10.1371/journal.pone.0226871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/08/2019] [Indexed: 01/08/2023] Open
Abstract
The biological relevance of fibrinolysis to the host response to sepsis is illustrated by pathogens such as S. pyogenes and Y. pestis, whose virulence factors are proteins that challenge the balance between pro- and anti-fibrinolytic factors of the host, and by the consistent finding of hypofibrinolysis in the early stages of sepsis. Whether this hypofibrinolytic response is beneficial or detrimental to the host, by containing the spread of pathogens while at the same time limiting the access of immune cell to infectious foci, is still a matter of debate. Tranexamic acid (TnxAc) is an antifibrinolytic agent that is being increasingly used to prevent and control bleeding in conditions such as elective orthopedic surgery, trauma, and post-partum-hemorrhage, which are frequently followed by infection and sepsis. Here we used a model of polymicrobial sepsis to evaluate whether hypofibrinolysis induced by TnxAc influenced survival, tissue injury and pathogen spread. Mice were treated with two doses of TnxAc bid for 48h, and then sepsis was induced by cecal ligation and puncture. Despite the induction of hypofibrinolysis by TnxAc, no difference could be observed in survival, tissue injury (measured by biochemical and histological parameters), cytokine levels or pathogen spread. Our results contribute with a new piece of data to the understanding of the complex interplay between fibrinolysis and innate immunity. While our results do not support the use of TnxAc in sepsis, they also address the thrombotic safety of TnxAc, a low cost and widely used agent to prevent bleeding.
Collapse
|
4
|
Zhang YM, Yang B, Sun XD, Zhang Z. Combined intravenous and intra-articular tranexamic acid administration in total knee arthroplasty for preventing blood loss and hyperfibrinolysis: A randomized controlled trial. Medicine (Baltimore) 2019; 98:e14458. [PMID: 30762760 PMCID: PMC6408055 DOI: 10.1097/md.0000000000014458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Total knee arthroplasty (TKA) is a surgical procedure to replace the weight-bearing surfaces of the knee joint to relieve pain and disability. However, blood loss and fibrinolytic activity, accounting for a poor prognosis following TKA operation, were relieved by fibrinolytic inhibitor tranexamic acid (TXA). For a better application of TXA function, we explored the effect of intravenous injection (IV) of TXA combined with intra-articular injection (IA) of TXA in patients after TKA. METHODS Patients admitted from Weifang People's Hospital from January 2015 to December 2016 who received TKA were injected with 20 mg/kg TXA by IV before TKA (n = 50), 3.0 g TXA by IA after TKA (n = 50), or combination of 20 mg/kg TXA by IV before TKA and 3.0 g TXA by IA after TKA (n = 50). Knee function was assessed using HSS, KSS, NASS, and ROM. In addition, the total blood loss (TBL), hidden blood loss (HBL), maximum hemoglobin (Hb) drop, fibrinolytic activity, as well as incidence of thromboembolism were measured. The patients were followed up for 6 months. The deadline for follow-up was June 2017 and the incidence of thromboembolism events within 6 months after operation was counted. RESULTS HSS, KSS, NASS scores, and ROM were elevated after patients receiving TKA. Patients received IV plus IA TXA has decreased TBL, HBL, and maximum Hb drop than those received IV TXA-alone and IA TXA-alone, with reductions in FDP and D-dimer, indicating that IV plus IA TXA injection is superior to prevent blood loss and hyperfibrinolysis during TKA. Age, sex, type of femoral prosthesis, and the injection method of TXA were risk factors for HBL of patients after receiving TKA. CONCLUSIONS The aforementioned results demonstrate that TKA is an effective surgery, and IV plus IA TXA injection functions more effectively in reducing blood loss and fibrinolytic activity in patients, which is a clinical factor of occult hemorrhage.
