1
|
Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol 2025; 103:31-44. [PMID: 39471989 DOI: 10.1111/imcb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 12/03/2024]
Abstract
Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.
Collapse
Affiliation(s)
- Shangwei Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanhe Zheng
- Digestive Department, The First People's Hospital of Lanzhou New Area, Lanzhou, China
| | - Zhenjun Pu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyu Nian
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Junliang Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Huang Y, Zhang J, You H, Ye F, Yang Y, Zhu C, Jiang YC, Tang ZX. Berberine ameliorates inflammation by inhibiting MrgprB2 receptor-mediated activation of mast cell in mice. Eur J Pharmacol 2024; 985:177109. [PMID: 39515562 DOI: 10.1016/j.ejphar.2024.177109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Berberine, an isoquinoline alkaloid, is known for anti-inflammatory activities. However, the research on the anti-inflammatory mechanism of berberine is not comprehensive. Recently, studies have shown that MrgprB2 (Mas-related G-protein-coupled receptor B2) in mice and MrgprX2 (Mas-related G-protein-coupled receptor X2) in humans play vital roles in inflammation. Therefore, this study aims to investigate whether the anti-inflammatory activity of berberine is related to MrgprB2 receptor. METHODS The anti-inflammatory activity of BH (berberine hydrochloride) was evaluated by hindpaw edema analysis, pathological analysis and RT-qPCR. Transgenic mice (MrgprB2-/- mice), HEK293T cell transfection, calcium imaging, electrophysiology, molecular docking and other methods were employed to investigate the potential relationship between the anti-inflammatory activity of BH and the MrgprB2 receptor. RESULTS The results demonstrated that BH significantly alleviated C48/80 (compound 48/80)-induced local inflammation in vivo. This was evidenced by a decrease in paw edema, reduced infiltration of inflammatory cells, inhibition of mast cell activation, and down-regulation of inflammatory factors such as CXCL13 (CXC subfamily 13) and TNF-α (tumor necrosis factor-α). It was also found that knockout of MrgprB2 receptor could block the anti-inflammatory activity of BH in mice. Furthermore, calcium imaging revealed that BH effectively inhibited the activity of MrgprB2 receptor in overexpressed HEK293T cells in vitro. Additionally, it was observed that BH also inhibited MrgprB2-mediated voltage-dependent current changes in mouse peritoneal mast cells. Molecular docking results further indicated that BH had affinity with MrgprX2 protein. CONCLUSIONS The anti-inflammatory mechanism of BH may be partially attributed to the inhibition of MrgprB2 receptor-mediated mast cell activation.
Collapse
Affiliation(s)
- Yun Huang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jian Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Huan You
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Fan Ye
- School of Pharmacy, Jishou University, Jishou, 416000, China
| | - Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yu-Cui Jiang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zong-Xiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
3
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Cui H, Xu W, Liu L, Hong Y, Lou H, Tang P, Lin Y, Xu H, Xie M, Du M, Tang X, Wang Z, Wang Q, Zhang Y. Diosgenin alleviates arsenic trioxide induced cardiac fibrosis by inhibiting endothelial mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155891. [PMID: 39059093 DOI: 10.1016/j.phymed.2024.155891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUD Arsenic trioxide (ATO), the first-line drug in treating acute premyelogenous leukemia, has the profound side effect of inducing endothelial mesenchymal transition (EndMT) and causing cardiac fibrosis. Diosgenin (DIO), a pharmaceutical compound found in Paris polyphylla, exhibits promising potential in safeguarding cardiovascular health by mitigating EndMT. PURPOSE This study aims to explore the role and mechanism of DIO in ATO-induced myocardial fibrosis to provide a novel therapeutic agent for ATO-induced cardiac fibrosis. METHODS Wistar rats were given DIO by gavage and ATO by tail vein. Cardiac function and fibrosis were evaluated by echocardiography and Masson's trichrome staining in rats. Human aortic endothelial cells (HAECs) were utilized to analyze ATO-induced EndMT in vitro. The cytoskeleton of HAECs was visualized using F-actin staining to observe cell morphology, while Dil-Ac-LDL staining was employed to assess cell functionality. EndMT-related factors (CD31 and α-SMA), glucocorticoid receptor (GR) and interleukin-6 (IL-6) were detected by immunofluorescence and Western blot in vivo and in vitro. Furthermore, GR was knocked down by si-GR, and IL-6 was blocked by IL-6 neutralizing antibody to verify their role in the effect of DIO on ATO-induced EndMT in HAECs. RESULTS DIO exhibited significant efficacy in ATO-induced damage to both cardiac diastolic and systolic function, along with mitigating cardiac fibrosis. Additionally, DIO alleviated the loss of cytoskeletal anisotropy and enhanced the uptake of Dil-Ac-LDL in HAECs. Furthermore, it reversed the ATO-induced downregulation of endothelial-specific markers CD31 and GR, while suppressing the upregulation of mesenchymal markers α-SMA and IL-6, both in vivo and in vitro. Notably, the protective effect of DIO was compromised upon knockdown of GR, which also led to a reversal of DIO-induced IL-6 downregulation. Furthermore, the neutralization of IL-6 with specific antibodies abolished the ATO-induced changes related to EndMT. CONCLUSION In this study, we clarified the protective effect of DIO on ATO-induced myocardial fibrosis against EndMT via the GR/IL-6 axis for the first time and provided a potential therapeutic agent for preventing heart damage caused by ATO.
Collapse
Affiliation(s)
- Hao Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; First Affiliated Hospital of Army Medical University, Chongqing, 400038, PR China
| | - Wanqing Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Yang Hong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Pingping Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Yuan Lin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Henghui Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Menghan Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Xueqing Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Zhixia Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, PR China.
| |
Collapse
|
5
|
Han M, Guo Y, Tang S, Li D, Wan J, Zhu C, Zuraini Z, Liang J, Gao T, Zhou Z, Jiang Q. Effects of berberine hydrochloride on antioxidant response and gut microflora in the Charybdis japonica infected with Aeromonas hydrophila. BMC Microbiol 2024; 24:287. [PMID: 39095728 PMCID: PMC11295712 DOI: 10.1186/s12866-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, 11800, Malaysia
| | - Yanxia Guo
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
| | - ShengKai Tang
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
| | - Daming Li
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
| | - Jinjuan Wan
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, 11800, Malaysia
| | - Zakaria Zuraini
- Biology Program, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ji Liang
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, 11800, Malaysia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, 210024, Nanjing, China
| | - Zihan Zhou
- Freshwater Fisheries Research Institute of Jiangsu, 79 Chating East Street, 210017, Nanjing, China
| | - Qichen Jiang
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, 11800, Malaysia.
| |
Collapse
|
6
|
Hong Y, Feng J, Dou Z, Sun X, Hu Y, Chen Z, Liu L, Xu H, Du M, Tang P, Liu X, Zhang Y. Berberine as a novel ACSL4 inhibitor to suppress endothelial ferroptosis and atherosclerosis. Biomed Pharmacother 2024; 177:117081. [PMID: 38971008 DOI: 10.1016/j.biopha.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
The discovery of an inhibitor for acyl-CoA synthetase long-chain family member 4 (ACSL4), a protein involved in the process of cell injury through ferroptosis, has the potential to ameliorate cell damage. In this study, we aimed to investigate the potential of berberine (BBR) as an inhibitor of ACSL4 in order to suppress endothelial ferroptosis and provide protection against atherosclerosis. An atherosclerosis model was created in ApoE-/- mice by feeding a high fat diet for 16 weeks. Additionally, a mouse model with endothelium-specific overexpression of ACSL4 was established. BBR was administered orally to assess its potential therapeutic effects on atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low density lipoprotein (ox-LDL) to simulate atherosclerotic endothelial damage in vitro. The interaction between ACSL4 and BBR has been confirmed, with BBR playing a role in inhibiting erastin-induced ferroptosis by regulating ACSL4. Additionally, BBR has been found to inhibit lipid deposition, plaque formation, and collagen deposition in the aorta, thereby delaying the progression of atherosclerosis. It also restored the abnormal expression of ferroptosis-related proteins in atherosclerotic vascular endothelial cells both in vivo and in vitro. In conclusion, BBR, acting as an ACSL4 inhibitor, can improve atherosclerosis by inhibiting ferroptosis in endothelial cells. This highlights the potential of targeted inhibition of vascular endothelial ACSL4 as a strategy for treating atherosclerosis, with BBR being a candidate for this purpose.
