1
|
Cai Q, Shen L, Zhang X, Zhang Z, Wang T. The IRE1-XBP1 Axis Regulates NLRP3 Inflammasome-Mediated Microglia Activation in Hypoxic Ischemic Encephalopathy. Crit Rev Immunol 2025; 45:55-64. [PMID: 39612277 DOI: 10.1615/critrevimmunol.2024053554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal injury caused by cerebral hypoxia and reduced blood perfusion. Microglia activation-induced neuroinflammatory injury is a leading cause of neuron loss and brain injury. Efficient treatment strategies are still required further investigation. Our study is aimed to investigate the role of IRE1-XBP1 inhibitor 4μ8С in HIE. Rat pups (7 d) were used to establish HIE model using unilateral carotid artery ligation and hypoxia. A series of experiments including Western blot, Morris water maze test, TTC staining, RT-qPCR, TUNEL staining, and immunofluorescence staining were operated to evaluate the role of 4μ8С in HIE. 4μ8С treatment effectively reduced phosphorylated IRElα and XBP1 protein levels. 4μ8С treatment improves cognition and learning abilities of HIE rats. 4μ8С treatment alleviated brain infarction and cell apoptosis in HIE rats. 4μ8С treatment inhibited NLRP3 inflammasome activation-mediated microglia activation and inflammatory response. In conclusion, 4μ8С suppressed microglia and NLRP3 inflammasome activation by inactivating IRE1/XBP1 axis during HIE development, which revealed IRE1α inhibition as a novel mechanism for neuron protection.
Collapse
Affiliation(s)
- Qun Cai
- Department of Pediatric, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Liyuan Shen
- Department of Pediatric, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqun Zhang
- Department of Pediatric, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhijun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong 226001, China
| | - Ting Wang
- Affiliated Hospital of Nantong University
| |
Collapse
|
2
|
Chen Q, Huang Z, Chen J, Tian X, Zhang R, Liang Q, Liu Z, Cheng Y. Notoginsenoside R1 attenuates ischemic heart failure by modulating MDM2/β arrestin2-mediated β2-adrenergic receptor ubiquitination. Biomed Pharmacother 2024; 177:117004. [PMID: 38955084 DOI: 10.1016/j.biopha.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
β2 adrenergic receptor (β2AR) is a G-protein-coupled receptor involved in cardiac protection. In chronic heart failure (CHF), persistent sympathetic nervous system activation occurs, resulting in prolonged β2AR activation and subsequent receptor desensitization and downregulation. Notoginsenoside R1 (NGR1) has the functions of enhancing myocardial energy metabolism and mitigating myocardial fibrosis. The mechanisms of NGR1 against ischemic heart failure are unclear. A left anterior descending (LAD) artery ligation procedure was performed on C57BL/6 J mice for four weeks. From the 4th week onwards, they were treated with various doses (3, 10, 30 mg/kg/day) of NGR1. Subsequently, the impacts of NGR1 on ischemic heart failure were evaluated by assessing cardiac function, morphological changes in cardiac tissue, and the expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). H9c2 cells were protected by NGR1 when exposed to OGD/R conditions. H9c2 cells were likewise protected from OGD/R damage by NGR1. Furthermore, NGR1 increased β2AR levels and decreased β2AR ubiquitination. Mechanistic studies revealed that NGR1 enhanced MDM2 protein stability and increased the expression of MDM2 and β-arrestin2 while inhibiting their interaction. Additionally, under conditions produced by OGD/R, the protective benefits of NGR1 on H9c2 cells were attenuated upon administration of the MDM2 inhibitor SP141. According to these findings, NGR1 impedes the interplay between β-arrestin2 and MDM2, thereby preventing the ubiquitination and degradation of β2AR to improve CHF.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziwei Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Chen
- Department of Cardiovascular Disease, The First Afliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyu Tian
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen 518000, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ji Y, Liu H, Niu F, Kang B, Luo X, Yang H, Tian Z, Yang J. Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis. Mol Biotechnol 2024:10.1007/s12033-024-01095-9. [PMID: 38329706 DOI: 10.1007/s12033-024-01095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) poses a significant risk of neurological damage in newborns. This study investigates the impact of endoplasmic reticulum stress (ERS) on neuronal damage in neonatal HIBD and its underlying mechanisms. HIBD neonatal rat model was constructed and pre-treated with 4-phenylbutiric acid (4-PBA). Nissl and TUNEL staining were utilised to assess neuronal damage and apoptosis in rat brains. HIBD cell model was established by inducing oxygen-glucose deprivation (OGD) in rat H19-7 neurons, which were then pre-treated with Thapsigargin (TG), Ferrostatin-1 (Fer-1), or both. Cell viability and apoptosis of H19-7 neurons were analysed using cell counting kit-8 assay and TUNEL staining. GRP78-PERK-CHOP pathway activity and glutathione peroxidase-4 (GPX4) expression in rat brains and H19-7 neurons were assessed using Western blot. Ferroptosis-related indicators, including glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and iron content, were measured using commercial kits in both rat brains and H19-7 neurons. GRP78-PERK-CHOP pathway was overactivated in HIBD neonatal rats' brains, which was mitigated by 4-PBA treatment. 4-PBA treatment demonstrated a reduction in neuronal damage and apoptosis in HIBD-affected neonatal rat brains. Furthermore, it attenuated ferroptosis in rats by increasing GPX4, GSH and SOD while decreasing MDA and iron content. In the OGD-induced H19-7 neurons, Fer-1 treatment counteracted the suppressive effects of TG on viability, the exacerbation of apoptosis, the promotion of ferroptosis and the activation of the GRP78-PERK-CHOP pathway. Overall, ERS facilitates neuronal damage in neonatal HIBD by inducing ferroptosis. Consequently, the suppression of ERS may represent a promising therapeutic strategy for treating neonatal HIBD.
Collapse
Affiliation(s)
- Yongjia Ji
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China.
| | - Huili Liu
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Fang Niu
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Bo Kang
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Xiu Luo
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Hua Yang
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Zhen Tian
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| | - Juan Yang
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), 127 Hupan Road, Jinfeng District, Yinchuan City, Ningxia, 750001, China
| |
Collapse
|
4
|
Huang Z, Shen Z, Liu C, Shi H, He S, Long G, Deng W, Yang J, Fan W. Characteristics of heavy metal accumulation and risk assessment in understory Panax notoginseng planting system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9029-9040. [PMID: 36183309 DOI: 10.1007/s10653-022-01392-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Yunnan Province is the main planting area of the precious Chinese herbal medicines (CHM) Panax notoginseng; however, it locates the geological area with high soil heavy metals in China. The frequent land replacement due to continuous cropping obstacles and excessive application of chemicals makes P. notoginseng prone to be contaminated by heavy metals under the farmland P. notoginseng (FPn) planting. To overcome farmland shortage, understory P. notoginseng (UPn) was developed as a new ecological planting model featured by no chemicals input. However, this newly developed planting system requires urgently the soil-plant heavy metal characteristics and risk assessment. This study aimed to evaluate the pollution status of eight heavy metals in the tillage layer (0-20 cm), subsoil layer (20-40 cm) and the plants of UPn in Lancang County, Yunnan Province. Pollution index (Pi) showed that the contamination degree of heavy metals in the tillage layer and subsoil layer was Cd > Pb > Ni > Cu > Zn > Cr > Hg > As and Pb > Cd > Cu > Ni > Cr > Hg > Zn > As, respectively. Potential ecological risk index (PERI) for the tillage layer and subsoil layer was slight and middle, respectively. The exceeding standard rate of Cd, As, Pb, Hg, Cu in the UPn roots was 5.33%, 5.33%, 13.33%, 26.67% and 1.33%, respectively, while only Cd and Hg in the UPn leaves exceeded the standard 10% and 14%, respectively. The enrichment abilities of Cd and Hg in the roots and leaves of UPn were the strongest, while that of Pb was the weakest. The Hazard index (HI) and target hazard quotient (THQ) of eight heavy metals in the roots and leaves of UPn were less than 1.Therefore, our results prove that Upn has no human health risk and provide a scientific basis for the safety evaluation and extension of UPn.
