1
|
Cui X, Wang Y, Lu H, Wang L, Xie X, Zhang S, Kovarik P, Li S, Liu S, Zhang Q, Yang J, Zhang C, Tian J, Liu Y, Zhang W. ZFP36 Regulates Vascular Smooth Muscle Contraction and Maintains Blood Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408811. [PMID: 39589932 PMCID: PMC11744710 DOI: 10.1002/advs.202408811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. Zinc finger protein 36 (ZFP36) is an RNA-binding protein that regulates mRNA stability by binding to adenylate-uridylate-rich elements in the mRNA 3'-untranslated region. This study reveals that ZFP36 expression is highly elevated in the arteries of hypertensive patients and rodents. In cultured vascular smooth muscle cell (VSMC), angiotensin II (AngII) activates poly (ADP-ribose) polymerases1 (PARP1) to stimulate Zfp36 expression at the transcriptional level. VSMC-specific ZFP36 deletion reduces vessel contractility and blood pressure levels in mice. Mechanistically, ZFP36 regulates G protein-coupled receptors (GPCRs)-mediated increases in intracellular calcium levels through impairing the mRNA stability of regulator of G protein signaling 2 (RGS2). Moreover, the VSMC-specific ZFP36 deficiency attenuates AngII-induced hypertension and vascular remodeling in mice. AAV-mediated ZFP36 knockdown ameliorates spontaneous hypertension in rats. These findings elucidate that ZFP36 plays an important role in the regulation of smooth muscle contraction and blood pressure through modulating RGS2 expression. ZFP36 inhibition may represent a new therapeutic strategy for the treatment of hypertension.
Collapse
Affiliation(s)
- Xiuru Cui
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yawei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Hanlin Lu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Lei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Xianwei Xie
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Shenghao Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Pavel Kovarik
- Max Perutz LabsUniversity of ViennaVienna Biocenter (VBC), Dr. Bohr‐Gasse 9ViennaA‐1030Austria
| | - Shuijie Li
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbin150081China
| | - Shanshan Liu
- State Key Laboratory of Transvascular Implantation DevicesHeart Regeneration and Repair Key Laboratory of Zhejiang ProvinceDepartment of CardiologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | - Qunye Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jinwei Tian
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yan Liu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wencheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| |
Collapse
|
2
|
Talele S, Gonzalez S, Trudeau J, Junaid A, Loy CA, Altman RA, Sjögren B. A Phenotypic High-Throughput Screen Identifies Small Molecule Modulators of Endogenous RGS10 in BV-2 Cells. J Med Chem 2024; 67:20343-20352. [PMID: 39547663 PMCID: PMC11613444 DOI: 10.1021/acs.jmedchem.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Chronic dysregulation of microglial phenotypic balance contributes to prolonged neuroinflammation and neurotoxicity, which is a hallmark of neurodegenerative diseases. Thus, targeting microglial inflammatory signaling represents a promising therapeutic strategy for neurodegenerative diseases. Regulator of G protein Signaling 10 (RGS10) is highly expressed in microglia, where it suppresses pro-inflammatory signaling. However, RGS10 is silenced following microglial activation, augmenting inflammatory responses. While modulating RGS10 expression is a promising strategy to suppress pro-inflammatory microglial activation, no chemical tools with this ability exist. We developed a phenotypic high-throughput assay to screen for compounds with the ability to reverse interferon-γ (IFNγ)-induced RGS10 silencing in BV-2 cells. Identified hits had no effect on RGS10 expression in the absence of stimulus or in response to lipopolysaccharide (LPS). Furthermore, the hits reversed some of the inflammatory gene expression induced by IFNγ. This is the first demonstration of the potential for small molecule intervention to modulate the RGS10 expression in microglia.