Collapse
Affiliation(s)
- Yang Hong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zijia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yingying Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zhouxiu Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Henghui Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Menghan Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Pingping Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
7
|
Liu W, Wu S, Sun TX, Bai J, Yang Y, Lian WH, Zhao Y. Post-synthetic modified luminescent metal-organic framework for the detection of berberine hydrochloride in a traditional Chinese herb. RSC Adv 2024; 14:602-607. [PMID: 38173615 PMCID: PMC10759037 DOI: 10.1039/d3ra07054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a novel fluorescence sensor UiO-66-PSM based on post-synthetic modified metal-organic frameworks was prepared for the detection of berberine hydrochloride (BBH) in the traditional Chinese herb Coptis. UiO-66-PSM was synthesized by a simple Schiff base reaction with UiO-66-NH2 and phthalaldehyde (PAD). The luminescence quenching can be attributed to the photo-induced electron transfer process from the ligand of UiO-66-PSM to BBH. The UiO-66-PSM sensor exhibited fast response time, low detection limit, and high selectivity to BBH. Moreover, the UiO-66-PSM sensor was successfully applied to the quantitative detection of BBH in the traditional Chinese herb Coptis, and the detection results obtained from the as-fabricated fluorescence sensing assay were consistent with those of high-performance liquid chromatography (HPLC), indicating that this work has potential applicability for the detection of BBH in traditional Chinese herbs.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Changchun University of Chinese Medicine Changchun 130017 P. R.China
| | - Shuang Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130017 P.R.China
| | - Tian-Xia Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130017 P.R.China
| | - Jing Bai
- Jilin Ji Test Technology Co. LTD Changchun 130017 P. R.China
| | - Ying Yang
- Jilin Ji Test Technology Co. LTD Changchun 130017 P. R.China
| | - Wen-Hui Lian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130017 P.R.China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130017 P.R.China
| |
Collapse
|
8
|
Lv K, Lou P, Liu S, Wang Y, Yang J, Zhou P, Zhou X, Lu Y, Wang H, Cheng J, Liu J. Injectable Multifunctional Composite Hydrogel as a Combination Therapy for Preventing Postsurgical Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303425. [PMID: 37649233 DOI: 10.1002/smll.202303425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Postsurgical adhesion (PA) is a common and serious postoperative complication that affects millions of patients worldwide. However, current commercial barrier materials are insufficient to inhibit diverse pathological factors during PA formation, and thus, highly bioactive materials are needed. Here, this work designs an injectable multifunctional composite hydrogel that can serve as a combination therapy for preventing PA. In brief, this work reveals that multiple pathological events, such as chronic inflammatory and fibrotic processes, contribute to adhesion formation in vivo, and such processes can not be attenuated by barrier material (e.g., hydrogel) alone treatments. To solve this limitation, this work designs a composite hydrogel made of the cationic self-assembling peptide KLD2R and TGF-β receptor inhibitor (TGF-βRi)-loaded mesenchymal stem cell-derived nanovesicles (MSC-NVs). The resulting composite hydrogel displays multiple functions, including physical separation of the injured tissue areas, antibacterial effects, and local delivery and sustained release of anti-inflammatory MSC-NVs and antifibrotic TGF-βRi. As a result, this composite hydrogel effectively inhibited local inflammation, fibrosis and adhesion formation in vivo. Moreover, the hydrogel also exhibits good biocompatibility and biodegradability in vivo. Together, the results highlight that this "all-in-one" composite hydrogel strategy may provide insights into designing advanced therapies for many types of tissue injury.
Collapse
Affiliation(s)
- Ke Lv
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Zhou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu H, Xu H, Sun H, Xu H, Han J, Zhao L, Li X, Sun X, Dong X, Xu R, Chen Z, Du M, Tang P, Chen Y, Lin Y, Zhang Y, Han W, Liu X. Tetrahydroberberrubine prevents peritoneal adhesion by suppressing inflammation and extracellular matrix accumulation. Eur J Pharmacol 2023:175803. [PMID: 37295764 DOI: 10.1016/j.ejphar.2023.175803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Peritoneal adhesion is a common abdominal surgical complication that induces abdominal haemorrhage, intestinal obstruction, infertility, and so forth. The high morbidity and recurrence rate of this disease indicate the need for novel therapeutic approaches. Here, we revealed the protective roles of tetrahydroberberrubine (THBru), a novel derivative of berberine (BBR), in preventing peritoneal adhesion and identified its underlying mechanism in vivo and in vitro. Abrasive surgery was used to create a peritoneal adhesion rat model. We found that THBru administration markedly ameliorated peritoneal adhesion, as indicated by a lowered adhesion score and ameliorated caecal tissue damage. By comparison, THBru exhibited more potent anti-adhesion effects than BBR at the same dose. Mechanistically, THBru inhibited inflammation and extracellular matrix (ECM) accumulation in the microenvironment of adhesion tissue. THBru suppressed the expression of inflammatory cytokines including interleukin-1β (IL-1β), IL-6, transforming growth factor β (TGF-β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1), by regulating the transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) and TAK1/nuclear factor κB (NF-κB) signaling pathways. However, THBru promoted the activation of MMP-3 by directly blocking the TIMP-1 activation core and subsequently decreased collagen deposition. Taken together, this study identifies THBru as an effective anti-adhesion agent that regulates diverse mechanisms, thereby outlining its potential therapeutic implications for the treatment of peritoneal adhesion.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Heyang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Honglin Xu
- Department of Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jingjing Han
- Department of Pharmaceutics, Caoxian People's Hospital, Shandong, People's Republic of China
| | - Limin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaohan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - XiuXiu Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xinxin Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Yongchao Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
10
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Wang L, Tang XQ, Shi Y, Li HM, Meng ZY, Chen H, Li XH, Chen YC, Liu H, Hong Y, Xu HH, Liu L, Zhao L, Han WN, Liu X, Zhang Y. Tetrahydroberberrubine retards heart aging in mice by promoting PHB2-mediated mitophagy. Acta Pharmacol Sin 2023; 44:332-344. [PMID: 35948750 PMCID: PMC9889783 DOI: 10.1038/s41401-022-00956-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023] Open
Abstract
Heart aging is characterized by left ventricular hypertrophy and diastolic dysfunction, which in turn induces a variety of cardiovascular diseases. There is still no therapeutic drug to ameliorate cardiac abnormities in heart aging. In this study we investigated the protective effects of berberine (BBR) and its derivative tetrahydroberberrubine (THBru) against heart aging process. Heart aging was induced in mice by injection of D-galactose (D-gal, 120 mg · kg-1 · d-1, sc.) for 12 weeks. Meanwhile the mice were orally treated with berberine (50 mg · kg-1 · d-1) or THBru (25, 50 mg · kg-1 · d-1) for 12 weeks. We showed that BBR and THBru treatment significantly mitigated diastolic dysfunction and cardiac remodeling in D-gal-induced aging mice. Furthermore, treatment with BBR (40 μM) and THBru (20, 40 μM) inhibited D-gal-induced senescence in primary neonatal mouse cardiomyocytes in vitro. Overall, THBru exhibited higher efficacy than BBR at the same dose. We found that the levels of mitophagy were significantly decreased during the aging process in vivo and in vitro, THBru and BBR promoted mitophagy with different potencies. We demonstrated that the mitophagy-inducing effects of THBru resulted from increased mRNA stability of prohibitin 2 (PHB2), a pivotal factor during mitophagy, thereby upregulating PHB2 protein expression. Knockdown of PHB2 effectively reversed the antisenescence effects of THBru in D-gal-treated cardiomyocytes. On the contrary, overexpression of PHB2 promoted mitophagy and retarded cardiomyocyte senescence, as THBru did. In conclusion, this study identifies THBru as a potent antiaging medicine that induces PHB2-mediated mitophagy and suggests its clinical application prospects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Qing Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Shi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hui-Min Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zi-Yu Meng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Han Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong-Chao Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Heng Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Hong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Heng-Hui Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Limin Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei-Na Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150081, China.
| |
Collapse
|
12
|
Naz I, Masoud MS, Chauhdary Z, Shah MA, Panichayupakaranant P. Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers. J Food Biochem 2022; 46:e14389. [PMID: 36121315 DOI: 10.1111/jfbc.14389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Berberine-rich extract (BRE) prepared from Berberis lycium root bark using green extraction approach and its marker compound berberine has a broad spectrum of clinical applications. Berberine's potential pharmacological effects include anticancer, antidiarrheal, antidiabetic, antimicrobial and anti-inflammatory activities. In current work, BRE and berberine were evaluated for their therapeutic prospects in inflammation models. The comparative effect of BRE and berberine against inflammation was determined through in vitro chemiluminescence technique. The in vivo anti-inflammatory evaluation of BRE and berberine (25, 75, and 125 mg/kg) compared to diclofenac (10 mg/kg) was performed in carrageenan and formaldehyde-induced inflammation in Wistar rats. Histopathological and biochemical studies were conducted to find the comparative anti-inflammatory potential of BRE and berberine on pathological hallmarks induced by formaldehyde. Moreover, the modulatory effects on inflammatory biomarkers were also investigated through qPCR. ELISA (enzyme-linked immunoassay test assay) was performed to investigate the expression of pathological protein biomarkers like TNF-α and IL-6 and levels of antioxidant enzymes were estimated in liver homogenates. Both BRE and berberine markedly (p < .001) reduced paw diameter and inflammation in carrageenan and formaldehyde-induced inflammation. The levels of antioxidant enzymes were recovered (p < .001) by BRE and berberine treatments, and compared to the formaldehyde-treated inflammation model. Both BRE and berberine remarkably downregulated the mRNA and protein expression of inflammatory biomarkers. BRE similar to berberine mitigated the level of antioxidant enzymes in liver homogenate. The undertaken study suggests that BRE, a natural, green, and therapeutically bioequivalent to berberine could be used as an economical phytomedicine in the treatment of inflammatory disorders. PRACTICAL APPLICATIONS: Anti-inflammatory drugs like NSAIDS are associated with serious adverse effects like gastrointestinal ulcer, worsening of preexisting cardiovascular disorders, and renal failure. Therefore, there is a constant demand to develop novel, inexpensive therapeutic strategies to treat the inflammatory disorder with the least harmful effects. Pure phytochemicals with anti-inflammatory potential are costly and hard to isolate, therefore green microwave-assisted extraction technique is developed to get the rich bioequivalent extract. Berberis lycium a medicinal plant with berberine as a major bioactive constituent, has wide acceptance in traditionally used medicine and as food. Pharmacological studies revealed its hepatoprotective, anticancer, antidiabetic, and antihypertensive activities. BRE was prepared by green microwave-assisted extraction and enrichment by resin column to get a higher yield of berberine. The comparative anti-inflammatory effect of BRE and berberine was determined by in vitro and in vivo studies. Results obtained from this experimental work contribute beneficial guidance that reinforces the use of the BRE to treat inflammatory disorders.