Collapse
Affiliation(s)
- Zhenhua Huang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhida Shen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunlan Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuran He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangqiang Long
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiping Deng
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
You Q, Lan XB, Liu N, Du J, Ma L, Yang JM, Niu JG, Peng XD, Jin GL, Yu JQ. Neuroprotective strategies for neonatal hypoxic-ischemic brain damage: Current status and challenges. Eur J Pharmacol 2023; 957:176003. [PMID: 37640219 DOI: 10.1016/j.ejphar.2023.176003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a prominent contributor to both immediate mortality and long-term impairment in newborns. The elusive nature of the underlying mechanisms responsible for neonatal HIBD presents a significant obstacle in the effective clinical application of numerous pharmaceutical interventions. This comprehensive review aims to concentrate on the potential neuroprotective agents that have demonstrated efficacy in addressing various pathogenic factors associated with neonatal HIBD, encompassing oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory response, and apoptosis. In this review, we conducted an analysis of the precise molecular pathways by which these drugs elicit neuroprotective effects in animal models of neonatal hypoxic-ischemic brain injury (HIBD). Our objective was to provide a comprehensive overview of potential neuroprotective agents for the treatment of neonatal HIBD in animal experiments, with the ultimate goal of enhancing the feasibility of clinical translation and establishing a solid theoretical foundation for the clinical management of neonatal HIBD.
Collapse
Affiliation(s)
- Qing You
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiao-Dong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Gui-Lin Jin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, 350108, Fujian, China; Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
7
|
Zhu T, Wan Q. Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol 2023; 26:20-26. [PMID: 35922249 PMCID: PMC9912185 DOI: 10.1016/j.cjtee.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Collapse
Affiliation(s)
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
8
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
9
|
Sun Y, Jin MF, Li L, Liu Y, Wang D, Ni H. Genetic Inhibition of Plppr5 Aggravates Hypoxic-Ischemie-Induced Cortical Damage and Excitotoxic Phenotype. Front Neurosci 2022; 16:751489. [PMID: 35401091 PMCID: PMC8987356 DOI: 10.3389/fnins.2022.751489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is the most common acute brain threat in neonates and a leading cause of neurodevelopmental impairment. Exploring the new molecular mechanism of HI brain injury has important clinical translational significance for the next clinical intervention research. Lipid phosphatase-related proteins (PLPPRs) are regulators of mitochondrial membrane integrity and energy metabolism. We recently found that Plppr5 knockout exacerbated HI impairment in some aspects and partially attenuated the neuroprotective effects of melatonin, suggesting that Plppr5 may be a novel intervention target for HI. The present study aimed to determine the long-term effects of gene knockout of Plppr5 on HI brain injury, focusing on the neuronal excitability phenotype, and to determine the effect of Plppr5 gene silencing on neuronal zinc metabolism and mitochondrial function in vitro. 10-day-old wild type (WT) mice and Plppr5-deficient (Plppr5–/–) mice were subjected to hypoxia-ischemia. Lesion volumes and HI-induced neuroexcitotoxic phenotypes were quantified together with ZnT1 protein expression in hippocampus. In addition, HT22 (mouse hippocampal neuronal cells) cell model was established by oxygen–glucose deprivation/reoxygenation (OGD/R) treatment and was treated with medium containing LV-sh_Plppr5 or control virus. Mitochondrial oxidative stress indicator ROS, mitochondrial ZnT1 protein expression and zinc ion content were detected.ResultsPlppr5-deficient mice subjected to hypoxia-ischemia at postnatal day 10 present significantly higher cerebral infarction. Plppr5-deficient mice were endowed with a more pronounced superexcitability phenotype at 4 weeks after HI, manifested as a reduced seizure threshold. ZnT1 protein was also found reduced in Plppr5-deficient mice as well as in mice subjected to HI excitotoxicity. Plppr5 knockout in vivo exacerbates HI brain injury phenotypes, including infarct volume and seizure threshold. In addition, knockout of the Plppr5 gene reduced the MFS score to some extent. In vitro Plppr5 silencing directly interferes with neuronal zinc metabolism homeostasis and exacerbates hypoxia-induced mitochondrial oxidative stress damage. Taken together, our findings demonstrate for the first time that Plppr5-deficient mouse pups exposed to neuronal hypoxia and ischemia exhibit aggravated acute brain injury and long-term brain excitability compared with the same treated WT pups, which may be related to the disruption of zinc and mitochondria-dependent metabolic pathways in the hippocampus. These data support further investigation into novel approaches targeting Plppr5-mediated zinc and mitochondrial homeostasis in neonatal HIE.
Collapse
Affiliation(s)
- Yuxiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dandan Wang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong Ni,
| |
Collapse
|
10
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
11
|
Wang M, Liu H, Xu L, Li M, Zhao M. The Protective Effect of Notoginsenoside R1 on Isoflurane-Induced Neurological Impairment in the Rats via Regulating miR-29a Expression and Neuroinflammation. Neuroimmunomodulation 2022; 29:70-76. [PMID: 34515180 DOI: 10.1159/000518215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Isoflurane inhalation leads to apoptotic neurodegeneration and further results in learning and cognitive dysfunction. Notoginsenoside R1 (NGR1), a major ingredient from Radix notoginseng, has been reported to exert neuroprotective effect during brain or neuron injury. This study aimed to investigate the effect of NGR1 on neurological impairment. METHODS Sixty-four male Sprague Dawley rat pups (15-20 g) of postnatal day 7 were recruited. Spatial learning and memory were assessed by the Morris water maze test, and the neurological severity score was determined. Real-time quantitative PCR was used to detect the expression levels of microRNA (miR)-29a. Enzyme-linked immunosorbent assay was applied to estimate the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the hippocampal tissues. RESULTS NGR1 attenuated neurological impairment induced by isoflurane, shown by the decrease in neurological function score and escape latency and the increase in staying time in the original quadrant in rats. NGR1 reversed the downregulation of miR-29a expression induced by isoflurane treatment. After the treatment of NGR1, the elevated levels of IL-6, TNF-α, and IL-1β induced by isoflurane were all decreased significantly in the hippocampal tissues of rats. Additionally, the repressive action of NGR1 in neurological impairment and neuroinflammation was eliminated by downregulating miR-29a in rats. CONCLUSION NGR1 protects against isoflurane-induced neurological impairment. The protective effect of NGR1 might be achieved by promoting the expression of miR-29a and preventing inflammatory response.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, China
| | - Hongyan Liu
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, China
| | - Lufeng Xu
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, China
| | - Mengmeng Li
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, China
| | - Ming Zhao
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, China
| |
Collapse
|
12
|
Li X, Lin H, Zhang X, Jaspers RT, Yu Q, Ji Y, Forouzanfar T, Wang D, Huang S, Wu G. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway. J Cell Mol Med 2021; 25:11278-11289. [PMID: 34786818 PMCID: PMC8650043 DOI: 10.1111/jcmm.17054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS)‐induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative‐damaged osteoblast. Osteoblastic MC3T3‐E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C‐Jun N‐terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 μM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS‐induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS‐induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.