Collapse
Affiliation(s)
- Shwetal Talele
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Stephanie Gonzalez
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Trudeau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Ahmad Junaid
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cody A Loy
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Ryan A. Altman
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benita Sjögren
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
5
|
Lymperopoulos A, Borges JI, Stoicovy RA. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol 2023; 218:115904. [PMID: 37922976 PMCID: PMC10841918 DOI: 10.1016/j.bcp.2023.115904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
6
|
Zhang D, Zhao MM, Wu JM, Wang R, Xue G, Xue YB, Shao JQ, Zhang YY, Dong ED, Li ZY, Xiao H. Dual-omics reveals temporal differences in acute sympathetic stress-induced cardiac inflammation following α 1 and β-adrenergic receptors activation. Acta Pharmacol Sin 2023; 44:1350-1365. [PMID: 36737635 PMCID: PMC10310713 DOI: 10.1038/s41401-022-01048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sympathetic stress is prevalent in cardiovascular diseases. Sympathetic overactivation under strong acute stresses triggers acute cardiovascular events including myocardial infarction (MI), sudden cardiac death, and stress cardiomyopathy. α1-ARs and β-ARs, two dominant subtypes of adrenergic receptors in the heart, play a significant role in the physiological and pathologic regulation of these processes. However, little is known about the functional similarities and differences between α1- and β-ARs activated temporal responses in stress-induced cardiac pathology. In this work, we systematically compared the cardiac temporal genome-wide profiles of acute α1-AR and β-AR activation in the mice model by integrating transcriptome and proteome. We found that α1- and β-AR activations induced sustained and transient inflammatory gene expression, respectively. Particularly, the overactivation of α1-AR but not β-AR led to neutrophil infiltration at one day, which was closely associated with the up-regulation of chemokines, activation of NF-κB pathway, and sustained inflammatory response. Furthermore, there are more metabolic disorders under α1-AR overactivation compared with β-AR overactivation. These findings provide a new therapeutic strategy that, besides using β-blocker as soon as possible, blocking α1-AR within one day should also be considered in the treatment of acute stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming-Ming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Rui Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Bo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ji-Qi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| | - Zhi-Yuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| |
Collapse
|
7
|
Ihlow J, Monjé N, Hoffmann I, Bischoff P, Sinn BV, Schmitt WD, Kunze CA, Darb-Esfahani S, Kulbe H, Braicu EI, Sehouli J, Denkert C, Horst D, Taube ET. Low Expression of RGS2 Promotes Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14194620. [PMID: 36230542 PMCID: PMC9561967 DOI: 10.3390/cancers14194620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recent advances in molecular medicine have indicated G-protein coupled receptors (GPCRs) as possible therapeutic targets in ovarian cancer. The cellular effects of GPCRs are determined by regulator of G protein signaling (RGS) proteins. Especially RGS2 has currently moved into focus of cancer therapy. Therefore, we retrospectively analyzed RGS2 and its association with the prognosis of high-grade serous ovarian cancer (HGSOC). Here, we provide in situ and in silico analyses regarding the expression patterns and prognostic value of RGS2. In silico we found that RGS2 is barely detectable in tumor cells on the mRNA level in bulk and single-cell data. Applying immunohistochemistry in 519 HGSOC patients, we detected moderate to strong protein expression of RGS2 in situ in approximately half of the cohort, suggesting regulation by post translational modification. Furthermore, low protein expression of RGS2 was associated with an inferior overall- and progression-free survival. These results warrant further research of its role and related new therapeutic implications in HGSOC. Abstract RGS2 regulates G-protein signaling by accelerating hydrolysis of GTP and has been identified as a potentially druggable target in carcinomas. Since the prognosis of patients with high-grade serous ovarian carcinoma (HGSOC) remains utterly poor, new therapeutic options are urgently needed. Previous in vitro studies have linked RGS2 suppression to chemoresistance in HGSOC, but in situ data are still missing. In this study, we characterized the expression of RGS2 and its relation to prognosis in HGSOC on the protein level by immunohistochemistry in 519 patients treated at Charité, on the mRNA level in 299 cases from TCGA and on the single-cell level in 19 cases from publicly available datasets. We found that RGS2 is barely detectable on the mRNA level in both bulk tissue (median 8.2. normalized mRNA reads) and single-cell data (median 0 normalized counts), but variably present on the protein level (median 34.5% positive tumor cells, moderate/strong expression in approximately 50% of samples). Interestingly, low expression of RGS2 had a negative impact on overall survival (p = 0.037) and progression-free survival (p = 0.058) on the protein level in lower FIGO stages and in the absence of residual tumor burden. A similar trend was detected on the mRNA level. Our results indicated a significant prognostic impact of RGS2 protein suppression in HGSOC. Due to diverging expression patterns of RGS2 on mRNA and protein levels, posttranslational modification of RGS2 is likely. Our findings warrant further research to unravel the functional role of RGS2 in HGSOC, especially in the light of new drug discovery.