Collapse
Affiliation(s)
- Iram Naz
- Department of Bioinformatics & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.,Department of Pharmacy, Hazara University, Mansehra, Pakistan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Thailand
| |
Collapse
|
13
|
Gao J, Wen J, Hu D, Liu K, Zhang Y, Zhao X, Wang K. Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion. Bioact Mater 2022; 16:27-46. [PMID: 35386330 PMCID: PMC8958549 DOI: 10.1016/j.bioactmat.2022.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-β-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
14
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
15
|
Zeng H, Liu X, Zhang Z, Song X, Quan J, Zheng J, Shen Z, Ni Y, Liu C, Zhang Y, Hu G. Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion. Acta Biomater 2022; 151:210-222. [PMID: 35995405 DOI: 10.1016/j.actbio.2022.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
Clinically, increasing the peritoneal barrier is an effective adjunct to reducing postoperative peritoneal adhesion. This study presents a facile template for preparing a supramolecular hybrid hydrogel through dynamic covalent cross-linking between carboxymethyl chitosan (CMCS), 2-formylphenylboronic acid (2-FPBA), and quercetin (Que). The as-prepared complex CMCS/2-FPBA/Que (CFQ) hydrogel exhibited favorable antibacterial, anti-inflammatory, and antioxidant effects. A L929 cytotoxicity evaluation confirmed the favorable cytocompatibility of the CFQ hydrogel. The postoperative anti-adhesion ability of the CFQ hydrogel was further evaluated in rats with lateral wall defects and cecal abrasions. Compared with control groups, the tissue adhesion rate was significantly reduced by increasing the Que concentration in all the hydrogel-treated groups. Additionally, the sustained-release time of the C3F0.8Q0.08 hydrogel can exceed 14 days, which is highly desirable for clinical wound treatment. STATEMENT OF SIGNIFICANCE: Postoperative adhesions are a very common postoperative complication that seriously affects the quality of life of patients. The currently commonly used methods for preventing adhesion mainly use degradable barrier materials for physical separation. In this study, we prepared a dual dynamic covalently cross-linked CFQ hydrogel, which is not only degradable and injectable, but also has multiple properties such as antibacterial, antioxidant and anti-inflammatory, which can effectively prevent postoperative adhesion and promote wound healing.
Collapse
Affiliation(s)
- Huihui Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China.
| |
Collapse
|
16
|
Ai Y, Zhao Z, Wang H, Zhang X, Qin W, Guo Y, Zhao M, Tang J, Ma X, Zeng J. Pull the plug: Anti‐angiogenesis potential of natural products in gastrointestinal cancer therapy. Phytother Res 2022; 36:3371-3393. [PMID: 35871532 DOI: 10.1002/ptr.7492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanling Ai
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hengyi Wang
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Weihan Qin
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Yanlei Guo
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Maoyuan Zhao
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Department of Geriatrics Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
17
|
Li D, Bi X, Ma J, Zhang X, Jiang K, Zhu X, Huang J, Zhou L. Natural herbicidal alkaloid berberine regulates the expression of thalianol and marneral gene clusters in Arabidopsis thaliana. PEST MANAGEMENT SCIENCE 2022; 78:2896-2908. [PMID: 35415871 DOI: 10.1002/ps.6914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Berberine is a plant-derived herbicidal alkaloid. The herbicidal mechanism of berberine is still not clear. In this study, our aim is to clarify the mechanism of berberine inhibiting the root growth of Arabidopsis thaliana, aiming at providing new insight into identifying the molecular targets of berberine. RESULTS The whole-genome RNA sequencing had revealed that 403 genes were down-regulated, and 422 genes were up-regulated in Arabidopsis roots with berberine treatment. According to KEGG and GO analysis, the expression of two genes AT5G48010 (Thas) and AT5G42600 (MRN1) which are in the sesquiterpenoid and triterpenoid biosynthesis pathway were affected most. These two genes belong to thalianol and marneral gene clusters. RT-PCR showed that Arabidopsis responds to berberine by inhibiting root growth through repressing the expression of thalianol and marneral gene clusters, which was independent of the upstream effectors ARP6 and HTA9-1. GC-MS analysis showed that berberine could inhibit THAH in the biosynthetic network of triterpenoid gene cluster in Arabidopsis and thus cause the accumulation of thalianol. CONCLUSION Our study indicated the repression of the thalianol and marneral gene clusters as the primary mechanism of action of berberine in Arabidopsis, which may result in plant growth defects by interrupting the thalianol metabolic pathway. This provides novel clues as to the possible molecular herbicidal mechanism of berberine. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dandan Li
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Bi
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Ma
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xiaohong Zhang
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Keni Jiang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xuezhen Zhu
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jiguang Huang
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Lijuan Zhou
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Efatpanah A, Rabbani S, Talimi R, Mortazavi SA, Haeri A. Indomethacin Sustained-Release Anti-adhesion Membrane Composed of a Phospholipid and Polycaprolactone Blend. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127353. [PMID: 36710990 PMCID: PMC9872549 DOI: 10.5812/ijpr-127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Background Postoperative peritoneal adhesions are among common challenging problems in surgery. The availability of limited efficient strategies to prevent intra-abdominal adhesion reinforces the need to explore new methods. Given the favorable prolonged drug release characteristics of polycaprolactone (PCL) films and their ability to act as a biodegradable physical barrier implant, along with the anti-inflammatory and anti-adhesion properties of indomethacin and phospholipids, this study hypothesized that indomethacin sustained-release membrane composed of phosphatidylcholine (PC) and PCL blend could efficiently prevent abdominal adhesion formation. Methods Different polymeric and polymeric/lipidic hybrid formulations with three feeding materials to drug weight ratios were prepared, and their physicochemical characteristics and drug release kinetics were evaluated and compared. Abdominal adhesions were induced in 48 rats by the abrasion of the cecum and excision of a section of the opposite abdominal wall. Adhesion formation was evaluated by macroscopic scoring, histological, scanning electron microscopy, and polymerase chain reaction analyses. Results Both PCL and PCL-PC films exhibited sustained indomethacin release profiles. The X-ray diffraction and Fourier-transform infrared spectroscopy studies confirmed indomethacin incorporation in formulations in molecular dispersion form without any interaction. The films showed smooth surfaces and good mechanical properties. The treatment with indomethacin PCL-PC membrane significantly reduced the expression levels of tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-1, interleukin-6, and fibrinogen in the adhesion tissues. The separation of the injured peritoneum, very low adhesion scores, and complete mesothelial cell regeneration were also achieved. Conclusions This study suggests that indomethacin-eluting PCL-PC membrane acting through the combination of physical barrier, anti-inflammatory agents, and controlled drug delivery warrants an effective approach to prevent intra-abdominal adhesion.
