1
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
2
|
El-Dakroury WA, Zewail MB, Asaad GF, Abdallah HMI, Shabana ME, Said AR, Doghish AS, Azab HA, Amer DH, Hassan AE, Sayed AS, Samra GM, Sallam AAM. Fexofenadine-loaded chitosan coated solid lipid nanoparticles (SLNs): A potential oral therapy for ulcerative colitis. Eur J Pharm Biopharm 2024; 196:114205. [PMID: 38311187 DOI: 10.1016/j.ejpb.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The targeting and mucoadhesive features of chitosan (CS)-linked solid lipid nanoparticles (SLNs) were exploited to efficiently deliver fexofenadine (FEX) into the colon, forming a novel and potential oral therapeutic option for ulcerative colitis (UC) treatment. Different FEX-CS-SLNs with varied molecular weights of CS were prepared and optimized. Optimized FEX-CS-SLNs exhibited 229 ± 6.08 nm nanometric size, 36.3 ± 3.18 mV zeta potential, 64.9 % EE, and a controlled release profile. FTIR, DSC, and TEM confirmed good drug entrapment and spherical particles. Mucoadhesive properties of FEX-CS-SLNs were investigated through mucin incubation and exhibited considerable mucoadhesion. The protective effect of FEX-pure, FEX-market, and FEX-CS-SLNs against acetic acid-induced ulcerative colitis in rats was examined. Oral administration of FEX-CS-SLNs for 14 days before ulcerative colitis induction reversed UC symptoms and almost restored the intestinal mucosa to normal integrity and inhibited Phosphatidylinositol-3 kinase (73.6 %), protein kinase B (73.28 %), and elevated nuclear factor erythroid 2-related factor 2 (185.9 %) in colonic tissue. Additionally, FEX-CS-SLNs inhibited tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) to (70.79 % & 72.99 %) in colonic tissue. The ameliorative potential of FEX-CS-SLNs outperformed that of FEX-pure and FEX-market. The exceptional protective effect of FEX-CS-SLNs makes it a potentially effective oral system for managing ulcerative colitis.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Heba M I Abdallah
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Abdelrahman R Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt; Department of Biochemistry and Molecular Biology Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Hadeer A Azab
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dalia H Amer
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Hassan
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Sayed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghada M Samra
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
3
|
Kim SH, Kim JW, Koh SJ, Kim SG, Bae JM, Kim JH, Park JH, Chang MS, Choi KD, Kang HW, Kim BG, Lee KL. Tauroursodeoxycholic Acid Inhibits Nuclear Factor Kappa B Signaling in Gastric Epithelial Cells and Ameliorates Gastric Mucosal Damage in Mice. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2022; 79:161-169. [PMID: 35473774 DOI: 10.4166/kjg.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Background/Aims Previous studies have reported the protective effects of tauroursodeoxycholic acid (TUDCA) on gastric epithelial cells in some animal models, but the precise mechanisms are unclear. This study examined the effects of TUDCA on NF-κB signaling in gastric epithelial cells. Moreover, the protective effects of TUDCA in experimental gastritis models induced by ethanol and NSAID were evaluated and compared with ursodeoxycholic acid (UDCA). Methods After a pretreatment with TUDCA or UDCA, human gastric epithelial MKN-45 cells were stimulated with tumor necrosis factor (TNF)-α to activate NF-κB signaling. A real-time PCR (RT-PCR) for human interleukin (IL)-1 mRNA was performed. An electrophoretic mobility shift assay (EMSA) and immunoblot analyses were carried out. In murine models, after a pretreatment with TUDCA or UDCA, ethanol and indomethacin were administered via oral gavage. Macroscopic and microscopic assessments were performed to evaluate the preventive effects of TUDCA and UDCA on murine gastritis. Results A pretreatment with TUDCA downregulated the IL-1α mRNA levels in MKN-45 cells stimulated with TNF-α, as assessed by RT-PCR. As determined using EMSA, a pretreatment with TUDCA reduced the TNF-α-induced NF-κB DNA binding activity. A pretreatment with TUDCA inhibited IκBα phosphorylation induced by TNF-α, as assessed by immunoblot analysis. TUDCA attenuated the ethanol-induced and NSAID-induced gastritis in murine models, as determined macroscopically and microscopically. Conclusions TUDCA inhibited NF-κB signaling in gastric epithelial cells and ameliorated ethanol- and NSAID-induced gastritis in murine models. These results support the potential of TUDCA for the prevention of gastritis in humans.