Collapse
Affiliation(s)
- Jana Ihlow
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bruno Valentin Sinn
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolfgang Daniel Schmitt
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sylvia Darb-Esfahani
- Institute of Pathology, Berlin-Spandau, Stadtrandstraße 555, 13589 Berlin, Germany
| | - Hagen Kulbe
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jalid Sehouli
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - David Horst
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eliane Tabea Taube
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-536-033; Fax: +49-30-450-536-900
| |
Collapse
|
8
|
Dahlen SA, Bernadyn TF, Dixon AJ, Sun B, Xia J, Owens EA, Osei-Owusu P. Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of G i/o signaling. J Mol Cell Cardiol 2022; 170:34-46. [PMID: 35661621 DOI: 10.1016/j.yjmcc.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. METHODS AND RESULTS We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca2+ transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of β-adrenergic receptors (βAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by Gi/o inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or βAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca2+ in the presence of SERCA blockade with thapsigargin. CONCLUSIONS We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards Gi/o signaling and facilitating cardiomyocyte calcium handling.
Collapse
Affiliation(s)
- Shelby A Dahlen
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Tyler F Bernadyn
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Alethia J Dixon
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Bo Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Jingsheng Xia
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Elizabeth A Owens
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Patrick Osei-Owusu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America; Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America.
| |
Collapse
|
9
|
Regulator of G protein signaling 2 inhibits Gα q-dependent uveal melanoma cell growth. J Biol Chem 2022; 298:101955. [PMID: 35452684 PMCID: PMC9120238 DOI: 10.1016/j.jbc.2022.101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Activating mutations in Gαq/11 are a major driver of uveal melanoma (UM), the most common intraocular cancer in adults. While progress has recently been made in targeting Gαq/11 for UM therapy, the crucial role for these proteins in normal physiology and their high structural similarity with many other important GTPase proteins renders this approach challenging. The aim of the current study was to validate whether a key regulator of Gq signaling, regulator of G protein signaling 2 (RGS2), can inhibit Gαq-mediated UM cell growth. We used two UM cell lines, 92.1 and Mel-202, which both contain the most common activating mutation GαqQ209L and developed stable cell lines with doxycycline-inducible RGS2 protein expression. Using cell viability assays, we showed that RGS2 could inhibit cell growth in both of these UM cell lines. We also found that this effect was independent of the canonical GTPase-activating protein activity of RGS2 but was dependent on the association between RGS2 and Gαq. Furthermore, RGS2 induction resulted in only partial reduction in cell growth as compared to siRNA-mediated Gαq knockdown, perhaps because RGS2 was only able to reduce mitogen-activated protein kinase signaling downstream of phospholipase Cβ, while leaving activation of the Hippo signaling mediators yes-associated protein 1/TAZ, the other major pathway downstream of Gαq, unaffected. Taken together, our data indicate that RGS2 can inhibit UM cancer cell growth by associating with GαqQ209L as a partial effector antagonist.