Collapse
Affiliation(s)
- Xumin Li
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, PR China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Richard T Jaspers
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Qihao Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yinghui Ji
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Dongyun Wang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Shengbin Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| |
Collapse
|
13
|
Pan B, Sun J, Liu Z, Wang L, Huo H, Zhao Y, Tu P, Xiao W, Zheng J, Li J. Longxuetongluo Capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms. J Adv Res 2021; 33:215-225. [PMID: 34603791 PMCID: PMC8463917 DOI: 10.1016/j.jare.2021.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Longxuetongluo Capsule (LTC) is wildly applied to treat ischemic stroke in clinical practice in China. However, the pharmacological mechanism of LTC on ischemic stroke is still unstated. Objective Our research was designed to study the protective effect of LTC against cerebral ischemia–reperfusion (I/R) injury and reveal the underlying mechanism both in vivo and in vitro. Methods PC12 cells treated with glucose deprivation/reperfusion (OGD/R) were used to simulate in vitro ischemia/reperfusion (I/R) injury. The cell viability, apoptosis rate, and protein expressions of PC12 cells were evaluated. In vivo validation of the protective effect of LTC was carried out by middle cerebral artery occlusion (MCAO)/reperfusion treatment, and the underlying mechanism of its anti-apoptosis ability was further revealed by immunohistochemistry staining and Western blotting. Results In the current study, we observed that LTC effectively inhibited oxygen-glucose deprivation/reperfusion (OGD/R) induced apoptosis of PC12 cells through suppressing the cleavage of poly ADP-ribose polymerase (PARP), caspase-3, and caspase-9. Further investigation revealed that OGD/R insult remarkably triggered the endoplasmic reticulum stress responses (ER stress) to induce PC12 cell apoptosis. LTC treatment alleviated OGD/R induced ER stress by inhibiting the activation of protein kinase RNA (PKR)-like ER kinase (PERK)/eukaryotic translation initiation factor 2 (eIF2α) and inositol requiring enzyme 1 (IRE1)/tumor necrosis factor receptor-associated factor 2 (TRAF2) pathways. Additionally, LTC also restrained the OGD/R-induced PC12 cell apoptosis by reversing the activated mitogen-activated protein kinase (MAPK) through IRE1/TRAF2 pathway. Animal studies demonstrated LTC significantly restricted the infarct region induced by middle cerebral artery occlusion (MCAO)/reperfusion, the activation of ER stress and apoptosis of neuronal cells had also been suppressed by LTC in the penumbra region. Conclusion LTC protects the cerebral neuronal cell against ischemia/reperfusion injury through ER stress and MAPK-mediated mechanisms.
Collapse
Affiliation(s)
- Bo Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziyu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingxiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huixia Huo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Xiao
- Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China
| | - Jiao Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
14
|
Wang C, Chen H, Ma ST, Mao BB, Chen Y, Xu HN, Yu H. A Network Pharmacology Approach for Exploring the Mechanisms of Panax notoginseng Saponins in Ischaemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5582782. [PMID: 34434246 PMCID: PMC8382556 DOI: 10.1155/2021/5582782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Panax notoginseng saponins (PNS) have been deemed effective herb compounds for treating ischaemic stroke (IS) and improving the quality of life of IS patients. This study aimed to investigate the underlying mechanisms of PNS in the treatment of IS based on network pharmacology. METHODS PNS were identified from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible targets were predicted using the PharmMapper database. IS-related targets were identified from the GeneCards database, OMIM database, and DisGeNET database. A herb-compound-target-disease network was constructed using Cytoscape, and protein-protein interaction (PPI) networks were established with STRING. GO enrichment and KEGG pathway analysis were performed using DAVID. The binding of the compounds and key targets was validated by molecular docking studies using AutoDock Vina. The neuroprotective effect of TFCJ was substantiated in terms of oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde) and the levels of IGF1/PI3K/Akt pathway proteins. RESULTS A total of 375 PNS targets and 5111 IS-related targets were identified. Among these targets, 241 were common to PNS, and IS network analysis showed that MAPK1, AKT1, PIK3R1, SRC, MAPK8, EGFR, IGF1, HRAS, RHOA, and HSP90AA1 are key targets of PNS against IS. Furthermore, GO and KEGG enrichment analysis indicated that PNS probably exert therapeutic effects against IS by regulating many pathways, such as the Ras, oestrogen, FoxO, prolactin, Rap1, PI3K-Akt, insulin, PPAR, and thyroid hormone signalling pathways. Molecular docking studies further corroborated the experimental results.The network pharmacology results were further verified by molecular docking and in vivo experiments. CONCLUSIONS The ameliorative effects of PNS against IS were predicted to be associated with the regulation of the IGF1-PI3K-Akt signalling pathway. Ginsenoside Re and ginsenoside Rb1 may play an important role in the treatment of IS.
Collapse
Affiliation(s)
- Cong Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Hao Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Shi-tang Ma
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Bin-bin Mao
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Yu Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Hao-Nan Xu
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Hao Yu
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
15
|
Liu X, Xu Y, Cheng S, Zhou X, Zhou F, He P, Hu F, Zhang L, Chen Y, Jia Y. Geniposide Combined With Notoginsenoside R1 Attenuates Inflammation and Apoptosis in Atherosclerosis via the AMPK/mTOR/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:687394. [PMID: 34305600 PMCID: PMC8293676 DOI: 10.3389/fphar.2021.687394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammation and apoptosis of vascular endothelial cells play a key role in the occurrence and development of atherosclerosis (AS), and the AMPK/mTOR/Nrf2 signaling pathway plays an important role in alleviating the symptoms of AS. Geniposide combined with notoginsenoside R1 (GN combination) is a patented supplement for the prevention and treatment of AS. It has been proven to improve blood lipid levels and inhibit the formation of AS plaques; however, it is still unclear whether GN combination can inhibit inflammation and apoptosis in AS by regulating the AMPK/mTOR/Nrf2 signaling pathway and its downstream signals. Our results confirmed that the GN combination could improve blood lipid levels and plaque formation in ApoE−/− mice fed with a high-fat diet (HFD), inhibit the secretion of serum inflammatory factors and oxidative stress factors. It also decreased the expression of pyrin domain containing protein 3 (NLRP3) inflammasome-related protein and Bax/Bcl2/caspase-3 pathway-related proteins. At the same time, the GN combination could also inhibit the H2O2-induced inflammatory response and apoptosis of human umbilical vein endothelial cells (HUVECs), which is mainly related to the activation of the AMPK/mTOR pathway by GN combination, which in turn induces the activation of Nrf2/HO-1 signal. In addition, the above phenomenon could be significantly reversed by dorsomorphin. Therefore, our experiments proved for the first time that the GN combination can effectively inhibit AS inflammation and apoptosis by activating the AMPK/mTOR/Nrf2 signaling pathway to inhibit the NLRP3 inflammasome and Bax/Bcl2/caspase-3 pathway.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuling Xu
- College of Health, Fujian Medical University, Fuzhou, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fang Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Zhu T, Wang L, Xie W, Meng X, Feng Y, Sun G, Sun X. Notoginsenoside R1 Improves Cerebral Ischemia/Reperfusion Injury by Promoting Neurogenesis via the BDNF/Akt/CREB Pathway. Front Pharmacol 2021; 12:615998. [PMID: 34025400 PMCID: PMC8138209 DOI: 10.3389/fphar.2021.615998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Notoginsenoside R1 (R1), a major component isolated from P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in a rat model of ischemic stroke. However, its long-term effects on neurogenesis and neurological restoration after ischemic stroke have not been investigated. The aim of this study was to evaluate the effects of R1 on neurogenesis and long-term functional recovery after ischemic stroke. We used male Sprague-Dawley rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). R1 was administered by intraperitoneal (i.p.) injection immediately postischemia. We showed that R1 significantly decreased infarct volume and neuronal loss, restored neurological function, and stimulated neurogenesis and oligodendrogenesis in rats subjected to MCAO/R. More importantly, R1 promoted neuronal proliferation in PC12 cells in vitro. The proneurogenic effects of R1 were associated with the activation of Akt/cAMP responsive element-binding protein, as shown by the R1-induced increase in brain-derived neurotrophic factor (BDNF) expression, and with the activation of neurological function, which was partially eliminated by selective inhibitors of BDNF and PI3K. We demonstrated that R1 is a promising compound that exerts neuroprotective and proneurogenic effects, possibly via the activation of BDNF/Akt/CREB signaling. These findings offer insight into exploring new mechanisms in long-term functional recovery after R1 treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.,China Pharmaceutical University, Jiangsu, China
| | - Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Feng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.,Beijing University of Chemical Technology, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Wang P, Jiang LN, Wang C, Li Y, Yin M, Du HB, Zhang H, Fan ZH, Liu YX, Zhao M, Kang AL, Feng DY, Li SG, Niu CY, Zhao ZG. Estradiol-induced inhibition of endoplasmic reticulum stress normalizes splenic CD4 + T lymphocytes following hemorrhagic shock. Sci Rep 2021; 11:7508. [PMID: 33820957 PMCID: PMC8021564 DOI: 10.1038/s41598-021-87159-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
The aim is to investigate that 17β-estradiol (E2)/estrogen receptors (ERs) activation normalizes splenic CD4 + T lymphocytes proliferation and cytokine production through inhibition of endoplasmic reticulum stress (ERS) following hemorrhage. The results showed that hemorrhagic shock (hemorrhage through femoral artery, 38–42 mmHg for 90 min followed by resuscitation of 30 min and subsequent observation period of 180 min) decreased the CD4+ T lymphocytes proliferation and cytokine production after isolation and incubation with Concanavalin A (5 μg/mL) for 48 h, induced the splenic injury with evidences of missed contours of the white pulp, irregular cellular structure, and typical inflammatory cell infiltration, upregulated the expressions of ERS biomarkers 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6). Either E2, ER-α agonist propyl pyrazole triol (PPT) or ERS inhibitor 4-Phenylbutyric acid administration normalized these parameters, while ER-β agonist diarylpropionitrile administration had no effect. In contrast, administrations of either ERs antagonist ICI 182,780 or G15 abolished the salutary effects of E2. Likewise, ERS inducer tunicamycin induced an adverse effect similarly to that of hemorrhagic shock in sham rats, and aggravated shock-induced effects, also abolished the beneficial effects of E2 and PPT, respectively. Together, the data suggest that E2 produces salutary effects on CD4+ T lymphocytes function, and these effects are mediated by ER-α and GPR30, but not ER-β, and associated with the attenuation of hemorrhagic shock-induced ERS.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Chen Wang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ying Li
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Meng Yin
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ze-Hua Fan
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Yan-Xu Liu
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Meng Zhao
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - An-Ling Kang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ding-Ya Feng
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Shu-Guang Li
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Department of Gastrointestinal Oncological Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, People's Republic of China
| | - Chun-Yu Niu
- Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei, 075000, People's Republic of China. .,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei Province, Shijiazhuang and Zhangjiakou, People's Republic of China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China. .,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei Province, Shijiazhuang and Zhangjiakou, People's Republic of China.
| |
Collapse
|
18
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210315509666190820103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Hypoxia and anoxia are dangerous and sometimes irreversible complications
in the central nervous system (CNS), which in some cases lead to death.
Objective:
The aim of this review was to investigate the neuroprotective effects of medicinal plants
in cerebral hypoxia and anoxia.
Methods:
The word hypox*, in combination with some herbal terms such as medicinal plant, phyto*
and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information
(ISI) and PubMed from 2000-2019.
Results:
Certain medicinal plants and herbal derivatives can exert their protective effects in several
ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS),
production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation,
and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In
addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant
generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide
dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase.
Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins
that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction
of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia,
increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing
proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.
Conclusion:
The results indicated that medicinal plants and their compounds mainly exert their neuroprotective
effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis
and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nasibeh Amirzargar
- Department of Neurology, Rofeydeh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Qian Yang
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
21
|
Yang F, Ma Q, Matsabisa MG, Chabalala H, Braga FC, Tang M. Panax notoginseng for Cerebral Ischemia: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1331-1351. [PMID: 32907361 DOI: 10.1142/s0192415x20500652] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Panax notoginseng is the most widely used Chinese medicinal herb for the prevention and treatment of ischemic diseases. Its main active ingredients are saponins, including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1, among others. This review provides an up-to-date overview on the pharmacological roles of P. notoginseng constituents in cerebral ischemia. The saponins of P. notoginseng induce a variety of pharmacological effects in the multiscale mechanisms of cerebral ischemic pathophysiology, including anti-inflammatory activity, reduction of oxidative stress, anti-apoptosis, inhibition of amino acid excitotoxicity, reduction of intracellular calcium overload, protection of mitochondria, repairing the blood-brain barrier, and facilitation of cell regeneration. Regarding cell regeneration, P. notoginseng not only promotes the proliferation and differentiation of neural stem cells, but also protects neurons, endothelial cells and astrocytes in cerebral ischemia. In conclusion, P. notoginseng may treat cerebrovascular diseases through multiple pharmacological effects, and the most critical ones need further investigation.
Collapse
Affiliation(s)
- Fei Yang
- Tongchuan People's Hospital, Tongchuan, Shaanxi Province, P. R. China
| | - Qing Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Medicines Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlupheka Chabalala
- IK-Based Technology Innovations Department of Science and Technology Brummeria, Pretoria 0001, South Africa
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Minke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
22
|
Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol 2020; 88:106860. [PMID: 32771949 DOI: 10.1016/j.intimp.2020.106860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUD Panax notoginseng saponin R1 (PNS-R1) is one of the most important chemical monomers derived from the panax notoginseng, and our previous study found that PNS-R1 reduced glucocorticoid-induced apoptosis in asthmatic airway epithelial cells. Thus, in this study, we explored the effects of the PNS-R1 on inflammation of allergic asthma. METHODS The asthmatic mice were administered 15 mg/kg PNS-R1 by intraperitoneal injection three days before sensitized to OVA. The effects of PNS-R1 on asthmatic mice were detected by airway hyperresponsiveness, inflammation, mucus hypersecretion and inflammatory cytokines such as interleukin (IL)-13, IL-4, IL-5, IL-8 and tumor necrosis factor (TNF)-α were studied. We also treated human bronchial epithelial cells (16HBE) with house dust mites (HDM) and then detected the secretion of cellular inflammatory factors (IL-13 and TNF-α). Western blot and immunofluorescence were used to examine the effect of PNS-R1 on TNF-α/NF-κB pathway. TNF-α/NF-κB/IKK signal pathway activator was used in PNS-R1-treated asthmatic mice. RESULTS PNS-R1 significantly reduced the airway inflammatory, mucus secretion and hyperresponsiveness in asthma model. It also reduced the levels of IL-13, IL-4, IL-5 and IL-8 in bronchoalveolar lavage fluid (BALF) and IgE and OVA-specific IgE in serum for asthma mice. PNS-R1 reduced IL-13 and TNF-α secretion in HDM-treated 16HBE cells. In addition, PNS-R1 suppressed TNF-α/NF-κB pathway in both asthmatic mice and 16HBE. Activation of NF-kB pathway reversed the therapeutic effect of PNS-R1 on asthmatic mice. CONCLUSION The results indicated that PNS-R1 effectively suppresses allergic airway inflammation of asthma partly through TNF-α/NF-κB pathway. PNS-R1 may play a potential role in allergic asthma treatment in the future.