Collapse
Affiliation(s)
- Su Hwan Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Gyun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kee Don Choi
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyoun Woo Kang
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Zhang YL, Chen Q, Zheng L, Zhang ZW, Chen YJ, Dai YC, Tang ZP. Jianpi Qingchang Bushen decoction improves inflammatory response and metabolic bone disorder in inflammatory bowel disease-induced bone loss. World J Gastroenterol 2022; 28:1315-1328. [PMID: 35645540 PMCID: PMC9099185 DOI: 10.3748/wjg.v28.i13.1315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone loss and osteoporosis are commonly described as extra-intestinal manifestations of inflammatory bowel disease (IBD). Jianpi Qingchang Bushen decoction (JQBD) is a prescription used in clinical practice. However, further studies are needed to determine whether JQBD regulates the receptor activator of nuclear factor kappa B (NF-κB) (RANK)/receptor activator of NF-κB ligand (RANKL)/ osteoprotegerin (OPG) pathways and could play a role in treating IBD-induced bone loss.
AIM To evaluate the therapeutic effect of JQBD in IBD-induced bone loss and explore the underlying mechanisms.
METHODS An IBD-induced bone loss model was constructed by feeding 12 6-to-8-wk-old interleukin-10 (IL-10)-knockout mice with piroxicam for 10 d. The mice were randomly divided into model and JQBD groups. We used wild-type mice as a control. The JQBD group was administered the JQBD suspension for 2 wk by gavage, while the control and model groups were given normal saline at the corresponding time points. All mice were killed after the intervention. The effect of JQBD on body weight, disease activity index (DAI), and colon length was analyzed. Histopathological examination, colon ultrastructure observation, and micro-computed tomographic scanning of the lumbar vertebrae were performed. The gene expression of NF-κB, tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 in the colon was evaluated by real-time polymerase chain reaction. Colon samples were assessed by Western blot for the expression of RANKL, OPG, RANK, and NF-κB proteins.
RESULTS The model group lost body weight, had a shorter colon, and showed a dramatic increase in DAI score, whereas JQBD had protective and therapeutic effects. Treatment with JQBD significantly improved inflammatory cell infiltration and reduced crypt abscess and ulcer formation. Three-dimensional imaging of the vertebral centrum in the model group revealed a lower bone mass, loose trabeculae, and “rod-shaped” changes in the structure compared to the control group and JQBD groups. The bone volume/total volume ratio and bone mineral density were significantly lower in the model group than in the control group. JQBD intervention downregulated the NF-κB, TNF-α, IL-1β, IL-6, and IL-8 mRNA expression levels. The RANKL and OPG protein levels were also improved.
CONCLUSION JQBD reduces inflammation of the colonic mucosa and inhibits activation of the RANK/ RANKL/OPG signaling pathway, thereby reducing osteoclast activation and bone resorption and improving bone metabolism.
Collapse
Affiliation(s)
- Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qian Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lie Zheng
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi’an 710003, Shaanxi Province, China
| | - Zi-Wei Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jun Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Peng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Jianpi Qingchang Decoction Ameliorates Chronic Colitis in Piroxicam-Induced IL-10 Knockout Mice by Inhibiting Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7378807. [PMID: 35186102 PMCID: PMC8849791 DOI: 10.1155/2022/7378807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Background Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells (IEC) may lead to impaired intestinal mucosal barrier function and then participate in the pathogenesis of ulcerative colitis (UC). Jianpi Qingchang decoction (JPQCD) has been shown to have protective effects on UC. However, further studies are needed to determine whether JPQCD regulates PERK/eIF2α/ATF4/CHOP pathways to play a role in treating UC. Methods IL-10−/− mice were randomly assigned into five groups: control, model, low-dose JPQCD (JPQCD L), middle-dose JPQCD (JPQCD M), and high-dose JPQCD (JPQCD H). All groups except for the control group were given model feed containing 200 ppm piroxicam for 10 d to induce colitis. As a comparison, we used wild-type mice that were the progeny of IL-10+/− matings, bred in the same facility. The control group and wild-type mice were fed with common feed. At the same time, mice in each group were given corresponding