Collapse
|
10
|
McNabb HJ, Gonzalez S, Muli CS, Sjögren B. N-Terminal Targeting of Regulator of G Protein Signaling Protein 2 for F-Box Only Protein 44-Mediated Proteasomal Degradation. Mol Pharmacol 2020; 98:677-685. [PMID: 33008920 DOI: 10.1124/molpharm.120.000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are negative modulators of G protein signaling that have emerged as promising drug targets to improve specificity and reduce side effects of G protein-coupled receptor-related therapies. Several small molecule RGS protein inhibitors have been identified; however, enhancing RGS protein function is often more clinically desirable but presents a challenge. Low protein levels of RGS2 are associated with various pathologies, including hypertension and heart failure. For this reason, RGS2 is a prominent example wherein enhancing its function would be beneficial. RGS2 is rapidly ubiquitinated and proteasomally degraded, providing a point of intervention for small molecule RGS2-stabilizing compounds. We previously identified a novel cullin-RING E3 ligase utilizing F-box only protein 44 (FBXO44) as the substrate recognition component. Here, we demonstrate that RGS2 associates with FBXO44 through a stretch of residues in its N terminus. RGS2 contains four methionine residues close to the N terminus that can act as alternative translation initiation sites. The shorter translation initiation variants display reduced ubiquitination and proteasomal degradation as a result of lost association with FBXO44. In addition, we show that phosphorylation of Ser3 may be an additional mechanism to protect RGS2 from FBXO44-mediated proteasomal degradation. These findings contribute to elucidating mechanisms regulating steady state levels of RGS2 protein and will inform future studies to develop small molecule RGS2 stabilizers. These would serve as novel leads in pathologies associated with low RGS2 protein levels, such as hypertension, heart failure, and anxiety. SIGNIFICANCE STATEMENT: E3 ligases provide a novel point of intervention for therapeutic development, but progress is hindered by the lack of available information about specific E3-substrate pairs. Here, we provide molecular detail on the recognition of regulator of G protein signaling protein 2 (RGS2) by its E3 ligase, increasing the potential for rational design of small molecule RGS2 protein stabilizers. These would be clinically useful in pathologies associated with low RGS2 protein levels, such as hypertension, heart failure, and anxiety.
Collapse
Affiliation(s)
- Harrison J McNabb
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Stephanie Gonzalez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Christine S Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
11
|
McNabb HJ, Zhang Q, Sjögren B. Emerging Roles for Regulator of G Protein Signaling 2 in (Patho)physiology. Mol Pharmacol 2020; 98:751-760. [PMID: 32973086 DOI: 10.1124/molpharm.120.000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Since their discovery in the mid-1990s, regulator of G protein signaling (RGS) proteins have emerged as key regulators of signaling through G protein-coupled receptors. Among the over 20 known RGS proteins, RGS2 has received increasing interest as a potential therapeutic drug target with broad clinical implications. RGS2 is a member of the R4 subfamily of RGS proteins and is unique in that it is selective for Gα q Despite only having an RGS domain, responsible for the canonical GTPase activating protein activity, RGS2 can regulate additional processes, such as protein synthesis and adenylate cyclase activity, through protein-protein interactions. Here we provide an update of the current knowledge of RGS2 function as it relates to molecular mechanisms of regulation as well as its potential role in regulating a number of physiologic systems and pathologies, including cardiovascular disease and central nervous system disorders, as well as various forms of cancer. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins represent an exciting class of novel drug targets. RGS2, in particular, could have broad clinical importance. As more details are emerging on the regulation of RGS2 in various physiological systems, the potential utility of this small protein in therapeutic development is increasing.