Collapse
|
5
|
Poole LG, Pant A, Baker KS, Kopec AK, Cline-Fedewa HM, Iismaa SE, Flick MJ, Luyendyk JP. Chronic liver injury drives non-traditional intrahepatic fibrin(ogen) crosslinking via tissue transglutaminase. J Thromb Haemost 2019; 17:113-125. [PMID: 30415489 PMCID: PMC6322974 DOI: 10.1111/jth.14330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 12/25/2022]
Abstract
Essentials Fibrin clots are often implicated in the progression of liver fibrosis. Liver fibrosis was induced in transgenic mice with defects in clot formation or stabilization. Liver fibrosis and fibrin(ogen) deposition do not require fibrin polymerization or factor XIIIa. Fibrin(ogen) is an in vivo substrate of tissue transglutaminase in experimental liver fibrosis. SUMMARY: Background Intravascular fibrin clots and extravascular fibrin deposits are often implicated in the progression of liver fibrosis. However, evidence supporting a pathological role of fibrin in hepatic fibrosis is indirect and based largely on studies using anticoagulant drugs that inhibit activation of the coagulation protease thrombin, which has other downstream targets that promote fibrosis. Therefore, the goal of this study was to determine the precise role of fibrin deposits in experimental hepatic fibrosis. Methods Liver fibrosis was induced in mice expressing mutant fibrinogen insensitive to thrombin-mediated proteolysis (i.e. locked in the monomeric form), termed FibAEK mice, and factor XIII A2 subunit-deficient (FXIII-/- ) mice. Female wild-type mice, FXIII-/- mice and homozygous FibAEK mice were challenged with carbon tetrachloride (CCl4 ) twice weekly for 4 weeks or 6 weeks (1 mL kg-1 , intraperitoneal). Results Hepatic injury and fibrosis induced by CCl4 challenge were unaffected by FXIII deficiency or inhibition of thrombin-catalyzed fibrin polymer formation (in FibAEK mice). Surprisingly, hepatic deposition of crosslinked fibrin(ogen) was not reduced in CCl4 -challenged FXIII-/- mice or FibAEK mice as compared with wild-type mice. Rather, deposition of crosslinked hepatic fibrin(ogen) following CCl4 challenge was dramatically reduced in tissue transglutaminase-2 (TGM2)-deficient (TGM2-/- ) mice. However, the reduction in crosslinked fibrin(ogen) in TGM2-/- mice did not affect CCl4 -induced liver fibrosis. Conclusions These results indicate that neither traditional fibrin clots, formed by the thrombin-activated FXIII pathway nor atypical TGM2-crosslinked fibrin(ogen) contribute to experimental CCl4 -induced liver fibrosis. Collectively, the results indicate that liver fibrosis occurs independently of intrahepatic fibrin(ogen) deposition.
Collapse
Affiliation(s)
- L G Poole
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - A Pant
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - K S Baker
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - A K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - H M Cline-Fedewa
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - S E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - M J Flick
- Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J P Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Pant A, Kopec AK, Luyendyk JP. Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G171-G176. [PMID: 29723040 PMCID: PMC6139645 DOI: 10.1152/ajpgi.00402.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Liver is the primary source of numerous proteins that are critical for normal function of the blood coagulation cascade. Because of this, diseases of the liver, particularly when affiliated with severe complications like cirrhosis, are associated with abnormalities of blood clotting. Although conventional interpretation has inferred cirrhosis as a disorder of uniform bleeding risk, it is now increasingly appreciated as a disease wherein the coagulation cascade is precariously rebalanced. Moreover, prothrombotic risk factors are also associated with a more rapid progression of fibrosis in humans, suggesting that coagulation proteases participate in disease pathogenesis. Indeed, strong evidence drawn from experimental animal studies indicates that components of the coagulation cascade, particularly coagulation factor Xa and thrombin, drive profibrogenic events, leading to hepatic fibrosis. Here, we concisely review the evidence supporting a pathologic role for coagulation in the development of liver fibrosis and the potential mechanisms involved. Further, we highlight how studies in experimental animals may shed light on emerging clinical evidence, suggesting that beneficial effects of anticoagulation could extend beyond preventing thrombotic complications to include reducing pathologies like fibrosis.