Collapse
Affiliation(s)
- Adrina Efatpanah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozhin Talimi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box: 14155-6153, Tehran, Iran. Tel: +98-2188200212,
| |
Collapse
|
19
|
Long NP, Thuan ND, Huong DL, Van Minh V, Son BT, Nam QT, Ninh CTH, Tuan PM, Cuong NA, Van Thinh N, Le Van Quan, Nghia NT, Hung DV, Khanh N, Thao PN. Efficiency of a biodegradable gel containing hyaluronic acid and berberine hydrochloride in endoscopic sinus surgery (ESS): A prospective comparative study. Am J Otolaryngol 2022; 43:103397. [PMID: 35210111 DOI: 10.1016/j.amjoto.2022.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To evaluate the efficiency of a biodegradable gel containing hyaluronic acid and berberine hydrochloride in endoscopic sinus surgery. METHODS Sixty-six chronic rhinosinusitis patients with or without nasal polyps who underwent bilateral endoscopic sinus surgery (ESS) were randomly received a biodegradable gel containing hyaluronic acid and berberine hydrochloride or merocel in both middle meatal spacers at the end procedure of ESS. Lund-Kennedy endoscopic score (LKES) was used to examine status of nasal cavity on preoperative day and postoperative day 1 to 7. The LKES ratio was calculated as the LKES on postoperative day divided into the LKES on preoperative day. Visual analogue score (VAS) was used to assess patient's status from the first postoperative day to the hospital discharge day. The average VAS during hospital stays was calculated by the sum of VAS in each examination day divided into the number of examined day. The LKES ratio, the average of VAS during hospital stays and length of hospitalized day of the patients were used as clinical outcome indices in early stage after surgery. A general linear model adjusted for confounding factors was used for data analysis. RESULTS Adjusted mean of LKES ratio were lower in group used biodegrable gel of hyaruloic acid and berberin hydrochlode (study group) than those in merocele group in the postoperative day 1 to day 7. However, significant difference was found in the adjusted mean of LKES ratio on the postoperative day 2 to 6. Similarly, the adjusted mean of VAS during hospital stays and length of hospitalized day after surgery in study group were significantly decreased as compared with those in merocele group. CONCLUSIONS Biodegradable material containing hyaluronic acid and berberine hydrochloride was more effective than merocel in length of hospital stay, post-operative symptoms, and sinus cavity's status in early stage after ESS.
Collapse
|
20
|
Zhao T, Zhang K, Shi G, Ma K, Wang B, Shao J, Wang T, Wang C. Berberine Inhibits the Adhesion of Candida albicans to Vaginal Epithelial Cells. Front Pharmacol 2022; 13:814883. [PMID: 35295335 PMCID: PMC8918845 DOI: 10.3389/fphar.2022.814883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an inflammatory disease of the vagina mainly caused by Candida albicans (C. albicans), which affects around three-quarters of all women during their reproductive age. Although some antifungal drugs such as azoles have been applied clinically for many years, their therapeutic value is very limited due to the emergence of drug-resistant strains. Previous studies have shown that the adhesion of C. albicans to vaginal epithelial cells is essential for the pathogenesis of VVC. Therefore, preventing the adhesion of C. albicans to vaginal epithelial cells may be one of the most effective strategies for the treatment of VVC. Berberine (BBR) is a biologically active herbal alkaloid that was used to treat VVC. However, so far, its mechanism has remained unclear. This study shows BBR significantly inhibits the adhesion of C. albicans to vaginal epithelial cells by reducing the expressions of ICAM-1, mucin1, and mucin4 in vaginal epithelial cells, which play the most important role in modulating the adhesion of C. albicans to host cells, and balancing IL-2 and IL-4 expressions, which play a key effect on regulating the inflammatory response caused by C. albicans infection. Hence, our findings demonstrate that BBR may be a potential therapeutic agent for VVC by interfering with the adhesion of C. albicans to vaginal epithelial cells and represents a new pathway for developing antifungal therapies agents from natural herbs.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kelong Ma
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Benfan Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| |
Collapse
|
21
|
Meng J, Qiu S, Zhang L, You M, Xing H, Zhu J. Berberine Alleviate Cisplatin-Induced Peripheral Neuropathy by Modulating Inflammation Signal via TRPV1. Front Pharmacol 2022; 12:774795. [PMID: 35153744 PMCID: PMC8826251 DOI: 10.3389/fphar.2021.774795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a severe neurodegenerative disorder caused by chemotherapy drugs. Berberine is a natural monomer compound of Coptis chinensis, which has anti-tumor effect and can improve neuropathy through anti-inflammatory mechanisms. Transient receptor potential vanilloid (TRPV1) can sense noxious thermal and chemical stimuli, which is an important target for the study of pathological pain. In both vivo and in vitro CIPN models, we found that berberine alleviated peripheral neuropathy associated with dorsal root ganglia inflammation induced by cisplatin. We confirmed that berberine mediated the neuroinflammatory reaction induced by cisplatin by inhibiting the overexpression of TRPV1 and NF-κB and activating the JNK/p38 MAPK pathways in early injury, which inhibited the expression of p-JNK and mediated the expression of p38 MAPK/ERK in late injury in vivo. Moreover, genetic deletion of TRPV1 significantly reduced the protective effects of berberine on mechanical and heat hyperalgesia in mice. In TRPV1 knockout mice, the expression of NF-κB increased in late stage, and berberine inhibited the overexpression of NF-κB and p-ERK in late injury. Our results support berberine can reverse neuropathic inflammatory pain response induced by cisplatin, TRPV1 may be involved in this process.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Intraperitoneal Lavage with Crocus sativus Prevents Postoperative-Induced Peritoneal Adhesion in a Rat Model: Evidence from Animal and Cellular Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5945101. [PMID: 34956439 PMCID: PMC8702342 DOI: 10.1155/2021/5945101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Postoperative peritoneal adhesions are considered the major complication following abdominal surgeries. The primary clinical complications of peritoneal adhesion are intestinal obstruction, infertility, pelvic pain, and postoperative mortality. In this study, regarding the anti-inflammatory and antioxidant activities of Crocus sativus, we aimed to evaluate the effects of Crocus sativus on the prevention of postsurgical-induced peritoneal adhesion. Male Wistar-Albino rats were used to investigate the preventive effects of C. sativus extract (0.5%, 0.25% and 0.125% w/v) against postsurgical-induced peritoneal adhesion compared to pirfenidone (PFD, 7.5% w/v). We also investigated the protective effects of PFD (100 μg/ml) and C. sativus extract (100, 200, and 400 μg/ml) in TGF-β1-induced fibrotic macrophage polarization. The levels of cell proliferation and oxidative, antioxidative, inflammatory and anti-inflammatory, fibrosis, and angiogenesis biomarkers were evaluated both in vivo and in vitro models. C. sativus extract ameliorates postoperational-induced peritoneal adhesion development by attenuating oxidative stress [malondialdehyde (MDA)]; inflammatory mediators [interleukin- (IL-) 6, tumour necrosis factor- (TNF-) α, and prostaglandin E2 (PGE2)]; fibrosis [transforming growth factor- (TGF-) β1, IL-4, and plasminogen activator inhibitor (PAI)]; and angiogenesis [vascular endothelial growth factor (VEGF)] markers, while propagating antioxidant [glutathione (GSH)], anti-inflammatory (IL-10), and fibrinolytic [tissue plasminogen activator (tPA)] markers and tPA/PAI ratio. In a cellular model, we revealed that the extract, without any toxicity, regulated the levels of cell proliferation and inflammatory (TNF-α), angiogenesis (VEGF), anti-inflammatory (IL-10), M1 [inducible nitric oxide synthase (iNOS)] and M2 [arginase-1 (Arg 1)] biomarkers, and iNOS/Arg-1 ratio towards antifibrotic M1 phenotype of macrophage, in a concentration-dependent manner. Taken together, the current study indicated that C. sativus reduces peritoneal adhesion formation by modulating the macrophage polarization from M2 towards M1 cells.
Collapse
|
23
|
Li Y, Wen H, Ge X. Hormesis Effect of Berberine against Klebsiella pneumoniae Is Mediated by Up-Regulation of the Efflux Pump KmrA. JOURNAL OF NATURAL PRODUCTS 2021; 84:2885-2892. [PMID: 34665637 DOI: 10.1021/acs.jnatprod.1c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Berberine (BBR) is an effective drug for human intestinal inflammation by preventing intestinal adhesion of bacterial pathogens, while its antibacterial activity is ineffective. Although the antimicrobial mechanisms of BBR are intensively studied at high concentrations, the response of pathogens to its low concentrations remains poorly understood. Here we demonstrated that low concentrations of BBR (3 and 6 μg/mL) conferred by hormesis accelerated cell growth of an important Gram-negative pathogen, Klebsiella pneumoniae, in vitro, while higher concentrations (25 and 50 μg/mL) resulted in the opposite. Transcriptome analysis of K. pneumoniae revealed the up-regulated expression of the KmrA efflux pump and further confirmed it was hypersensitive to BBR stress. Strikingly, when cultivated in tetracycline, the growth-promoting effect of BBR became more significant, while this effect was reversed in the presence of the efflux pump inhibitor cyanide-m-chlorophenylhydrazone. The hormesis was also found in Enterobacter cloacae and Acinetobacter baumannii. More importantly, the presence of BBR at low concentrations resulted in higher minimal inhibitory concentrations of efflux-related antibiotics such as rifampicin and azithromycin. Overall, our data demonstrated the hormesis of BBR and revealed the potential risk of its applications against Gram-negative pathogens at low concentrations.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Honglin Wen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
24
|
Jamshidi-adegani F, Vakilian S, Al-kindi J, Rehman NU, Alkalbani L, Al-Broumi M, Al-Wahaibi N, Shalaby A, Al-Sabahi J, Al-Harrasi A, Al-Hashmi S. Prevention of post-surgical adhesion bands by local administration of frankincense n-hexane extract. J Tradit Complement Med 2021; 12:367-374. [PMID: 35747348 PMCID: PMC9209871 DOI: 10.1016/j.jtcme.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Background and purpose: The formation of postoperative intra-abdominal adhesion band formation may lead to severe complications. This study aimed to evaluate the preventive effect of local administration of frankincense n-hexane extract (FHE) on the formation of postsurgical adhesion bands. Materials and methods FHE was extracted from the resin of a Boswellia sacra tree and its components were identified by gas chromatography-mass spectrometry (GC-MS). In an animal model, the expression levels of TNF-α and TGF-β1 cytokines after application of FHE were assessed to check the inflammatory and fibrotic cues, respectively. Results Following FHE compound analysis, in vivo experiments demonstrated that intraoperative local administration of FHE resulted in the prevention of adhesion band formation. The adhesion grades in the FHE-treated group were significantly lower than those in the negative control (NC) and the positive control (Interceed). The infiltration of inflammatory cells observed by histopathology revealed a significant anti-inflammatory potential of FHE. Furthermore, the gene expression results proved that significant suppression of TNF-α and TGF-β1 was responsible for its antiadhesion properties. Conclusions The study reported the potential of FHE as an ointment for the prevention of adhesion bands. Recognition of compounds with anti-inflammatory, antifibrotic activities in FHE using gas chromatography-mass spectrometry. The avoidance of adhesion bands formation, in vivo following intraoperative local administration of FHE. A notable anti-inflammatory potential of FHE detected by histopathology results. Approving the regulation of TNF-α and TGF-β1 involved in the intra-abdomen adhesion preventive properties of FHE.