Collapse
Affiliation(s)
- Kunjiao Xue
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Lingying Ruan
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Jie Hu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Daiyin Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| | - Wenjing Zou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
23
|
Lyu J, Xie Y, Sun M, Zhang L. Efficacy and Safety of Xueshuantong Injection on Acute Cerebral Infarction: Clinical Evidence and GRADE Assessment. Front Pharmacol 2020; 11:822. [PMID: 32714181 PMCID: PMC7345308 DOI: 10.3389/fphar.2020.00822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Xueshuantong injection (XST), a Chinese Medicine, is clinically effective in treating acute cerebral infarction (ACI). However, the meta-analysis of XST combined with conventional treatments (CTs) on ACI remain unexplored. The purpose of this study is to investigate the efficacy and safety of XST combined with CTs on patients with ACI. Methods Randomized controlled trials (RCTs) were screened from the Cochrane Library, PubMed, Web of Science, EMBASE, and four Chinese medical databases. The meta-analysis was performed using RevMan 5.3 and STATA 16.0. The GRADE assessment was performed by the GRADEprofiler (GRADEpro version: 3.6). The aggregate 95% confidence intervals (CIs) and relative risk (RR) estimates were calculated. Results Forty studies were included, involving a total of 3,868 patients. XST combined with CTs performed significantly better than CTs alone on the overall response rate (ORR) after treatment (RR = 1.21, 95% CI = 1.17-1.25, P < 0.001). There was no statistical differences in the incidence of adverse reactions between the experimental group (XST plus CTs) and control group (CTs alone). Groups treated with XST substantially decreased the National Institutes of Health Stroke Scale (NIHSS) score compared to the groups without XST (WMD = -5.31, 95% CI = -6.40 to -4.22, P < 0.001). Activities of daily living (ADL) scores were significantly better in the group treated with XST than CTs alone (WMD = 12.51, 95% CI = 5.6-19.38, P < 0.001). Patients who received XST combined with CTs showed significantly higher improvements in high-sensitivity C-reactive protein (hs-CRP) (WMD = -2.47, 95% CI = -3.11 to -1.82, P < 0.001) and interleukin 6 (IL-6) (WMD = -13.66, 95% CI = -17.80 to -9.51, P < 0.001) than those who received CTs alone. The GRADE assessment indicates that the comprehensive quality of this evidence is low. Conclusions This meta-analysis and GRADE assessment conditionally recommend that XST combined with CTs can increase the overall response rate, ameliorate neurological deficit, and improve activities of daily living function more than CTs alone. A significant reduction in the hs-CRP and IL-6 levels were observed when XST was combined with CTs.
Collapse
Affiliation(s)
- Jian Lyu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Menghua Sun
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lidan Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One 2020; 15:e0228825. [PMID: 32470970 PMCID: PMC7259979 DOI: 10.1371/journal.pone.0228825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is prone to cognitive and memory impairments, and there is no effective clinical treatment until now. Ferulic acid (FA) is found within members of the genus Angelica, reportedly shows protective effects on neuronal damage. However, the protective effects of FA on HIBD remains unclear. In this study, using the Morris water maze task, we herein found that the impairment of spatial memory formation in adult rats exposed to HIBD was significantly reversed by FA treatment and the administration of LNA-miR-9. The expression of miRNA-9 was detected by RT-PCR analyses, and the results shown that miRNA-9 was significantly increased in the hippocampus of neonatal rats following HIBD and in the PC12 cells following hypoxic-ischemic injury, while FA and LNA-miR-9 both inhibited the expression of miRNA-9, suggesting that the therapeutic effect of FA was mainly attributed to the inhibition of miRNA-9 expression. Indeed, the silencing of miR-9 by LNA-miR-9 or FA similarly attenuated neuronal damage and cerebral atrophy in the rat hippocampus after HIBD, which was consistent with the restored expression levels of brain-derived neurotrophic factor (BDNF). Therefore, our findings indicate that FA treatment may protect against neuronal death through the inhibition of miRNA-9 induction in the rat hippocampus following hypoxic-ischemic damage.
Collapse
Affiliation(s)
- Keli Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Qin Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Yajuan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Ting Lan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Hong Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| |
Collapse
|
25
|
Liu H, Yang J, Yang W, Hu S, Wu Y, Zhao B, Hu H, Du S. Focus on Notoginsenoside R1 in Metabolism and Prevention Against Human Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:551-565. [PMID: 32103897 PMCID: PMC7012233 DOI: 10.2147/dddt.s240511] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Notoginsenoside (NG)-R1 is one of the main bioactive compounds from Panax notoginseng (PN) root, which is well known in the prescription for mediating the micro-circulatory hemostasis in human. In this article, we mainly discuss NG-R1 in metabolism and the biological activities, including cardiovascular protection, neuro-protection, anti-diabetes, liver protection, gastrointestinal protection, lung protection, bone metabolism regulation, renal protection, and anti-cancer. The metabolites produced by deglycosylation of NG-R1 exhibit higher permeability and bioavailability. It has been extensively verified that NG-R1 may ameliorate ischemia-reperfusion (IR)-induced injury in cardiovascular and neuronal systems mainly by upregulating the activity of estrogen receptor α-dependent phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor erythroid-2-related factor 2 (NRF2) pathways and downregulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. However, no specific targets for NG-R1 have been identified. Expectedly, NG-R1 has been used as a main bioactive compound in many Traditional Chinese Medicines clinically, such as Xuesaitong, Naodesheng, XueShuanTong, ShenMai, and QSYQ. These suggest that NG-R1 exhibits a significant potency in drug development.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Jianqiong Yang
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
26
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
27
|
Yan R, Chen R, Wang J, Shi J, dos Santos WF, Xu Z, Liu L. Jingshu Keli and its Components Notoginsenoside R1 and Ginsenoside Rb1 Alleviate the Symptoms of Cervical Myelopathy through Kir3.1 Mediated Mechanisms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:631-642. [DOI: 10.2174/0929866526666190911150514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Background & Objective::
Cervical Spondylotic Myelopathy (CSM) is one of the most serious
spinal cord disorders in adults. Pharmacological modulation of ion channels is a common strategy
to interfere with CSM and prevent neuronal damage.
Methods:
Here, we investigated the effects of Jingshu Keli (JSKL), a traditional Chinese herbal formula,
on CSM-related gait abnormality, mechanical allodynia and thermal hyperalgesia, and assessed
the neuronal mechanisms of JSKL on cultured brainstem cells. Behavioral tests and patch clamp recordings
were performed to make this assessment.
Results:
In our study, we found that JSKL significantly recovered the gait performance (P<0.001) and
decreased the levels of mechanical pain in 18.9% (P<0.01) and thermal pain in 18.1% (P<0.05). Further
investigation suggested that JSKL and its containing ginsenoside Rb1 (GRb1), notoginsenoside
R1 (NGR1) reduced the action potential frequency in 38.5%, 27.2%, 25.9%, and hyperpolarized resting
membrane potential in 15.0%, 13.8%, 12.1%, respectively. Kir channels, not KV channels and KCa
channels, were the major intermediate factors achieving treatment effects. Finally, immunostaining results
showed that the phosphorylation of Kir3.1 was promoted, whereas the total expression level did
not change.
Conclusion:
Our study reveals a novel strategy of treating CSM by using Traditional Chinese Medicines
(TCMs) containing active components.
Collapse
Affiliation(s)
- Renjie Yan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Rui Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Jiahui Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Jian Shi
- Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wagner Ferreira dos Santos
- Laboratory of Neurobiology and Venoms, Department of Biology, FFCLRP, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhiru Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| |
Collapse
|
28
|
Tong Q, Zhu PC, Zhuang Z, Deng LH, Wang ZH, Zeng H, Zheng GQ, Wang Y. Notoginsenoside R1 for Organs Ischemia/Reperfusion Injury: A Preclinical Systematic Review. Front Pharmacol 2019; 10:1204. [PMID: 31680976 PMCID: PMC6811647 DOI: 10.3389/fphar.2019.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua Zeng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Banga S, Kumar V, Suri S, Kaushal M, Prasad R, Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J Am Coll Nutr 2019; 39:272-286. [DOI: 10.1080/07315724.2019.1642811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shareen Banga
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sheenam Suri
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Manisha Kaushal
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rasane Prasad
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
30
|
Zou W, Niu C, Fu Z, Gong C. PNS-R1 inhibits Dex-induced bronchial epithelial cells apoptosis in asthma through mitochondrial apoptotic pathway. Cell Biosci 2019; 9:18. [PMID: 30891181 PMCID: PMC6388479 DOI: 10.1186/s13578-019-0279-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dexamethasone (Dex) are widely used for the treatment of asthma. However, they may cause apoptosis of bronchial epithelial cells and delay the recovery of asthma. Therefore, it is an urgent problem to find effective drugs to reduce this side effects. Panax notoginseng saponins R1 (PNS-R1) is known to exhibit anti-oxidative and anti-apoptotic properties in many diseases. We aim to investigate whether PNS-R1 can reduce Dex-induced apoptosis in bronchial epithelial cells. In this study, the anti-apoptotic effects of PNS-R1 were investigated by conducting in vitro and in vivo. Annexin V-FITC/PI staining flow cytometry analysis and TUNEL assay were conducted to detect apoptotic cells. Mitochondrial membrane potential was detected by JC-1 analysis. Western blotting and immunohistochemical analysis were conducted to measure caspase3, Bcl-2, Bax, Cyt-c, Apaf-1, cleaved-caspase3 and cleaved-caspase9 levels in lung tissues and 16HBE cells. Our findings demonstrated that Dex could induce apoptosis of bronchial epithelial cells and upregulate caspase3 expression of lung tissues. Western blot showed that Dex increased Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and decreased Bcl-2 expression. PNS-R1 could suppress Dex-induced apoptosis of bronchial epithelial cells by inhibiting Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and upregulating Bcl-2 expression. Flow cytometry analysis showed PNS-R1 alleviated JC-1 positive cells induced by Dex in 16HBE cells. These results showed that PNS-R1 alleviated Dex-induced apoptosis in bronchial epithelial cells by inhibition of mitochondrial apoptosis pathway. Furthermore, our findings highlighted the potential use of PNS-R1 as an adjuvant drug to treat asthma.