drugs by gavage for 14 d. The disease activity index of mice in each group was evaluated daily. Colon tissues of mice were collected, colon length was measured, and pathological changes and ultrastructure of colon epithelial cells were observed. The effects of JPQCD on the PERK/eIF2α/ATF4/CHOP pathways were evaluated by western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The expression of CHOP in colon tissue was detected by tissue immunofluorescence assay. The expression of NF-κB, p-NF-κB p65 protein was analyzed by western blotting; the level of IL-17 in colon tissue was detected by enzyme-linked immunosorbent assay (ELISA) and verified by examining NF-κB and IL-17 mRNA levels by RT-PCR. Results Compared with the control group, the model group showed significant colitis symptoms and severe colonic tissue damage. The results showed that JPQCD significantly reduced body weight loss, ameliorated disease activity index, and restored colon length in IL-10−/− mice with piroxicam-induced colitis. Western blotting and RT-PCR showed that the PERK/eIF2α/ATF4/CHOP pathway was activated in colon tissue of model mice, suggesting that the pathway is involved in the pathogenesis of ulcerative colitis (UC) and could become a potential therapeutic target. The JPQCD treatment inhibited the activation of the PERK/eIF2α/ATF4/CHOP pathway, alleviated the ER stress, and played a role in preventing and treating UC. In addition, JPQCD can also downregulate the protein of NF-κB, p-NF-κB p65, downregulate the mRNA expression of NF-κB, and reduce the content of IL-17 and its mRNA expression in colon tissues. Conclusion JPQCD may play a protective role in UC by regulating the PERK/eIF2α/ATF4/CHOP signaling pathway and relieving endoplasmic reticulum stress.
Collapse
|
6
|
Zhang Z, Qiao D, Zhang Y, Chen Q, Chen Y, Tang Y, Que R, Chen Y, Zheng L, Dai Y, Tang Z. Portulaca Oleracea L. Extract Ameliorates Intestinal Inflammation by Regulating Endoplasmic Reticulum Stress and Autophagy. Mol Nutr Food Res 2021; 66:e2100791. [PMID: 34968000 PMCID: PMC9286603 DOI: 10.1002/mnfr.202100791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Scope To investigate the role of endoplasmic reticulum stress (ERS)‐induced autophagy in inflammatory bowel disease (IBD) and the intervention mechanism of Portulaca oleracea L. (POL) extract, a medicinal herb with anti‐inflammatory, antioxidant, immune‐regulating, and antitumor properties, in vitro and in vivo. Methods and Results An IL‐10‐deficient mouse model is used for in vivo experiments; a thapsigargin (Tg)‐stimulated ERS model of human colonic mucosal epithelial cells (HIECs) is used for in vitro experiments. The levels of ERS‐autophagy‐related proteins are examined by immunofluorescence and Western blot. Cellular ultrastructure is assessed with transmission electron microscopy. POL extract promotes a healing effect on colitis by regulating ERS‐autophagy through the protein kinase R‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor 2α (eIF2α)/Beclin1‐microtubule‐associated protein light chain 3II (LC3II) pathway. Conclusion Overall, the results of this study further confirm the anti‐inflammatory mechanism and protective effect of POL extract and provide a new research avenue for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine 200082, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yujun Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yingjue Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Renye Que
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine 200082, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine 200082, Shanghai, China
| | - Lie Zheng
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi'an, 730000, China
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine 200082, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
7
|
Kordulewska NK, Topa J, Rozmus D, Jarmołowska B. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci 2021; 22:ijms222413634. [PMID: 34948440 PMCID: PMC8708099 DOI: 10.3390/ijms222413634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Hyperactivity of the immune system in the gastrointestinal tract leads to the development of chronic, inflammation-associated disorders. Such diseases, including inflammatory bowel disease, are not completely curable, but the specific line of treatment may reduce its symptoms. However, the response to treatment varies among patients, creating a necessity to uncover the pathophysiological basis of immune-mediated diseases and apply novel therapeutic strategies. The present study describes the anti-inflammatory properties of osthole during histamine-induced inflammation in the intestinal Caco-2 cell line. Osthole reduced the secretion of cytokines (CKs) and the expression level of inflammation-associated genes, which were increased after a histamine treatment. We have shown that the secretion of pro-inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) during inflammation may be mediated by NFκB, and, after osthole treatment, this signaling pathway was disrupted. Our results suggest a possible role for osthole in the protection against inflammation in the gastrointestinal tract; thus, osthole may be considered as an anti-inflammatory modulator.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| |