Collapse
|
25
|
Huang L, Shi Y, Li M, Wang T, Zhao L. Plasma Exosomes Loaded pH-Responsive Carboxymethylcellulose Hydrogel Promotes Wound Repair by Activating the Vascular Endothelial Growth Factor Signaling Pathway in Type 1 Diabetic Mice. J Biomed Nanotechnol 2021; 17:2021-2033. [PMID: 34706802 DOI: 10.1166/jbn.2021.3165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic wound healing plagues thousands of diabetic patients and brings social and economic burdens. Plasma exosomes (P-Exos), regarded as nanosized therapeutic agents, have shown therapeutic efficacy in promoting diabetic wound healing. The present work prepared the P-Exos-loaded pH-responsive carboxymethylcellulose (P-Exos-loaded CMC) hydrogel to investigate its ability to accelerate diabetic wound healing and to explore its underlying mechanisms. The results showed that the P-Exos-loaded CMC hydrogel was an effective therapeutic agent for accelerating diabetic wound repair. It promoted the local wound healing process in diabetic type 1 mice and enhanced angiogenesis and re-epithelialization via activating angiogenesis-related pathways mediated by vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Lijuan Huang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Mengdie Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Tao Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| |
Collapse
|
26
|
Ghadiri M, Baradaran Rahimi V, Moradi E, Hasanpour M, Clark CCT, Iranshahi M, Rakhshandeh H, Askari VR. Standardised pomegranate peel extract lavage prevents postoperative peritoneal adhesion by regulating TGF-β and VEGF levels. Inflammopharmacology 2021; 29:855-868. [PMID: 33993390 DOI: 10.1007/s10787-021-00819-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Peritoneal adhesion represents a severe complication following surgery. Punica granatum (pomegranate) possesses several anti-oxidative and anti-inflammatory properties. Pomegranate peel extract (PPEx) can alleviate the production of various inflammatory factors and cytokines. Thus, we sought to evaluate the anti-adhesion effects of pomegranate in rats. Thirty male Wistar rats (6-week-old, 220 ± 20 g) were divided into five groups (n = 6): normal group without any surgical procedures, control group, and experimental groups receiving 2 ml of 1%, 2%, and 4% w/v PPEx, respectively. Peritoneal adhesions were examined macroscopically. Furthermore, we evaluated inflammatory cytokines levels [interleukin 6 (IL-6), and tumour necrosis factor-α (TNF-α)], growth factors [transforming growth factor- β1 (TGF-β1), and vascular endothelial growth factor (VEGF)], and oxidative stress parameters [nitric oxide metabolites (NO), and malondialdehyde (MDA), and glutathione (GSH)] using biochemical methods. Our results showed that the adhesion score and IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA levels were increased in the control group. In contrast, the GSH level was diminished in the control group compared with the normal group (P < 0.001). PPEx (1 and 2% w/v) markedly reduced all measured parameters compared with the control group (P < 0.001-0.05). PPEx may reduce peritoneal adhesion by alleviating adhesion formation, IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA, and stimulating anti-oxidative factors. Therefore, PPEx may be considered an appropriate candidate for the treatment of postoperative peritoneal adhesion.
Collapse
Affiliation(s)
- Mobarakeh Ghadiri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Moradi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran.
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran. .,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
28
|
Wang L, Jia Z, Wang B, Zhang B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:902-909. [PMID: 33626003 DOI: 10.5152/tjg.2020.19568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS This study aimed to explore the therapeutic effects and underlying mechanism of berberine (BBR) on the non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD). MATERIALS AND METHODS Rats were randomly divided into the following 4 groups: control (normal diet), model (HFD), polyene phosphatidylcholine HFD+PPC, and BBR (HFD+BBR) group. The NAFLD models were prepared by feeding with HFD for 12 weeks. The liver tissues were observed by oil red O staining. H-E staining was used to detect pathological changes in the liver tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were detected by an automatic biochemical analyzer. ELISA was performed to observe the inflammatory cytokines (TNF-α, IL-6, and IL-1β) expressions. The levels of TLR4, MyD88, and NF-κB p65 were analyzed using western blot and qRT-PCR, respectively. The nuclear translocation levels of NF-κB in the primary liver cells were measured using flow cytometry. RESULTS BBR could significantly alleviate the liver tissue steatosis and inflammatory cell infiltration; reduce the NAFLD activity scores and serum levels of ALT, AST, TC, and LDL-C; decrease the levels of TNF-α, IL-6, and IL-1β, and reduce the expression of TLR4, MyD88, and NF-κB in the liver tissues. BBR could also reverse the nuclear translocation of NF-κB in the primary liver cells. CONCLUSION BBR alleviated the progress of NAFLD and liver damage, which might contribute to inhibit the nuclear translocation of NF-κB via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Lingling Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Zhandong Jia
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bangcai Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bin Zhang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| |
Collapse
|
29
|
Ma Y, Yan G, Guo J, Li F, Zheng H, Wang C, Chen Y, Ye Y, Dai H, Qi Z, Zhuang G. Berberine Prolongs Mouse Heart Allograft Survival by Activating T Cell Apoptosis via the Mitochondrial Pathway. Front Immunol 2021; 12:616074. [PMID: 33732240 PMCID: PMC7959711 DOI: 10.3389/fimmu.2021.616074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Berberine, which is a traditional Chinese medicine can inhibit tumorigenesis by inducing tumor cell apoptosis. However, the immunoregulatory of effects berberine on T cells remains poorly understood. Here, we first examined whether berberine can prolong allograft survival by regulating the recruitment and function of T cells. Using a major histocompatibility complex complete mismatch mouse heterotopic cardiac transplantation model, we found that the administration of moderate doses (5 mg/kg) of berberine significantly prolonged heart allograft survival to 19 days and elicited no obvious berberine-related toxicity. Compared to that with normal saline treatment, berberine treatment decreased alloreactive T cells in recipient splenocytes and lymph node cells. It also inhibited the activation, proliferation, and function of alloreactive T cells. Most importantly, berberine treatment protected myocardial cells by decreasing CD4+ and CD8+ T cell infiltration and by inhibiting T cell function in allografts. In vivo and in vitro assays revealed that berberine treatment eliminated alloreactive T lymphocytes via the mitochondrial apoptosis pathway, which was validated by transcriptome sequencing. Taken together, we demonstrated that berberine prolongs allograft survival by inducing apoptosis of alloreactive T cells. Thus, our study provides more evidence supporting the potential use of berberine in translational medicine.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Fujun Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Mujtaba MA, Akhter MH, Alam MS, Ali MD, Hussain A. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect. Curr Pharm Biotechnol 2021; 23:60-71. [PMID: 33557735 DOI: 10.2174/1389201022666210208152113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonlyBerberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti-inflammatory, antitumour, antimicrobial, antidepressant,hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related with the drug and methods to improve the properties of BBR such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.