Collapse
Affiliation(s)
- Asmita Pant
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
7
|
Pant A, Kopec AK, Baker KS, Cline-Fedewa H, Lawrence DA, Luyendyk JP. Plasminogen Activator Inhibitor-1 Reduces Tissue-Type Plasminogen Activator-Dependent Fibrinolysis and Intrahepatic Hemorrhage in Experimental Acetaminophen Overdose. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1204-1212. [PMID: 29454747 PMCID: PMC5911680 DOI: 10.1016/j.ajpath.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP)-induced liver injury in mice is associated with activation of the coagulation cascade and deposition of fibrin in liver. Plasminogen activator inhibitor-1 (PAI-1) is an important physiological inhibitor of tissue-type plasminogen activator (tPA) and plays a critical role in fibrinolysis. PAI-1 expression is increased in both experimental APAP-induced liver injury and patients with acute liver failure. Prior studies have shown that PAI-1 prevents intrahepatic hemorrhage and mortality after APAP challenge, but the downstream mechanisms are not clear. We tested the hypothesis that PAI-1 limits liver-related morbidity after APAP challenge by reducing tPA-dependent fibrinolysis. Compared with APAP-challenged (300 mg/kg) wild-type mice, hepatic deposition of cross-linked fibrin was reduced, with intrahepatic congestion and hemorrhage increased in PAI-1-deficient mice 24 hours after APAP overdose. Administration of recombinant wild-type human PAI-1 reduced intrahepatic hemorrhage 24 hours after APAP challenge in PAI-1-/- mice, whereas a mutant PAI-1 lacking antiprotease function had no effect. Of interest, tPA deficiency alone did not affect APAP-induced liver damage. In contrast, fibrinolysis, intrahepatic congestion and hemorrhage, and mortality driven by PAI-1 deficiency were reduced in APAP-treated tPA-/-/PAI-1-/- double-knockout mice. The results identify PAI-1 as a critical regulator of intrahepatic fibrinolysis in experimental liver injury. Moreover, the results suggest that the balance between PAI-1 and tPA activity is an important determinant of liver pathology after APAP overdose.
Collapse
Affiliation(s)
- Asmita Pant
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Kevin S Baker
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Holly Cline-Fedewa
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
8
|
Joshi N, Kopec AK, Cline-Fedewa H, Luyendyk JP. Lymphocytes contribute to biliary injury and fibrosis in experimental xenobiotic-induced cholestasis. Toxicology 2016; 377:73-80. [PMID: 28049044 DOI: 10.1016/j.tox.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
Abstract
The etiology of chronic bile duct injury and fibrosis in patients with autoimmune cholestatic liver diseases is complex, and likely involves immune cells such as lymphocytes. However, most models of biliary fibrosis are not autoimmune in nature. Biliary fibrosis can be induced experimentally by prolonged exposure of mice to the bile duct toxicant alpha-naphthylisothiocyanate (ANIT). We determined whether lymphocytes contributed to ANIT-mediated biliary hyperplasia and fibrosis in mice. Hepatic accumulation of T-lymphocytes and increased serum levels of anti-nuclear-autoantibodies were evident in wild-type mice exposed to ANIT (0.05% ANIT in chow). This occurred alongside bile duct hyperplasia and biliary fibrosis. To assess the role of lymphocytes in ANIT-induced biliary fibrosis, we utilized RAG1-/- mice, which lack T- and B-lymphocytes. ANIT-induced bile duct injury, indicated by increased serum alkaline phosphatase activity, was reduced in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Despite this reduction in biliary injury, ANIT-induced bile duct hyperplasia was similar in wild-type and RAG1-/- mice. However, hepatic induction of profibrogenic genes including COL1A1, ITGβ6 and TGFβ2 was markedly attenuated in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Peribiliary collagen deposition was also reduced in ANIT-exposed RAG1-/- mice. The results indicate that lymphocytes exacerbate bile duct injury and fibrosis in ANIT-exposed mice without impacting bile duct hyperplasia.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Joshi N, Ray JL, Kopec AK, Luyendyk JP. Dose-dependent effects of alpha-naphthylisothiocyanate disconnect biliary fibrosis from hepatocellular necrosis. J Biochem Mol Toxicol 2016; 31:1-7. [PMID: 27605088 DOI: 10.1002/jbt.21834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessica L Ray