Collapse
|
8
|
Zhao X, Liu R, Chen Y, Hettinghouse A, Liu C. Cytosolic Phospholipase A2 Is Required for Fexofenadine's Therapeutic Effects against Inflammatory Bowel Disease in Mice. Int J Mol Sci 2021; 22:11155. [PMID: 34681815 PMCID: PMC8539349 DOI: 10.3390/ijms222011155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune condition with complicated pathology and diverse clinical signs. TNFα is believed to play a crucial role in the pathogenesis of IBD. We recently identified fexofenadine, a well-known antagonist of histamine H1 receptor, as a novel inhibitor of TNFα signaling. Additionally, cytosolic phospholipase A2 (cPLA2) was isolated as a binding target of fexofenadine, and fexofenadine-mediated anti-TNF activity relied on cPLA2 in vitro. The objective of this study is to determine whether fexofenadine is therapeutic against chemically-induced murine IBD model and whether cPLA2 and/or histamine H1 receptor is important for fexofenadine's anti-inflammatory activity in vivo by leveraging various genetically modified mice and chemically induced murine IBD models. Both dextran sulfate sodium- and 2, 4, 6-trinitrobenzene sulfonic acid-induced murine IBD models revealed that orally delivered fexofenadine was therapeutic against IBD, evidenced by mitigated clinical symptoms, decreased secretions of the proinflammatory cytokine IL-6 and IL-1β, lowered intestinal inflammation, and reduced p-p65 and p-IĸBα. Intriguingly, Fexofenadine-mediated protective effects against IBD were lost in cPLA2 deficient mice but not in histamine H1 receptor-deficient mice. Collectively, these findings demonstrate the therapeutic effects of over-the-counter drug Fexofenadine in treating DSS-induced IBD murine and provide first in vivo evidence showing that cPLA2 is required for fexofenadine's therapeutic effects in murine IBD model and probably other inflammatory and autoimmune diseases as well.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Salamatullah AM, Subash-Babu P, Nassrallah A, Alshatwi AA, Alkaltham MS. Cyclotrisiloxan and β-Sitosterol rich Cassia alata (L.) flower inhibit HT-115 human colon cancer cell growth via mitochondrial dependent apoptotic stimulation. Saudi J Biol Sci 2021; 28:6009-6016. [PMID: 34588918 PMCID: PMC8459119 DOI: 10.1016/j.sjbs.2021.06.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer traits dependent chemo and radiotherapy display acute toxicity and long-term side effects. Since last two decades, researchers investigated a new anticancer agents derived from plants. Cassia alata (L.) is a medicinal herb distributed in the tropical and humid regions. In this study, C. alata flower methanol extract (CME) have been prepared using cold percolation method and the phytochemical components were identified using GC–MS analysis. CME have been used to study the antiproliferative and apoptosis properties against human colon cancer HT-115 colon cancer cells, its molecular mechanism have been explored. 0.2 mg/mL dose of CME, inhibited 50% of HT-115 colon cancer cell growth after 48hr was confirmed the significant antiproliferation effect. In normal cells such as Vero cells and hMSCs, 0.2 mg/mL dose of CME shown only 4% and 5% growth inhibition confirmed the HT-115 cell specific cytotoxic effect. This effect might be due to the availability of phytoactive biomolecules in CME such as, cyclotrisiloxan, beta-sitosterol and alpha-tocopherol have been confirmed by GC–MS. Most interestingly, PI and AO/ErBr staining of CME treated HT-115 cells shown early (25%), pro (17%) and late (8%) apoptotic and 3% necrotic cells after 48 hr. Treatment with CME extract showed potential effect on the inhibition of protumorigenic inflammatory and oxidative stress genes. Protumorigenic COX-2/PGE-2 and TNF-α/NF-κB immune axis were normalized after CME treatment. Amounts of both apoptosis related mRNA p53, Bax, caspase 3 and p21 genes were upregulated, whereas it resulted in significant reduction in the anti-apoptotic marker mdm2 and Bcl-2 genes. In conclusion, bioactive compounds present in CME potentially inhibit HT-115 colon cancer cell proliferation via an inhibition of protumorigenic immune axis and stimulation of mitochondria dependent apoptotic pathway without necrotic effect.