Collapse
Affiliation(s)
- Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University. Saudi Arabia
| | | | | | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam. Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451. Saudi Arabia
| |
Collapse
|
31
|
Ma L, Yu Y, Liu H, Sun W, Lin Z, Liu C, Miao L. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep 2021; 11:1027. [PMID: 33441759 PMCID: PMC7806735 DOI: 10.1038/s41598-020-79734-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
The repair of skeletal defects in maxillofacial region remains an intractable problem, the rising technology of bone tissue engineering provides a new strategy to solve it. Scaffolds, a crucial element of tissue engineering, must have favorable biocompatibility as well as osteoinductivity. In this study, we prepared berberine/polycaprolactone/collagen (BBR/PCL/COL) scaffolds with different concentrations of berberine (BBR) (25, 50, 75 and 100 μg/mL) through electrospinning. The influence of dosage on scaffold morphology, cell behavior and in vivo bone defect repair were systematically studied. The results indicated that scaffolds could release BBR stably for up to 27 days. Experiments in vitro showed that BBR/PCL/COL scaffolds had appropriate biocompatibility in the concentration of 25-75 μg/mL, and 50 and 75 μg/mL scaffolds could significantly promote osteogenic differentiation of dental pulp stem cells. Scaffold with 50 μg/mL BBR was implanted into the critical bone defect of rats to evaluate the ability of bone repair in vivo. It was found that BBR/PCL/COL scaffold performed more favorable than polycaprolactone/collagen (PCL/COL) scaffold. Overall, our study is the first to evaluate the capability of in vivo bone repair of BBR/PCL/COL electrospun scaffold. The results indicate that BBR/PCL/COL scaffold has prospective potential for tissue engineering applications in bone regeneration therapy.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Zitong Lin
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
32
|
Berberine hydrochloride inhibits inflammation and fibrosis after canalicular laceration repair in rabbits. Life Sci 2020; 261:118479. [PMID: 32966840 DOI: 10.1016/j.lfs.2020.118479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study was designed to investigate the molecular mechanisms underlying the anti-inflammatory and anti-fibrosis effects of Berberine hydrochloride (BBR) following canalicular laceration (CL) surgical repair. MAIN METHODS We used a rabbit CL model in this study. BBR and the control medicine were administered during and after the surgical operation. The degree of fibrosis in the canaliculi was evaluated using hematoxylin and eosin and Masson's trichrome staining 7 days after the operation. Inflammation inside the canaliculi was observed using a transcanalicular endoscope. Expression levels of inflammatory cell cytokines [tumor growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), intracellular adhesion molecule-I (ICAM-1), and interleukin-β1 (IL-1β)] were detected using immunohistochemistry. P38 and ERK1 phosphorylation and activation were determined using western blot analysis. KEY FINDINGS The degree of inflammation and fibrosis were less in the BBR groups compared to Surgery group. The anti-inflammatory and anti-fibrosis effects of BBR were concentration-dependent. The levels of TGF-β1, CTGF, ICAM-1, and IL-1β were significantly lower in the BBR groups compared to Surgery group. BBR reduced the phosphorylation of P38 compared to Surgery group. SIGNIFICANCE In conclusion, this study shows that BBR can reduce local fibrosis after CL surgical repair via its anti-inflammatory and anti-fibrosis effects.
Collapse
|
33
|
Huang L, Jiang X, Li Z, Li J, Lin X, Hu Z, Cui Y. Linc00473 potentiates cholangiocarcinoma progression by modulation of DDX5 expression via miR-506 regulation. Cancer Cell Int 2020; 20:324. [PMID: 32694946 PMCID: PMC7368746 DOI: 10.1186/s12935-020-01415-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. Methods The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. Results Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. Conclusions The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.
Collapse
Affiliation(s)
- Lining Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Zhenglong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Xuan Lin
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| |
Collapse
|
34
|
Liu X, Wei Y, Bai X, Li M, Li H, Wang L, Zhang S, Li X, Zhao T, Liu Y, Geng R, Cui H, Chen H, Xu R, Liu H, Zhang Y, Yang B. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm Sin B 2020; 10:812-824. [PMID: 32528829 PMCID: PMC7276697 DOI: 10.1016/j.apsb.2020.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Peritoneal adhesions are fibrous tissues that tether organs to one another or to the peritoneal wall and represent the major cause of postsurgical morbidity. Enterolysis at repeat surgeries induces adhesion reformation that is more difficult to prevent than primary adhesion. Here we studied the preventive effects of different approaches of berberine treatment for primary adhesion, and its effects on adhesion reformation compared to Interceed. We found the primary adhesion was remarkably prevented by berberine through intraperitoneal injection 30 min before abrasive surgery (pre-berberine) or direct addition into injured cecum immediately after the surgery (inter-berberine). Rats with adhesion reformation had a more deteriorative collagen accumulation and tissue injury in abrasive sites than rats with primary adhesion. The dysregulated TIMP-1/MMP balance was observed in patients after surgery, as well as adhesion tissues from primary adhesion or adhesion reformation rats. Inter-berberine treatment had a better effect for adhesion reformation prevention than Interceed. Berberine promoted the activation of MMP-3 and MMP-8 by directly blocking TIMP-1 activation core, which was reversed by TIMP-1 overexpression in fibroblasts. In conclusion, this study suggests berberine as a reasonable approach for preventing primary adhesion formation and adhesion reformation.
Collapse
Key Words
- ABSO, adhesive small bowel obstruction
- Adhesion reformation
- BBR, berberine
- Berberine
- ECM, extracellular matrix
- EDC, 1-ethyl-3-(3-dimethylpropyl)-carbodiimide
- FSP-1, fibroblasts specific protein 1
- H&E, hemotoxylin and eosin
- HPX, hemopexin-like
- ICAM-1, intercellular cell adhesion molecule-1
- LSPR, localized surface plasmon resonance
- MMP-3, matrix metallopeptidase 3
- MMP-8, matrix metallopeptidase 8
- NHS, N-hydroxysuccinimide
- NMR, nuclear magnetic resonance
- PEG, polyethylene glycol
- Peritoneal adhesion
- SPR, surface plasmon resonance
- TIMP-1
- TIMP-1, tissue inhibitor of metalloproteinases 1
- Vegfα, vascular endothelial growth factor α
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
| | - Yunwei Wei
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Huimin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shuqian Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Rui Geng
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Heng Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Corresponding authors.
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and HealthSciences University of Melbourne, Melbourne VIC 3010, Australia
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Corresponding authors.
| |
Collapse
|
35
|
Application of Traditional Chinese Medicines in Postoperative Abdominal Adhesion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8073467. [PMID: 32419827 PMCID: PMC7199640 DOI: 10.1155/2020/8073467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Adhesion is a frequent complication after abdominal surgery. Although various methods have been applied to prevent and treat postoperative abdominal adhesion (PAA), few modern drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far. There is an imperative to develop some new strategies for the treatment of PAA. Traditional Chinese medicine (TCM) has been widely practiced for thousands of years and played an indispensable role in the prevention and treatment of diseases. Modern medicine researchers have accepted the therapeutic effects of many active components derived from Chinese medicinal herbs. The review stresses the most commonly used TCM treatment, including Chinese medicinal herbals and monomers, TCM formulas, and acupuncture treatment.
Collapse
|
36
|
Li J, Xu C, Liu Y, Li Y, Du S, Zhang R, Sun Y, Zhang R, Wang Y, Xue H, Ni S, Asiya M, Xue G, Li Y, Shi L, Li D, Pan Z, Zhang Y, Wang Z, Cai B, Wang N, Yang B. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol 2020; 115:9. [PMID: 31900593 DOI: 10.1007/s00395-019-0768-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yining Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuanshi Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sijia Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruijie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuehang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ronghao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongru Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Sha Ni
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mavlikhanova Asiya
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Desheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin, 150081, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
37
|
Gu H, Liu A, Ma W, Ni J, Ma C, Zhou X, Liu Z, Xia D, Tian X, Shi L, Zhu L. Berberine hydrochloride mitigates acute pancreatitis by suppressing the TLR4/IκBα/NFκB pathway. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1765885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huali Gu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Aiguo Liu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Weiping Ma
- Department of Editorial, Medical College of Qingdao University, Qingdao, People’s Republic of China
| | - Jianmin Ni
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chengtai Ma
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiumei Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhenfang Liu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Di Xia
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xintao Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lei Shi
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Liang Zhu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
38
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
39
|
Chao G, Ye F, Yuan Y, Zhang S. Berberine ameliorates non-steroidal anti-inflammatory drugs-induced intestinal injury by the repair of enteric nervous system. Fundam Clin Pharmacol 2019; 34:238-248. [PMID: 31520444 DOI: 10.1111/fcp.12509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
The study was to detect the role of GDNF, PGP9.5 (a neuronal marker), and GFAP (EGCs' marker) in the mechanism of non-steroidal anti-inflammatory drugs (NSAIDs) related to intestinal injury and to clarify the protective effect of berberine in the treatment of NSAID-induced small intestinal disease. Forty male SD rats were divided randomly into five groups (A-E): Group A: control group; Group B: model group received diclofenac sodium 7.5 mg/(kg*day) for 5 days; Group C-E: berberine low, medium and high dose groups were treated by 7.5 mg/(kg*day) diclofenac sodium for 5 days then received berberine 25 mg/(kg*day), 50 mg/(kg*day), and 75 mg/(kg*day), respectively, between the sixth and eighth day. Intestinal mucosa was taken on the ninth day to observe the general, histological injuries, and to measure the intestinal epithelial thickness. Then, immunohistochemistry was performed to detect the expression of PGP9.5 and GFAP, and Western blot was performed to detect GDNF expression. The histological score and the general score in the model group were, respectively, 5.75 ± 1.04 and 4.83 ± 0.92. Scores in berberine medium and high berberine group were lower compared with the model group (P < 0.05). The intestinal epithelial thickness in the model group was lower than in the control group and the berberine groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the model group and the three berberine groups were significantly lower than in the control groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the control group and the three berberine groups were higher compared with the model groups (P < 0.05). Berberine can protect the intestinal mucosa of NSAID users, and the mechanism is associated with the reparation of the enteric nervous system via upregulating the expression of PGP9.5, GFAP, and GDNF.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yuan Yuan
- Department of Gastroenterology, The First Affiliated Hospital, Henan Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
40
|
Zeng Z, Pan Y, Wu W, Li L, Wu Z, Zhang Y, Deng B, Wei S, Zhang W, Lin F, Song Y. Myocardial hypertrophy is improved with berberine treatment via long non-coding RNA MIAT-mediated autophagy. J Pharm Pharmacol 2019; 71:1822-1831. [PMID: 31612504 DOI: 10.1111/jphp.13170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
This study aimed to evaluate berberine (BBR) effects on myocardial hypertrophy (MH) and associated mechanisms.