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
10
|
Inhibition of PAR-4 and P2Y12 receptor-mediated platelet activation produces distinct hepatic pathologies in experimental xenobiotic-induced cholestatic liver disease. Toxicology 2016; 365:9-16. [PMID: 27475285 DOI: 10.1016/j.tox.2016.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Emerging evidence supports a protective effect of platelets in experimental cholestatic liver injury and cholangiofibrosis. Coagulation-mediated platelet activation has been shown to inhibit experimental chronic cholestatic liver necrosis and biliary fibrosis. This occurs through thrombin-mediated activation of protease activated receptor-4 (PAR-4) in mice. However, it is not known whether other pathways of platelet activation, such as adenosine diphosphate (ADP)-mediated receptor P2Y12 activation is also protective. We tested the hypothesis that inhibition of P2Y12-mediated platelet activation exacerbates hepatic injury and cholangiofibrosis, and examined the impact of P2Y12 inhibition in both the presence and absence of PAR-4. Treatment of wild-type mice with the P2Y12 receptor antagonist clopidogrel increased biliary hyperplasia and cholangiofibrosis in wild-type mice exposed to the xenobiotic alpha-naphthylisothiocyanate (ANIT) for 4 weeks compared to vehicle-treated mice exposed to ANIT. Interestingly, this effect of clopidogrel occurred without a corresponding increase in hepatocellular necrosis. Whereas biliary hyperplasia and cholangiofibrosis were increased in PAR-4(-/-) mice, clopidogrel treatment failed to further increase these pathologies in PAR-4(-/-) mice. The results indicate that inhibition of receptor P2Y12-mediated platelet activation exacerbates bile duct fibrosis in ANIT-exposed mice, independent of hepatocellular necrosis. Moreover, the lack of an added effect of clopidogrel administration on the exaggerated pathology in ANIT-exposed PAR-4(-/-) mice reinforces the prevailing importance of coagulation-mediated platelet activation in limiting this unique liver pathology.
Collapse
|
11
|
Kopec AK, Joshi N, Luyendyk JP. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost 2016; 14:1337-49. [PMID: 27060337 PMCID: PMC5091081 DOI: 10.1111/jth.13327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Chronic liver damage is associated with unique changes in the hemostatic system. Patients with liver disease often show a precariously rebalanced hemostatic system, which is easily tipped towards bleeding or thrombotic complications by otherwise benign stimuli. In addition, some clinical studies have shown that hemostatic system components contribute to the progression of liver disease. There is a strong basic science foundation for clinical studies with this particular focus. Chronic and acute liver disease can be modeled in rodents and large animals with a variety of approaches, which span chronic exposure to toxic xenobiotics, diet-induced obesity, and surgical intervention. These experimental approaches have now provided strong evidence that, in addition to perturbations in hemostasis caused by liver disease, elements of the hemostatic system have powerful effects on the progression of experimental liver toxicity and disease. In this review, we cover the basis of the animal models that are most often utilized to assess the impact of the hemostatic system on liver disease, and highlight the role that coagulation proteases and their targets play in experimental liver toxicity and disease, emphasizing key similarities and differences between models. The need to characterize hemostatic changes in existing animal models and to develop novel animal models recapitulating the coagulopathy of chronic liver disease is highlighted. Finally, we emphasize the continued need to translate knowledge derived from highly applicable animal models to improve our understanding of the reciprocal interaction between liver disease and the hemostatic system in patients.