Collapse
Affiliation(s)
- Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - P Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Amr Nassrallah
- Biochemistry Department Cairo University Research Park (CURP), Facility of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohammed Saeed Alkaltham
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) involves perturbation of intestinal immune homeostasis in genetically susceptible individuals. A mutual interplay between intestinal epithelial cells (IECs) and gut resident microbes maintains a homeostatic environment across the gut. An idiopathic gastrointestinal (GI) complication triggers aberrant physiological stress in the epithelium and peripheral myeloid cells, leading to a chronic inflammatory condition. Indeed, events in the endoplasmic reticulum (ER) and mitochondria contribute to orchestrating intracellular mechanisms such as the unfolded protein response (UPR) and oxidative stress, respectively, to resolve aberrant cellular stress. This review highlights the signaling cascades encrypted within ER and mitochondria in IECs and/or myeloid cells to dissipate chronic stress in maintaining intestinal homeostasis.
Collapse
|
11
|
Koh SJ, Kim JW, Kim BG, Lee KL, Kim DW, Kim JS. Matricellular protein periostin promotes colitis-associated colon tumorigenesis in mice. Carcinogenesis 2019; 40:102-111. [PMID: 30204842 DOI: 10.1093/carcin/bgy120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
Periostin is expressed in inflamed colonic mucosa and colon cancer tissue; however, its role in the development of colitis-associated colon cancer (CAC) remains unclear. Wild-type and periostin-deficient (Postn-/-) mice were given a single intraperitoneal injection of azoxymethane at 12.5 mg/kg on day 0. Seven days later, 2% dextran sulfate sodium (DSS) was administered via drinking water for 5 days, followed by untreated, free water consumption for 16 days. This cycle was repeated three times. In vitro assays were performed using COLO205 and HCT116 cells. Small interfering RNA was used to inhibit Postn gene translation. Periostin expression was determined using colon samples from patients with CAC. Postn-/- mice exhibited lower tumor burden compared with wild-type mice. Exposure to azoxymethane/DSS resulted in extensive epithelial apoptosis in Postn-/- mice compared with that in wild-type mice. In addition, immunoreactivity for IκB kinase, β-catenin and COX2 was markedly reduced in Postn-/- mice. Expression of interleukin (IL)-1β and tumor necrosis factor α (TNF-α) significantly decreased, whereas that of IL-10 and transforming growth factor β (TGF-β) increased in peritoneal macrophages isolated from Postn-/- mice. Silencing of the Postn gene resulted in reduced cell viability, which was associated with caspase-3 activation, and this was reversed by treatment with recombinant periostin. Knockdown of Postn downregulated bcl-2, cIAP1, cFLIP-L, VEGF, Axin 2 and cyclin D1, and upregulated bak expression. Periostin expression was significantly increased in patients with CAC. Periostin aggravates CAC development, which suggests that periostin is a potential therapeutic target for the prevention of CAC in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Seong-Joon Koh
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Kim YH, Kim JH, Kim BG, Lee KL, Kim JW, Koh SJ. Tauroursodeoxycholic acid attenuates colitis-associated colon cancer by inhibiting nuclear factor kappaB signaling. J Gastroenterol Hepatol 2019; 34:544-551. [PMID: 30378164 DOI: 10.1111/jgh.14526] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/02/2018] [Accepted: 10/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIM Inflammatory bowel diseases is associated with an increased risk for the development of colorectal cancer. However, the mechanism of immune signaling pathways linked to colitis-associated cancer (CAC) has not been fully elucidated. Tauroursodeoxycholic acid (TUDCA) exhibits anti-inflammatory and anti-cancer activities. The aim of this study is to investigate the role of TUDCA in the pathogenesis of CAC. METHODS Colitis-associated cancer was induced in mice using azoxymethane and dextran sodium sulfate administration, and TUDCA's effect on tumor development was evaluated. HCT 116 and COLO 205 were treated with TUDCA or vehicle and then stimulated with tumor necrosis factor-α (TNF-α). Expression of interleukin (IL)-8 was determined by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, and IκBα phosphorylation and degradation was evaluated by immunoblot assay. The DNA-binding activity of NF-κB was assessed by electrophoretic mobility shift assay. Cell viability assay and real-time reverse transcription-polymerase chain reaction of bcl-xL, MCL1, c-FLIP-L, and VEGF were performed. RESULTS Tauroursodeoxycholic acid significantly attenuated the development of CAC in mice. Exposure to TUDCA resulted in extensive epithelial apoptosis and reduced levels of phospho-IκB kinase in the colon. In HCT 116 cells stimulated with TNF-α, TUDCA significantly inhibited IL-8 and IL-1α expression and suppressed TNF-α-induced IκBα phosphorylation/degradation and DNA-binding activity of NF-κB. Furthermore, in both HCT 116 and COLO 205 cells, TUDCA reduced cell viability and downregulated the expression of bcl-xL, MCL1, c-FLIP-L, and VEGF. CONCLUSION These results demonstrated that TUDCA suppresses NF-κB signaling and ameliorates colitis-associated tumorigenesis, suggesting that TUDCA could be a potential treatment for CAC.