Methods
BBR effects on MH were evaluated in rats with constriction of abdominal aorta (CAA). qRT-PCR assay was used to measure MH-related genes, long non-coding RNAs (lncRNAs) and autophagy-related genes expressions. Western blot was performed to detect autophagy markers expression. Filamentous actin and phalloidin expressions were detected using immunofluorescence assay.
Key findings
BBR significantly attenuated CAA-induced MH and cardiomyocyte enlargement. CAA upregulated β myosin heavy chain and atrial natriuretic peptide expressions in heart tissues, which was attenuated by BBR. BBR suppressed myocardial infarction associated transcript (MIAT) expression in rats with CAA. p62 mRNA expression was upregulated and beclin1 and autophagy related 5 were downregulated in CAA versus control groups. The effects were abolished by BBR. In vitro studies showed that BBR ameliorated angiotensin II-induced MH and attenuated Ang II-induced MIAT expression in H9C2 cells. Expressions of phosphorylated mTOR, phosphorylated AMPK and LC3 were upregulated in H9C2 cells after Ang II stimulation, and the effects were abolished by BBR.
Conclusions
BBR exerted beneficial effects on MH induced by CCA, and the mechanisms were associated with decreased MIAT expression and enhanced autophagy.
Collapse
Affiliation(s)
- Zhicong Zeng
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yan Pan
- Diabetes Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Wei Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Li
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
- Graduate School, Guangzhou University of TCM, Guangzhou, China
| | - Zijun Wu
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yuangui Zhang
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Bin Deng
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Shanyan Wei
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Weiwei Zhang
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Fengxia Lin
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yinzhi Song
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| |
Collapse
|
41
|
Ai X, Hou Y, Wang X, Wang X, Liang Y, Zhu Z, Wang P, Zeng Y, Li X, Lai X, Meng X, Li Q. Amelioration of dry eye syndrome in db/db mice with diabetes mellitus by treatment with Tibetan Medicine Formula Jikan Mingmu Drops. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111992. [PMID: 31150794 DOI: 10.1016/j.jep.2019.111992] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jikan Mingmu Drops (JMD), a traditional Tibetan medicine containing six herbs, has been used to treat dry eye syndrome (DES) in individuals with diabetes mellitus. AIM OF STUDY However, the activity of JMD ameliorates DES with diabetes mellitus has not been previously examined. The aim of the study is to investigate the molecular mechanism of JMD on db/db mice. MATERIALS AND METHODS The main chemical constituents of JMD were analyzed by high-performance liquid chromatography and gas chromatography-mass spectrometry. DES was then induced in db/db mice by applying 0.2% benzalkonium chloride to the ocular surface for 7 days. Eye drops containing JMD (0.25, 0.5, or 1 g/mL) or vehicle subsequently were administered three times daily for another 7 days, and the therapeutic effects were evaluated by phenol red thread tear and sodium fluorescein tests. Conjunctival specimens were subjected to hematoxylin and eosin staining and periodic acid-Schiff staining to examine pathological changes and number of goblet cells. ELISA was performed to assess the levels of various inflammatory cytokines. RESULTS JMD contains hydroxysafflor yellow A, magnoflorine, jatrorrhizine hydrochloride, palmatine hydrochloride, berberine hydrochloride, gallic acid, ellagic acid, tauroursodeoxycholic acid, camphor, isoborneol, borneol, trans-cinnamic acid, and muscone. JMD treatment significantly increased the tear volume, decreased the corneal fluorescein staining score, restored the morphology and structure of conjunctival epithelial cells, and markedly downregulated the levels of interleukin (IL)-6, IL-17α, IL-1β, tumor necrosis factor-α, and vascular endothelial growth factor in the conjunctiva. Further data showed that these protective effects were accompanied by inhibition of inflammation in a dose-dependent manner. CONCLUSIONS Amelioration of DES in db/db mice with diabetes mellitus by treatment with Tibetan medicine formula JMD maybe related to its anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaobo Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoyan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yusheng Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhengwen Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianjia Li
- Tibetan Medical College, Qinghai University, Xining, 810001, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qi'en Li
- Tibetan Medical College, Qinghai University, Xining, 810001, China.
| |
Collapse
|
42
|
Yao M, Fan X, Yuan B, Takagi N, Liu S, Han X, Ren J, Liu J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. Altern Ther Health Med 2019; 19:216. [PMID: 31412862 PMCID: PMC6694465 DOI: 10.1186/s12906-019-2615-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Background Breast cancer is still the most common malignant tumor that threatens the female’s life in the world, especially triple-negative breast cancer (TNBC), one of the most difficult subtypes. Lack of targeted therapies brings about urgent demand for novel treatments. In this study we aim to investigate the anti-tumor activity of Berberine (BBR), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 and elucidate its mechanism referring to anti-inflammation. Methods Cell inhibition rate was measured by Cell Proliferation Assay, the cytotoxic effects was detected by Lactate dehydrogenase (LDH) leakage assay, the colony formation and migration potential were evaluated by colony formation assay and wound healing assay, the release of inflammatory cytokines was detected by EMD multifactor detection, and alterations of proteins and genes related to the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway were analyzed using western blotting and real-time Polymerase Chain Reaction (PCR). Results BBR reduce the viability of MDA-MB-231 cells and increased the release of LDH from the cells in a dose-dependent manner, with and inhibition of colony formation potential and migration of the cells. BBR also caused a marked reduction in the secretion of proinflammatory cytokines, Interleukin-1α (IL-1α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Besides, a down-regulated behavior was observed with the expression of P2X purinoceptor 7 (P2X7), NLRP3, pro-caspase-1, apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1 p20, Interleukin-18 (IL-18), IL-1β proteins and NLRP3, Caspase-1 and ASC mRNAs in the NLRP3 inflammasome cascade. Conclusions Our results confirmed that BBR can effectively affect both tumor outgrowth and spontaneous metastasis in TNBC, and that we identified a new mechanism associated with inhibition the NLRP3 inflammasome pathway, suggesting its potential therapeutic relevance in clinical use.
Collapse
|
43
|
Xiao D, Zhang Y, Wang R, Fu Y, Zhou T, Diao H, Wang Z, Lin Y, Li Z, Wen L, Kang X, Kopylov P, Shchekochikhin D, Zhang Y, Yang B. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3. Acta Pharm Sin B 2019; 9:724-733. [PMID: 31384533 PMCID: PMC6664101 DOI: 10.1016/j.apsb.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction (TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II (AngII). Emodin upregulated expression of metastasis associated protein 3 (MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis; in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.