Collapse
Affiliation(s)
- Wenjing Zou
- 1Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
| | - Chao Niu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Zhou Fu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Caihui Gong
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| |
Collapse
|
31
|
Wang J, Wang A, He H, She X, He Y, Li S, Liu L, Luo T, Huang N, Luo H, Zou K. Trametenolic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2019; 112:108692. [PMID: 30798122 DOI: 10.1016/j.biopha.2019.108692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Trametenolic acid B (TAB) was a lanostane-type triterpenoid isolated from the trametes lactinea (Berk.) Pat. We have previously reported that extract from trametes lactinea (Berk.) Pat and TAB could efficiently improve learning and memory ability of the cerebral ischemia injury rats and suppress mitochondrial-mediated apoptosis in hydrogen peroxide damaged SH-SY5Y cells. However, the potential mechanisms have not been fully understood yet. The current study was to further investigate the protective effect of TAB on oxygen glucose deprivation/reoxygenation (OGD/R)-damaged SH-SY5Y cells and cerebral ischemia/reperfusion (I/R) injury rats, as well as its mechanisms involved. Cell experiments demonstrated that TAB (10, 20 and 40 μg/mL) protected OGD/R-induced SH-SY5Y cell injury by promoting cell proliferation and suppressing LDH leakage; Meanwhile, the results in vivo showed that TAB (20, 40 and 80 mg/kg) might significantly ameliorate the neurological deficit score, cerebral edema, neuronal cell loss and apoptosis, suppress cerebral infarction volume of the cerebral I/R injury rats. Further studies in vitro and in vivo indicated TAB could efficiently reduce OGD/R-damaged SH-SY5Y cell and cerebral I/R rat serum ROS, LDH and MDA levels, elevate SOD, GSH-Px and CAT activities, downregulate miR-10a mRNA and Bax, cytochrome C, cleaved-caspase-3 and cleaved-caspase-9 protein expressions, upregulate p-PIK3CA, p-Akt, p-mTOR, Bcl-2, pro-caspase-9 and pro-caspase-3 protein expressions and p-PIK3CA/PIK3CA, p-Akt/Akt, p-mTOR/mTOR ratios (P < 0.05 or P < 0.01, respectively). Our present study indicated that TAB possessed neuroprotective property against ODG/R and I/R injury by suppressing miR-10a expression, activating PI3K/Akt/mTOR signaling pathway, thereby reducing mitochondrial-mediated apoptosis, which provided a new insight for interpreting the underlying mechanisms of TAB' neuroprotective effect and a candidate agent to treat cerebral I/R injury.
Collapse
Affiliation(s)
- Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Ailing Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China.
| | - Xinxin She
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Yumin He
- Third-Level Laboratory of Pharmacology of Traditional Chinese Medicine of State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Shi Li
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Lanqing Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Tao Luo
- Institute of Spleen and Stomach Diseases, Traditional Chinese Medicine Hospital of China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Huajun Luo
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| |
Collapse
|
32
|
Liu Z, Wang H, Hou G, Cao H, Zhao Y, Yang B. Notoginsenoside R1 protects oxygen and glucose deprivation‐induced injury by upregulation of miR‐21 in cardiomyocytes. J Cell Biochem 2018; 120:9181-9192. [PMID: 30552708 DOI: 10.1002/jcb.28194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zengjia Liu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University Jining Shandong China
- Forensic Science Center of Jining Medical University Jining Shandong China
| | - Haiyang Wang
- Department of Cardiology Qingdao Municipal Hospital Qingdao Shandong China
| | - Guoliang Hou
- Department of Cardiovascular Medicine Tengzhou Central People's Hospital Tengzhou Shandong China
| | - Honglei Cao
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| | - Yan Zhao
- Department of Pain Treatment Jining No. 1 People's Hospital Jining Shandong China
| | - Baofa Yang
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| |
Collapse
|
33
|
Fang C, Xie L, Liu C, Fu C, Ye W, Liu H, Zhang B. Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR‑4‑mediated NF‑κB signal pathway. Mol Med Rep 2018; 18:1899-1908. [PMID: 29956801 PMCID: PMC6072156 DOI: 10.3892/mmr.2018.9227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most common brain injury following hypoxia and/or ischemia caused by various factors during the perinatal period, resulting in detrimental neurological deficits in the nervous system. Tanshinone IIA (Tan‑IIA) is a potential agent for the treatment of cardiovascular and cerebrovascular diseases. In this study, the efficacy of Tan‑IIA was investigated in a newborn mouse model of HIE. The dynamic mechanism of Tan‑IIA was also investigated in the central nervous system of neonate mice. Intravenous injection of Tan‑IIA (5 mg/kg) was administered and changes in oxidative stress, inflammation and apoptosis‑associated proteins in neurons. Histology and immunohistochemistry was used to determine infarct volume and the number of damaged neurons by Fluoro‑Jade C staining. The effects of Tan‑IIA on mice with HIE were evaluated by body weight, brain water content, neurobehavioral tests and blood‑brain barrier permeability. The results demonstrated that the apoptosis rate was decreased following Tan‑IIA administration. Expression levels of pro‑apoptotic proteins, caspase‑3 and caspase‑9 and P53 were downregulated. Expression of Bcl‑2 anti‑apoptotic proteins was upregulated by Tan‑IIA treatment in neuro. Results also found that Tan‑IIA treatment decreased production of inflammatory cytokines such as interleukin‑1, tumor necrosis factor‑α, C‑X‑C motif chemokine 10, and chemokine (C‑C motif) ligand 12. Oxidative stress was also reduced by Tan‑IIA in neurons, as determined by the expression levels of superoxide dismutase, glutathione and catalase, and the production of reactive oxygen species. The results demonstrated that Tan‑IIA treatment reduced the infarct volume and the number of damaged neurons. Furthermore, body weight, brain water content and blood‑brain barrier permeability were markedly improved by Tan‑IIA treatment of newborn mice following HIE. Furthermore, the results indicated that Tan‑IIA decreased Toll‑like receptor‑4 (TLR‑4) and nuclear factor‑κB (NF‑κB) expression in neurons. TLR‑4 treatment of neuronal cell in vitro addition stimulated NF‑κB activity, and further enhanced the production of inflammatory cytokines and oxidative stress levels in neurons. In conclusion, these results suggest that Tan‑IIA treatment is beneficial for improvement of HIE through TLR‑4‑mediated NF‑κB signaling.