Collapse
Affiliation(s)
- Young Hoon Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Wang X, Cui X, Zhu C, Li M, Zhao J, Shen Z, Shan X, Wang L, Wu H, Shen Y, Ni Y, Zhang D, Zhou G. FKBP11 protects intestinal epithelial cells against inflammation‑induced apoptosis via the JNK‑caspase pathway in Crohn's disease. Mol Med Rep 2018; 18:4428-4438. [PMID: 30221722 PMCID: PMC6172375 DOI: 10.3892/mmr.2018.9485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) has an important role in the pathogenesis of Crohn's disease (CD). FK506 binding protein 11 (FKBP11), a member of the peptidyl‑prolyl cis‑trans isomerase family, is involved in the unfolded protein response (UPR) and is closely associated with inflammation. Previous bioinformatics analysis revealed a potential association between FKBP11 and human CD. Thus, the present study aimed to investigate the potential significance of FKBP11 in IEC homeostasis and CD. In the present study, increased expression of FKBP11 was detected in the intestinal inflammatory tissues of patients with CD. Furthermore, the results of the present study revealed that overexpression of FKBP11 was accompanied by increased expression levels of the ER stress marker 78 kDa glucose‑regulated protein in the colon tissues of a 2, 4, 6‑trinitrobenzenesulphonic acid‑induced mouse colitis model. Using interferon‑γ (IFN‑γ)/tumor necrosis factor‑α (TNF‑α)‑stimulated IECs as an ER stress and apoptosis cell model, the associated of FKBP11 with ER stress and apoptosis levels was confirmed in IECs. Overexpression of FKBP11 was revealed to significantly attenuate the elevated expression of pro‑apoptotic proteins (Bcl2 associated X apoptosis regulator, caspase‑12 and active caspase‑3), suppress the phosphorylation of c‑Jun N‑terminal kinase (JNK), and decrease apoptosis of IFN‑γ/TNF‑α stimulated IECs. Knockdown of FKBP11 by transfection with small interfering RNA further validated the aforementioned results. In conclusion, these results suggest that the UPR protein FKBP11 may protect IECs against IFN‑γ/TNF‑α induced apoptosis by inhibiting the ER stress‑associated JNK/caspase apoptotic pathway in CD.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanwu Zhu
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Ming Li
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Juan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaohang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Han Wu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanting Shen
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - You Ni
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongmei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur J Nutr 2018; 58:1603-1613. [PMID: 29744610 DOI: 10.1007/s00394-018-1704-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer. METHODS COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10-/- mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption. RESULTS WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10-/- mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC). CONCLUSIONS WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.
Collapse
|
15
|
Medicherla K, Ketkar A, Sahu BD, Sudhakar G, Sistla R. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis. Food Funct 2018; 7:3233-43. [PMID: 27349640 DOI: 10.1039/c6fo00244g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the anti-inflammatory and anti-colitis effects of Rosmarinus officinalis L. extract (RE) by using both in vitro LPS-activated mouse RAW 264.7 macrophages and in vivo dextran sulfate sodium (DSS)-induced experimental murine colitis and suggested the underlying possible mechanisms. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis was performed to identify the major components present in the RE. The clinical signs, biochemistry, immunoblot, ELISA and histology in colon tissues were assessed in order to elucidate the beneficial effect of RE. RE suppressed the LPS-induced pro-inflammatory cytokine production and the expressions of inflammatory proteins in macrophages. Administration of RE (50 and 100 mg kg(-1)) also significantly reduced the severity of DSS-induced murine colitis, as assessed by the clinical symptoms, colon length and histology. RE administration prevented the DSS-induced activation of p38, ERK and JNK MAPKs, attenuated IκBα phosphorylation and subsequent nuclear translocation and DNA binding of NF-κB (p65). RE also suppressed the COX-2 and iNOS expressions, decreased the levels of TNF-α and IL-6 cytokines and the myeloperoxidase activity in the colon tissue. Histological observation revealed that RE administration alleviated mucosal damage and inflammatory cell infiltration induced by DSS in the colon tissue. Hence, RE could be used as a new preventive and therapeutic food ingredient or as a dietary supplement for inflammatory bowel disease.