Collapse
|
44
|
Xiao D, Hu Y, Fu Y, Wang R, Zhang H, Li M, Li Z, Zhang Y, Xuan L, Li X, Xu C, Zhang Y, Yang B. Emodin improves glucose metabolism by targeting microRNA-20b in insulin-resistant skeletal muscle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152758. [PMID: 31004884 DOI: 10.1016/j.phymed.2018.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Emerging evidence has indicated the therapeutic potential of emodin with its multiple pharmacological effects. PURPOSE To evaluate role of emodin in regulating insulin resistance (IR) and to elucidate the underlying molecular mechanisms. STUDY DESIGN/METHODS Fasting blood glucose (FBG) and lipid levels were measured before and after intragastric administration of emodin in type 2 diabetes mellitus (T2DM) rats. Glucose consumption was determined in L6 cells to investigate the effect of emodin on glucose metabolism. Expression of miR-20b and SMAD7 was quantified by real-time PCR for mRNAs or western blot analysis for proteins. RESULTS Emodin ameliorated hyperglycemia and dyslipidemia in T2DM rats, and glucose metabolism in a concentration- and time-dependent manner. MiR-20b was markedly upregulated in the setting of IR and overexpression of miR-20b disrupted glucose metabolism by repressing SMAD7 in L6 cells. Knockdown of this miRNA produced the opposite effects. Emodin abolished the abnormal upregulation of miR-20b and indirectly upregulated SMAD7. CONCLUSION Emodin improves glucose metabolism to produce anti-IR effects, and downregulation of miR-20b thereby upregulation of SMAD7 is an underlying mechanism for the beneficial effects of emodin.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacy, the First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yujie Fu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Rui Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, 157000, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
45
|
Lai S, Wei Y, Wu Q, Zhou K, Liu T, Zhang Y, Jiang N, Xiao W, Chen J, Liu Q, Yu Y. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology 2019; 17:64. [PMID: 31084611 PMCID: PMC6515668 DOI: 10.1186/s12951-019-0498-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of severe visual deficits and blindness. Meanwhile, there is convincing evidence implicating oxidative stress, inflammation, and neovascularization in the onset and progression of AMD. Several studies have identified berberine hydrochloride and chrysophanol as potential treatments for ocular diseases based on their antioxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, their poor stability and bioavailability have limited their application. In order to overcome these disadvantages, we prepared a compound liposome system that can entrap these drugs simultaneously using the third polyamidoamine dendrimer (PAMAM G3.0) as a carrier. Results PAMAM G3.0-coated compound liposomes exhibited appreciable cellular permeability in human corneal epithelial cells and enhanced bio-adhesion on rabbit corneal epithelium. Moreover, coated liposomes greatly improved BBH bioavailability. Further, coated liposomes exhibited obviously protective effects in human retinal pigment epithelial cells and rat retinas after photooxidative retinal injury. Finally, administration of P-CBLs showed no sign of side effects on ocular surface structure in rabbits model. Conclusions The PAMAM G3.0-liposome system thus displayed a potential use for treating various ocular diseases. Electronic supplementary material The online version of this article (10.1186/s12951-019-0498-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sisi Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Quanwu Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Tuo Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yingfeng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ning Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qiuhong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
46
|
Hu Y, Chen X, Li X, Li Z, Diao H, Liu L, Zhang J, Ju J, Wen L, Liu X, Pan Z, Xu C, Hai X, Zhang Y. MicroRNA‑1 downregulation induced by carvedilol protects cardiomyocytes against apoptosis by targeting heat shock protein 60. Mol Med Rep 2019; 19:3527-3536. [PMID: 30896796 PMCID: PMC6471343 DOI: 10.3892/mmr.2019.10034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is the most common event in cardiovascular disease. Carvedilol, a β‑blocker with multiple pleiotropic actions, is widely used for the treatment cardiovascular diseases. However, the underlying mechanisms of carvedilol on alleviating MI are not fully understood. The aim of the present study was to investigate whether the beneficial effects of carvedilol were associated with regulation of microRNA‑1 (miR‑1). It was demonstrated that carvedilol ameliorated impaired cardiac function and decreased infarct size in a rat model of MI induced by coronary artery occlusion. Similarly, carvedilol reversed the H2O2‑induced decrease in cardiomyocyte viability in a dose‑dependent manner. The in vivo and in vitro models demonstrated the downregulation of miR‑1 following treatment with carvedilol. Overexpression of miR‑1, a known pro‑apoptotic miRNA, decreased cell viability and induced cell apoptosis. Transfection of miR‑1 abolished the beneficial effects of carvedilol. The expression of heat shock protein 60 (HSP60), a direct target of miR‑1, was identified to be decreased in MI and H2O2‑induced apoptosis, which was associated with a decrease in Bcl‑2 and an increase in Bax; expression was restored following treatment with carvedilol. It was concluded that carvedilol partially exhibited its beneficial effects by downregulating miR‑1 and increasing HSP60 expression. miR‑1 has become a member of the group of carvedilol‑responsive miRNAs. Future studies are required to fully elucidate the potential overlapping or compensatory effects of known carvedilol‑responsive miRNAs and their underlying mechanisms of action in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xi Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhange Li
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongtao Diao
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Zhang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Ju
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lin Wen
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin Liu
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhenwei Pan
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chaoqian Xu
- Center of Chronic Diseases and Drug Research, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Zhang
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
47
|
Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y, Wang L. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci 2019; 15:1010-1019. [PMID: 31182921 PMCID: PMC6535781 DOI: 10.7150/ijbs.29680] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely used antidiabetic drug for type 2 diabetes that can play a cardioprotective role through multiple pathways. It is a recognized agonist of AMP-activated protein kinase (AMPK) that blocks mitochondrial complex I. The NLRP3 inflammasome has been demonstrated to be activated in diabetic cardiomyopathy (DCM). However, the role of metformin in regulating the NLRP3 signaling pathway in DCM remains unclear. It has been reported that AMPK can inhibit NLRP3 by activating autophagy. The aim of this study was to investigate whether metformin can inhibit the NLRP3 inflammasome by activating the AMPK/mTOR pathway in DCM. In this study, streptozotocin-induced C57BL/6 mice and high glucose-treated primary cardiomyocytes from neonatal mice were treated with metformin or an AMPK inhibitor compound C. Echocardiography, hematoxylin-eosin and Masson staining showed that the function and morphology of the diabetic hearts were improved after metformin treatment, whereas these parameters deteriorated after intervention with an AMPK inhibitor. Immunohistochemical staining, immunofluorescence staining and western blot assays indicated that the expression levels of mTOR, NLRP3, caspase-1, IL-1β and GSDMD-N were decreased in the diabetic model treated with metformin and were reversed after the administration of an AMPK inhibitor in vivo and in vitro. Mechanistically, our results demonstrated that metformin can activate AMPK, thus improving autophagy via inhibiting the mTOR pathway and alleviating pyroptosis in DCM. Thus, we provide novel information for the treatment of DCM.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Qin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yueqiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songyan Meng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Xian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jie Lv
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunlong Bai
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
48
|
Cai X, Hu S, Yu B, Cai Y, Yang J, Li F, Zheng Y, Shi X. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr Polym 2018; 201:201-210. [PMID: 30241812 DOI: 10.1016/j.carbpol.2018.08.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
Abstract
Peritoneal adhesion is a general complication following pelvic and abdominal surgery, which may lead to chronic abdominal pain, bowel obstruction, organ injury, and female infertility. Biodegradable polymer membranes have been suggested as physical barriers to prevent peritoneum adhesion. In this work, a transglutaminase (TGase)-catalyzed crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen (CMCS/CMCL/COL) composite anti-adhesion membrane with various proportions of CMCS, CMCL, and COL (40/40/20, 35/35/30, 25/25/50) was developed. After crosslinking by TGase, the composite anti-adhesion membranes shown enhanced mechanical properties and improved biodegradability. Meanwhile, the high cytocompatibility of anti-adhesion membranes was proved by in vitro cell culture study. Moreover, the anti-adhesion membrane with the proportion of 25/25/50 was implanted between the artificially defected cecum and peritoneal wall in rats and following by general observation, histological examination, and inflammatory factors assay. The results indicated that the anti-adhesion membrane can significantly prevent peritoneal adhesion with negligible immunogenicity. Therefore, the composite membrane crosslinked by TGase had satisfactory anti-adhesive effects with high biocompatibility and low antigenicity, which could be used as a preventive barrier for peritoneal adhesion.
Collapse
Affiliation(s)
- Xianqun Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Shengxue Hu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Bangrui Yu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yilei Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China.
| | - Feng Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China.
| |
Collapse
|
49
|
INVOLVEMENT OF JNK MAPK CASCADES IN THE FORMATION OF ADHESIONS IN THE ABDOMINAL CAVITY. ACTA BIOMEDICA SCIENTIFICA 2018. [DOI: 10.29413/abs.2018-3.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adhesive process in the abdominal cavity is one of the most frequent complications of intra-abdominal surgery.The aim of the study was to evaluate the activation of the JNK MAPK cascade during the experimental adhesion process.Materials and methods. Experimental studies were performed on 40 male Wistar rats (9 months old). We modeled the adhesive process in the abdominal cavity. At the time from 2 hours (2, 6, 12 hours) to 30 days (1, 3, 7, 14, 30 days), a JNK MAPK cascade was evaluated in the zone of damage to the serosa using immunohistochemical methods (painting on JNK1 Phospho (pT183) / JNK2 Phospho (pT183) / JNK3 Phospho (pT221)) and real-time PCR (the MAP Kinase Signaling Pathway RT2 - Profiler ™ PCR Array (Qiagen) kit). Results. We have found that the expression of the phosphorylated part of the JNK MAPK cascades has an undulating dynamics with two peaks on the 3rd and 14th day. It has been determined that all three JNK cascades are involved in the process, and all JNK cascades are synchronously activated on the 3rd day (JNK1 increases 12-fold in comparison with the group of intact animals, JNK2 is 8-fold, JNK3 is 10-fold). On the 14th day, the activity of the JNK3 cascade is the most intensively increased – 30 times (for JNK1 – about 6 times, JNK2 – 12 times). Conclusion. Significant activation of MARK cascades has been established on the 14th day after traumatic injury, which indicates the need for long-term prevention of posttraumatic changes, in particular, the formation of adhesions.
Collapse
|
50
|
Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5164314. [PMID: 29849710 PMCID: PMC5925179 DOI: 10.1155/2018/5164314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.
Collapse
|