Collapse
Affiliation(s)
- Chengzhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lili Xie
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunmei Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunhua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Ye
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Binghong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
34
|
Xiong J, Ding N, Gao T, Wang Y, Guo W, Zhang H, Ma X, Li F, Sun J, Yang X, Wu K, Zhang H, Jiang Y. Hypermethylation of endoplasmic reticulum disulfide oxidase 1α leads to trophoblast cell apoptosis through endoplasmic reticulum stress in preeclampsia. J Cell Biochem 2018; 119:8588-8599. [PMID: 30058081 DOI: 10.1002/jcb.27101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
Abnormal trophoblast cell apoptosis is implicated in the pathogenesis of pregnancy-related disorders including preeclampsia (PE), and endoplasmic reticulum (ER) stress has been considered as a novel pathway in the regulation of cell apoptosis. In this study, we observed that both apoptosis and ER stress are triggered in trophoblast cells under hypoxia as well as in the placenta of PE rats. Quantitative polymerase chain reaction and Western blot analysis showed that the expression of endoplasmic reticulum disulfide oxidase 1α (ERO1α) is suppressed in trophoblast cells under hypoxia due to the hypermethylation of the ERO1α promoter region, and the inhibition of ERO1α expression plays an important role in ER stress and trophoblast cell apoptosis. Furthermore, we found that DNA methyltransferase 1 (DNMT1) is a key methyltransferase for DNA methylation in the regulation of ERO1α expression, and the binding level of DNMT1 to the ERO1α promoter is markedly elevated under hypoxia although DNMT1 expression is inhibited by hypoxia, suggesting that the binding level of DNMT1 to the ERO1α promoter region rather than the DNMT1 expression level contributes to the hypermethylation of ERO1α. Taken together, these results demonstrate that the hypermethylation of ERO1α mediated by increased binding of DNMT1 to the ERO1α promoter leads to trophoblast cell apoptosis through ER stress in the placenta of PE rats, which shed insight into the etiology of PE and might present a validated therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tingting Gao
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanhua Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wei Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoli Ma
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Xiaoling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Kai Wu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yideng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
35
|
Zhang X, Zhang Y, Tang S, Yu L, Zhao Y, Ren Q, Huang X, Xu W, Huang M, Peng J. Pien-Tze-Huang protects cerebral ischemic injury by inhibiting neuronal apoptosis in acute ischemic stroke rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:117-125. [PMID: 29550579 DOI: 10.1016/j.jep.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pien-Tze-Huang (PZH) is a famous formula of traditional Chinese medicine used to treating stroke. However, the protective effect of PZH and its mechanisms in acute ischemic stroke remain to be explored. AIM OF THE STUDY To investigate the protective effect of PZH on neuronal apoptosis in acute cerebral ischemic injury rats and explore its underlying mechanisms. MATERIALS AND METHODS The effects of PZH were studied in acute ischemic stroke rats induced by transient middle cerebral artery occlusion, and the mitochondria-mediated apoptotic proteins including cytochrome C (Cyt C), Bax, Bcl-xl, P53, caspase-3, and caspase-9 as well as AKT and glycogen synthase kinase-3 beta (GSK-3β) were assessed. RESULTS Four days of PZH treatment (180 mg/kg) could significantly reduce cerebral infarct volume, improve neurological deficit, attenuate inflammatory response, and inhibit neuronal apoptosis in acute ischemic stroke rats. Moreover, PZH treatment significantly decreased cytosolic Cyt C, Bax, P53, cleaved caspase-3, and cleaved caspase-9 levels, but elevated mitochondrial Cyt C and Bcl-xl levels. PZH treatment also increased phosphorylation of AKT and GSK-3β. CONCLUSION PZH potently protects the brain from cerebral ischemia/reperfusion injury in vivo, and inhibiting mitochondria-mediated neuronal apoptosis as well as attenuating inflammatory responses may be involved in this effect. This study provides experimental basis of PZH in treating acute cerebral ischemic stroke, which would provide some novel insights for its prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yiping Zhang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Songqi Tang
- College of TCM, Hainan Medical University, Haikou 571199, China
| | - Lishuang Yu
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Youqin Zhao
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qiangqiang Ren
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaoqiang Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wen Xu
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
36
|
Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y, Wang S. Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic-Ischemic Brain Injury. Neurochem Res 2018; 43:1210-1226. [PMID: 29696512 PMCID: PMC5996020 DOI: 10.1007/s11064-018-2538-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/22/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic–ischemic injury.
Collapse
Affiliation(s)
- Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Xiang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
37
|
Cui YC, Yan L, Pan CS, Hu BH, Chang X, Fan JY, Han JY. The Contribution of Different Components in QiShenYiQi Pills® to Its Potential to Modulate Energy Metabolism in Protection of Ischemic Myocardial Injury. Front Physiol 2018; 9:389. [PMID: 29755361 PMCID: PMC5932340 DOI: 10.3389/fphys.2018.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Ischemic heart diseases remain a challenge for clinicians. QiShenYiQi pills® (QSYQ) has been reported to be curative during coronary heart diseases with modulation of energy metabolism as one of the underlying mechanisms. In this study, we detected the effect of QSYQ and its components on rat myocardial structure, mitochondrial respiratory chain complexes activity and energy metabolism, and heart function after 30 min of cardiac ischemia, with focusing on the contribution of each component to its potential to regulate energy metabolism. Results showed that treatment with QSYQ and all its five components protected myocardial structure from damage by ischemia. QSYQ also attenuated release of myocardial cTnI, and restored the production of ATP after cardiac ischemia. AS-IV and Rb1, but not Rg1, R1, and DLA, had similar effect as QSYQ in regulation of energy metabolism. These results indicate that QSYQ may prevent ischemia-induced cardiac injury via regulation of energy metabolism, to which each of its components contributes differently.
Collapse
Affiliation(s)
- Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
38
|
Liu H, Zhong L, Zhang Y, Liu X, Li J. Rutin attenuates cerebral ischemia-reperfusion injury in ovariectomized rats via estrogen-receptor-mediated BDNF-TrkB and NGF-TrkA signaling. Biochem Cell Biol 2018; 96:672-681. [PMID: 29420916 DOI: 10.1139/bcb-2017-0209] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rutin, a flavonoid glycoside, has been reported to exert neuroprotective effects. Loss of endogenous estrogen and dysregulation of the estrogen receptor (ER) signaling pathway are associated with the increased risk of stroke in women after menopause. This study was performed to investigate whether rutin could protect against cerebral ischemia by modulating the ER pathway. Ovariectomized (OVX) rats were given intraperitoneal injections of vehicle (dimethyl sulfoxide), rutin (100 mg/kg body mass) or 17β-estradiol (100 μg/kg body mass) for 5 consecutive days. Then, the rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h followed by a 24 h reperfusion to establish the cerebral ischemia-reperfusion (I/R) injury. We found that rutin improved the sensorimotor performance and recognition memory of rats subjected to I/R, decreased the infarct size, and attenuated neuron loss. Rutin treatment also increased the levels of ERα, ERβ, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), tropomyosin receptor kinase A (TrkA), TrkB, and phospho-cAMP-responsive element binding protein (p-CREB) in rat hippocampus and cerebral cortex. The protective effects of rutin were comparable to that of 17β-estradiol, and were partially blocked by ICI182780, an ER antagonist. The above results suggest that rutin preconditioning ameliorates cerebral I/R injury in OVX rats through ER-mediated BDNF-TrkB and NGF-TrkA signaling.