Collapse
Affiliation(s)
- Kanakaraju Medicherla
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Avanee Ketkar
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Bidya Dhar Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| | - Godi Sudhakar
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| |
Collapse
|
16
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
刘 海, 姜 曼, 陈 朝, 李 彦, 侯 中, 李 温, 战 淑. 壳寡糖改善TNBS/乙醇法诱导的小鼠溃疡性结肠炎. Shijie Huaren Xiaohua Zazhi 2017; 25:1352-1359. [DOI: 10.11569/wcjd.v25.i15.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 观察壳寡糖(chitosan oligosaccharide, COS)对2,4,6一三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid, TNBS)/乙醇法诱导的小鼠溃疡性结肠炎(ulcerative colitis, UC)的改善作用, 探讨其治疗UC的作用机制.
方法 采用TNBS/乙醇法制备UC小鼠模型, 小鼠随机分3组: 正常组、模型组、COS组. 造模成功后给予干预治疗, 分别在12、24 h处死全部小鼠, 进行一般状态、形态及组织学观察(肉眼观察、显微镜观察); 应用Western blot检测COS组小鼠于COS处理0、12、24 h后对核因子-κB(nuclear factor-κB, NF-κB)表达的影响.
结果 COS组小鼠一般状态较模型组好转. 模型组小鼠结肠黏膜组织损伤肉眼观积分较正常组明显增高(12 h组: 4.5±0.5 vs 0; 24 h组: 4.67±0.47 vs 0), 差异有统计学意义(P<0.05). COS组肉眼积分较模型组明显下降(12 h组: 2.67±0.47 vs 4.5±0.5; 24 h组: 1.83±0.69 vs 4.67±0.47), 差异有统计学意义(P<0.05). COS 12 h组肉眼积分较24 h组差异不显著(2.67±0.47 vs 1.83±0.69), 无统计学意义(P>0.05). 模型组小鼠结肠黏膜组织病理积分较正常组明显升高(12 h组: 8.00±0.63 vs 0; 24 h组: 8.17±0.75 vs 0), 差异有统计学意义(P<0.05). COS组小鼠结肠组织病理积分较模型组明显下降(12 h组: 3.67±0.52 vs 8.00±0.63; 24 h组: 3.83±0.41 vs 8.17±0.75), 差异有统计学意义(P<0.05). COS 12 h组小鼠结肠组织病理积分与COS 24 h组比较差异不显著(3.67±0.52 vs 3.83±0.41), 无统计学意义(P>0.05). COS组小鼠于COS处理12、24 h后NF-κB表达下调, 表明COS抑制NF-κB表达.
结论 COS通过抑制NF-κB的表达对TNBS/乙醇法诱导的UC小鼠有改善作用.
Collapse
|
18
|
Packiriswamy N, Coulson KF, Holcombe SJ, Sordillo LM. Oxidative stress-induced mitochondrial dysfunction in a normal colon epithelial cell line. World J Gastroenterol 2017; 23:3427-3439. [PMID: 28596679 PMCID: PMC5442079 DOI: 10.3748/wjg.v23.i19.3427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine how a normal human colon cell line reacts to microbial challenge as a way to study oxidative stress-induced responses associated with inflammatory bowel disease.
METHODS Normal human colon epithelial cells (ATCC® CRL.1790™) were stimulated with either heat killed E. coli or heat killed murine cecal contents (HKC) and examined for several relevant biomarkers associated with inflammation and oxidative stress including cytokine production, mitochondrial autophagy and oxidant status. TNFα, IL-1β and IL-8 protein concentrations were measured within the supernatants. Fluorescent microscopy was performed to quantify the production of reactive oxygen species (ROS) using an oxidation responsive fluorogenic probe. Mitochondrial morphology and mitochondrial membrane potential was assessed by dual staining using COXIV antibody and a dye concentrating in active mitochondria. Mitochondrial ROS scavenger was used to determine the source of ROS in stimulated cells. Autophagy was detected by staining for the presence of autophagic vesicles. Positive controls for autophagy and ROS/RNS experiments were treated with rapamycin and chloroquine. Mitochondrial morphology, ROS production and autophagy microscopy experiments were analyzed using a custom acquisition and analysis microscopy software (ImageJ).