Collapse
Affiliation(s)
- Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
12
|
Kopec AK, Luyendyk JP. Role of Fibrin(ogen) in Progression of Liver Disease: Guilt by Association? Semin Thromb Hemost 2016; 42:397-407. [PMID: 27144445 DOI: 10.1055/s-0036-1579655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong experimental evidence indicates that components of the hemostatic system, including thrombin, exacerbate diverse features of experimental liver disease. Clinical studies have also begun to address this connection and some studies have suggested that anticoagulants can improve outcome in patients with liver disease. Among the evidence of coagulation cascade activation in models of liver injury and disease is the frequent observation of thrombin-driven hepatic fibrin(ogen) deposition. Indeed, hepatic fibrin(ogen) deposition has long been recognized as a consequence of hepatic injury. Although commonly inferred as pathologic due to protective effects of anticoagulants in mouse models, the role of fibrin(ogen) in acute liver injury and chronic liver disease may not be universally detrimental. The localization of hepatic fibrin(ogen) deposits within the liver is connected to the disease stimulus and in animal models of liver toxicity and chronic disease, fibrin(ogen) deposition may not always be synonymous with large vessel thrombosis. Here, we provide a balanced review of the experimental evidence supporting a direct connection between fibrin(ogen) and liver injury/disease pathogenesis, and suggest a path forward bridging experimental and clinical research to improve our knowledge on the nature and function of fibrin(ogen) in liver disease.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Fibrin deposition following bile duct injury limits fibrosis through an αMβ2-dependent mechanism. Blood 2016; 127:2751-62. [PMID: 26921287 DOI: 10.1182/blood-2015-09-670703] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Coagulation cascade activation and fibrin deposits have been implicated or observed in diverse forms of liver damage. Given that fibrin amplifies pathological inflammation in several diseases through the integrin receptor αMβ2, we tested the hypothesis that disruption of the fibrin(ogen)-αMβ2 interaction in Fibγ(390-396A) mice would reduce hepatic inflammation and fibrosis in an experimental setting of chemical liver injury. Contrary to our hypothesis, α-naphthylisothiocyanate (ANIT)-induced liver fibrosis increased in Fibγ(390-396A) mice, whereas inflammatory cytokine expression and hepatic necrosis were similar to ANIT-challenged wild-type (WT) mice. Increased fibrosis in Fibγ(390-396A) mice appeared to be independent of coagulation factor 13 (FXIII) transglutaminase, as ANIT challenge in FXIII-deficient mice resulted in a distinct pathological phenotype characterized by increased hepatic necrosis. Rather, bile duct proliferation underpinned the increased fibrosis in ANIT-exposed Fibγ(390-396A) mice. The mechanism of fibrin-mediated fibrosis was linked to interferon (IFN)γ induction of inducible nitric oxide synthase (iNOS), a gene linked to bile duct hyperplasia and liver fibrosis. Expression of iNOS messenger RNA was significantly increased in livers of ANIT-exposed Fibγ(390-396A) mice. Fibrin(ogen)-αMβ2 interaction inhibited iNOS induction in macrophages stimulated with IFNγ in vitro and ANIT-challenged IFNγ-deficient mice had reduced iNOS induction, bile duct hyperplasia, and liver fibrosis. Further, ANIT-induced iNOS expression, liver fibrosis, and bile duct hyperplasia were significantly reduced in WT mice administered leukadherin-1, a small molecule that allosterically enhances αMβ2-dependent cell adhesion to fibrin. These studies characterize a novel mechanism whereby the fibrin(ogen)-integrin-αMβ2 interaction reduces biliary fibrosis and suggests a novel putative therapeutic target for this difficult-to-treat fibrotic disease.
Collapse
|
14
|
Craciun FL, Bijol V, Ajay AK, Rao P, Kumar RK, Hutchinson J, Hofmann O, Joshi N, Luyendyk JP, Kusebauch U, Moss CL, Srivastava A, Himmelfarb J, Waikar SS, Moritz RL, Vaidya VS. RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis. J Am Soc Nephrol 2015; 27:1702-13. [PMID: 26449608 DOI: 10.1681/asn.2015020225] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023] Open
Abstract
CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD.
Collapse
Affiliation(s)
| | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Nikita Joshi
- Department of Pathology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | | | | | | | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, Seattle, Washington; and
| | | | | | - Vishal S Vaidya
- Renal Division, Department of Medicine and Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
The fibrinolytic system-more than fibrinolysis? Transfus Med Rev 2014; 29:102-9. [PMID: 25576010 DOI: 10.1016/j.tmrv.2014.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023]
Abstract
The fibrinolytic system, known for its ability to regulate the activation of the zymogen plasminogen into active plasmin, has been primarily associated with the removal of fibrin and blood clots. Tissue-type plasminogen activator, the most well-recognized plasminogen activator, was harnessed for therapeutic benefit against thromboembolic disorders more than 30 years ago, whereas inhibition of this system has been proven effective for certain bleeding disorders. However, in recent years, new and unexpected functional roles for this system have been identified mostly in relation to the central nervous system that are both unrelated and independent of fibrin degradation and clot removal. Hence, it seems reasonable to ask whether agents used to modify components or activities of the fibrinolytic system have any clinical consequences unrelated to their intended use in hemostasis. This review will provide an overview of these new features of the fibrinolytic system and will also focus on prospective considerations in the use of fibrinolytic and antifibrinolytic agents.
Collapse
|