Collapse
Affiliation(s)
- Hong Liu
- a Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,b Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,c Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin Medical University, Harbin 150081, Heilongjiang Province, P.R. China
| | - Lili Zhong
- b Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,d Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, P.R. China
| | - Yuwei Zhang
- e Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China
| | - Xuewei Liu
- f Department of Neuropharmacology, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, P.R. China
| | - Ji Li
- g Department of Formulaology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China
| |
Collapse
|
39
|
Li G, Xing X, Luo Y, Deng X, Lu S, Tang S, Sun G, Sun X. Notoginsenoside R1 prevents H9c2 cardiomyocytes apoptosis against hypoxia/reoxygenation via the ERs/PI3K/Akt pathway. RSC Adv 2018; 8:13871-13878. [PMID: 35539324 PMCID: PMC9079795 DOI: 10.1039/c8ra02554a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases. However, the protective mechanism of NGR1 in the myocardial ischemia/reperfusion injury via the estrogen receptor (ER) pathway remains unclear, which hinder its application. This study aimed to study the preventive mechanisms of NGR1 in the apoptosis of H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R). NGR1 did not affect the expression of ERα and ERβ proteins in normal H9c2 cardiomyocytes. However, NGR1 could upregulate the ERα and G protein-coupled receptor 30 (GPR30) proteins in H9c2 cardiomyocytes after H/R without affecting ERβ levels. Moreover, it significantly affected the expression levels of PI3K and its downstream apoptosis proteins such as Bcl-2 Associated X Protein (Bax), B cell lymphoma/lewkmia-2 (Bcl-2), caspase-3, and so forth. Whereas, after adding the PI3K protein antagonist, the modulatory expression levels of PI3K and its downstream apoptosis proteins were remarkably abolished. After adding ERα and GPR30 antagonists, NGR1 had no significant effect on the expression of PI3K and its downstream Akt protein in the model group. The data of flow cytometry showed that after adding the ERα, GPR30 and PI3K antagonists, the apoptotic rate of cardiomyocytes had no significant changes compared with the model group. This study demonstrated that NGR1 protected H9c2 cardiomyocytes from the injury after H/R by affecting ERα and GPR30 to regulate the expression levels of PI3K and its downstream apoptosis proteins. Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases.![]()
Collapse
Affiliation(s)
- Guang Li
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Yunnan Branch
| | - Xiaoyan Xing
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Yun Luo
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xuehong Deng
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shan Lu
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shimin Tang
- Changchun University of Chinese Medicine
- Changchun
- China
| | - Guibo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xiaobo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| |
Collapse
|
40
|
Notoginsenoside R1 Alleviates Oxygen-Glucose Deprivation/Reoxygenation Injury by Suppressing Endoplasmic Reticulum Calcium Release via PLC. Sci Rep 2017; 7:16226. [PMID: 29176553 PMCID: PMC5701215 DOI: 10.1038/s41598-017-16373-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/12/2017] [Indexed: 01/09/2023] Open
Abstract
As documented in our previous study, notoginsenoside R1 (NGR1) can inhibit neuron apoptosis and the expression of endoplasmic reticulum (ER) stress-associated pro-apoptotic proteins in hypoxic–ischemic encephalopathy. Recent evidence indicates that the Phospholipase C (PLC)/inositol 1,4,5-trisphosphate receptor (IP3R) is important for the regulation of Ca2+ release in the ER. Ca2+ imbalance can stimulate ER stress, CAMKII, and cell apoptosis. The purpose of this study was to further investigate the neuroprotective effect of NGR1 and elucidate how NGR1 regulates ER stress and cell apoptosis in the oxygen–glucose deprivation/reoxygenation (OGD/R) model. Cells were exposed to NGR1 or the PLC activator m-3M3FBS. Then, IP3R- and IP3-induced Ca2+ release (IICR) and activation of the ER stress and CaMKII signal pathway were measured. The results showed that NGR1 inhibited IICR and strengthened the binding of GRP78 with PERK and IRE1. NGR1 also alleviated the activation of the CaMKII pathway. Pretreatment with m-3M3FBS attenuated the neuroprotective effect of NGR1; IICR was activated, activation of the ER stress and CaMKII pathway was increased, and more cells were injured. These results indicate that NGR1 may suppress activation of the PLC/IP3R pathway, subsequently inhibiting ER Ca2+ release, ER stress, and CaMKII and resulting in suppressed cell apoptosis.
Collapse
|
41
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
42
|
Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem Soc Trans 2017; 45:1067-1076. [PMID: 28939695 PMCID: PMC5652227 DOI: 10.1042/bst20170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023]
Abstract
Birth asphyxia in term neonates affects 1–2/1000 live births and results in the development of hypoxic–ischaemic encephalopathy with devastating life-long consequences. The majority of neuronal cell death occurs with a delay, providing the potential of a treatment window within which to act. Currently, treatment options are limited to therapeutic hypothermia which is not universally successful. To identify new interventions, we need to understand the molecular mechanisms underlying the injury. Here, we provide an overview of the contribution of both oxidative stress and endoplasmic reticulum stress in the development of neonatal brain injury and identify current preclinical therapeutic strategies.
Collapse
|
43
|
Liu S, Xin D, Wang L, Zhang T, Bai X, Li T, Xie Y, Xue H, Bo S, Liu D, Wang Z. Therapeutic effects of L-Cysteine in newborn mice subjected to hypoxia-ischemia brain injury via the CBS/H 2S system: Role of oxidative stress and endoplasmic reticulum stress. Redox Biol 2017; 13:528-540. [PMID: 28735240 PMCID: PMC5524226 DOI: 10.1016/j.redox.2017.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a major cause of neonatal death and neurological dysfunction. H2S has been shown to protect against hypoxia-induced injury and apoptosis of neurons. L-Cysteine is catalyzed by cystathionine-β-synthase (CBS) in the brain and sequentially produces endogenous H2S. The present study was designed to investigate whether L-Cysteine could attenuate the acute brain injury and improve neurobehavioral outcomes following HI brain injury in neonatal mice by releasing endogenous H2S. L-Cysteine treatment significantly attenuated brain edema and decreased infarct volume and neuronal cell death, as shown by a decrease in the Bax/Bcl-2 ratio, suppression of caspase-3 activation, and reduced phosphorylation of Akt and ERK at 72 h after HI. Additionally, L-Cysteine substantially up-regulated NF-E2-related factor 2 and heme oxygenase-1 expression. L-Cysteine also decreased endoplasmic reticulum (ER) stress-associated pro-apoptotic protein expression. Furthermore, L-Cysteine had long-term effects by protecting against the loss of ipsilateral brain tissue and improving neurobehavioral outcomes. Importantly, pre-treatment with a CBS inhibitor significantly attenuated the neuroprotection of L-Cysteine on HI insult. Thus, L-Cysteine exerts neuroprotection against HI-induced injury in neonates via the CBS/H2S pathway, mediated in part by anti-apoptotic effects and reduced oxidative stress and ER stress. Thus, L-Cysteine may be a promising treatment for HI. L-Cysteine administration at 24 h after HI insult has neuroprotective effect. L-Cysteine administration attenuated HI-induced oxidative stress and ER stress. L-Cysteine administration had long-term effects in improving neurobehavioral function at 14 and 28 days after HI insult. Pre-treatment with a CBS inhibitor significantly attenuated the neuroprotection of L-Cysteine on HI in neonatal mice.
Collapse
Affiliation(s)
- Song Liu
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Lingxiao Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tiantian Zhang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tong Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yunkai Xie
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province 250012, PR China
| | - Shishi Bo
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
44
|
Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Res 2016; 1646:410-417. [PMID: 27317636 DOI: 10.1016/j.brainres.2016.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 11/21/2022]
Abstract
Hydrogen as a new medical gas exerts organ-protective effects through regulating oxidative stress, inflammation and apoptosis. Multiple lines of evidence reveal the protective effects of hydrogen in various models of brain injury. However, the exact mechanism underlying this protective effect of hydrogen against hypoxic-ischemic brain damage (HIBD) is not fully understood. The present study was designed to investigate whether hydrogen-rich saline (HS) attenuates HIBD in neonatal mice and whether the observed protection is associated with reduced endoplasmic reticulum (ER) stress and regulated autophagy. The results showed that HS treatment significantly improved brain edema and decreased infarct volume. Furthermore, HS significantly attenuated HIBD-induced ER stress responses, including the decreased expression of glucose-regulated protein 78, C/EBP homologous protein, and down-regulated transcription factor. Additionally, we demonstrated that HS induced autophagy, including increased LC3B and Beclin-1 expression and decreased phosphorylation of mTOR and Stat3, as well as phosphorylation of ERK. Taken together, HS exerts neuroprotection against HIBD in neonatal mouse, mediated in part by reducing ER stress and increasing autophagy machinery.
Collapse
|