RESULTS Exposing CRL.1790 cells to microbial challenge stimulated cells to produce several relevant biomarkers associated with inflammation and oxidative stress. Heat killed cecal contents treatment induced a 10-12 fold increase in IL-8 production by CRL.1790 cells compared to unstimulated controls at 6 and 12 h (P < 0.001). Heat killed E. coli stimulation resulted in a 4-5 fold increase in IL-8 compared to the unstimulated control cells at each time point (P < 0.001). Both heat killed E. coli and HKC stimulated robust ROS production at 6 (P < 0.001), and 12 h (P < 0.01). Mitochondrial morphologic abnormalities were detected at 6 and 12 h based on reduced mitochondrial circularity and decreased mitochondrial membrane potential, P < 0.01. Microbial stimulation also induced significant autophagy at 6 and 12 h, P < 0.01. Lastly, blocking mitochondrial ROS generation using mitochondrial specific ROS scavenger reversed microbial challenge induced mitochondrial morphologic abnormalities and autophagy.
CONCLUSION The findings from this study suggest that CRL.1790 cells may be a useful alternative to other colon cancer cell lines in studying the mechanisms of oxidative stress events associated with intestinal inflammatory disorders.
Collapse
|
19
|
Zheng L, Dai YC, Zhang YL, Chen X, Fang CY, Tang ZP. Role of endoplasmic reticulum stress signaling molecule PERK in bowel mucosal injury in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:5493-5498. [DOI: 10.11569/wcjd.v23.i34.5493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is the main focus in the study of the pathogenesis of ulcerative colitis, and it protects and repairs the intestinal epithelial cell (IEC) injury through unfolded protein response (UPR). Protein kinase R-like ER kinase (PERK) is an endoplasmic reticulum-localized type I transmembrane protein, with serine/threonine protein kinase activity. IECs are one of cell populations with the most vigorous metabolism and have abundant endoplasmic reticulum. Early ERS can activate PERK-eIF2 alpha channel and inhibit the synthesis of proteins to protect cells. However, sustained severe ERS promotes cell damage and death, activates nuclear factor-kappa B in IECs, causes the secretion of a variety of inflammatory cytokines, and promotes the occurrence of inflammatory lesions.
Collapse
|
20
|
Koh SJ, Kim JW, Kim BG, Lee KL, Kim JS. Restraint stress induces and exacerbates intestinal inflammation in interleukin-10 deficient mice. World J Gastroenterol 2015; 21:8580-8587. [PMID: 26229400 PMCID: PMC4515839 DOI: 10.3748/wjg.v21.i28.8580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of restraint stress on chronic colitis in interleukin (IL)-10 deficient (IL-10-/-) mice.
METHODS: The first experiment compared the effect of restraint stress on the development of intestinal inflammation in wild-type and IL-10-/- mice. Both wild-type and IL-10-/- mice were physically restrained in a well-ventilated, 50 cm3 conical polypropylene tube for 2 h per day for three consecutive days. The second experiment was performed to assess the effect of restraint stress on exacerbation of colitis induced by piroxicam in IL-10-/- mice. The IL-10-/- mice were exposed to restraint stress for 2 h per day for 3 consecutive days, and then treated with piroxicam for 4 d at a dose of 200 ppm administered in the rodent chow.
RESULTS: In the first experiment, none of the wild-type mice with or without restraint stress showed clinical and histopathological abnormality in the gut. However, IL-10-/- mice exposed to restraint stress exhibited histologically significant intestinal inflammation as compared to those without restraint stress. In the second experiment, restraint stress significantly reduced body weight and increased the severity of intestinal inflammation assessed by histopathologic grading in IL-10-/- mice. Colonic IL12p40 mRNA expression was strongly increased in mice exposed to restraint stress.
CONCLUSION: This novel animal model could be useful in future study of psychological stress in the pathogenesis of inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Chronic Disease
- Colitis/etiology
- Colitis/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/prevention & control
- Colitis/psychology
- Colon/metabolism
- Colon/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Interleukin-10/deficiency
- Interleukin-10/genetics
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Piroxicam
- RNA, Messenger/metabolism
- Receptors, Interleukin-12/genetics
- Receptors, Interleukin-12/metabolism
- Restraint, Physical
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Time Factors
Collapse
|