Collapse
Affiliation(s)
- Harrison J McNabb
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
12
|
Yun W, Qian L, Cheng Y, Tao W, Yuan R, Xu H. Periplocymarin Plays an Efficacious Cardiotonic Role via Promoting Calcium Influx. Front Pharmacol 2020; 11:1292. [PMID: 32973521 PMCID: PMC7466735 DOI: 10.3389/fphar.2020.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Periplocymarin, which belongs to cardiac glycosides, is an effective component extracted from Periplocae Cortex. However, its cardiovascular effects remain unidentified. In the present study, injection of periplocymarin (5 mg/kg) through external jugular vein immediately increased the mean arterial pressure (MAP) in anesthetized C57BL/6 mice. Ex vivo experiments using mouse mesenteric artery rings were conducted to validate the role of periplocymarin on blood vessels. However, periplocymarin failed to induce vasoconstriction directly, and had no effects on vasoconstriction induced by phenylephrine (Phe) and angiotensin II (Ang II). In addition, vasodilatation induced by acetylcholine (Ach) was insusceptible to periplocymarin. Echocardiography was used to evaluate the effects of periplocymarin on cardiac function. The results showed that the injection of periplocymarin significantly increase the ejection fraction (EF) in mice without changing the heart rate. In vitro studies using isolated neonatal rat ventricular myocytes (NRVMs) revealed that periplocymarin transiently increased the intracellular Ca2+ concentration observed by confocal microscope. But in Ca2+-free buffer, this phenomenon vanished. Besides, inhibition of sodium potassium-activated adenosine triphosphatase (Na+-K+-ATPase) by digoxin significantly suppressed the increase of MAP and EF in mice, and the influx of Ca2+ in cardiomyocytes, mediated by periplocymarin. Collectively, these findings demonstrated that periplocymarin increased the contractility of myocardium by promoting the Ca2+ influx of cardiomyocytes via targeting on Na+-K+-ATPase, which indirectly led to the instantaneous rise of blood pressure.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Weiwei Tao
- College of Nursing, Dalian Medical University, Dalian, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Li Y, Lin M, Wang K, Zhan Y, Gu W, Gao G, Huang Y, Chen Y, Huang T, Wang J. A module of multifactor-mediated dysfunction guides the molecular typing of coronary heart disease. Mol Genet Genomic Med 2020; 8:e1415. [PMID: 32743916 PMCID: PMC7549572 DOI: 10.1002/mgg3.1415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Coronary atherosclerotic heart disease (CHD) is the most common cardiovascular disease and has become a leading cause of death globally. Various molecular typing methods are available for the diagnosis and treatment of tumors. However, molecular typing results are not routinely used for CHD. Methods and Results Aiming to uncover the underlying molecular features of different types of CHD, we screened the differentially expressed genes (DEGs) associated with CHD based on the Gene Expression Omnibus (GEO) data and expanded those with the NCBI‐gene and OMIM databases to finally obtain 2021 DEGs. The weighted gene co‐expression analysis (WGCNA) was performed on the candidate genes, and six distinctive WGCNA modules were identified, two of which were associated with CHD. Moreover, DEGs were mined as key genes for co‐expression based on the module network relationship. Furthermore, the differentially expressed miRNAs in CHD and interactions in the database were mined in the GEO data set to build a multifactor regulatory network of key genes for co‐expression. Based on the network, the CHD samples were further classified into five clusters and we defined FTH1, HCAR3, RGS2, S100A9, and TYROBP as the top genes of the five subgroups. Finally, the mRNA levels of FTH1, S100A9, and TYROBP were found to be significantly increased, while the expression of HCAR3 was decreased in the blood of CHD patients. We did not detect measurable levels of RGS2. Conclusion The screened core clusters of genes may be a target for the diagnosis and treatment of CHD as a molecular typing module.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Maohuan Lin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - YaQing Zhan
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Guanghao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yuna Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Tucheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| |
Collapse
|
14
|
Liu S, Jiang X, Lu H, Xing M, Qiao Y, Zhang C, Zhang W. HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure. Arterioscler Thromb Vasc Biol 2020; 40:943-957. [PMID: 32075416 DOI: 10.1161/atvbaha.119.313897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HuR (human antigen R)-an RNA-binding protein-is involved in regulating mRNA stability by binding adenylate-uridylate-rich elements. This study explores the role of HuR in the regulation of smooth muscle contraction and blood pressure. Approach and Results: Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. CONCLUSIONS Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.
Collapse
Affiliation(s)
- Shanshan Liu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery (X.J.), Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Mengdan Xing
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Yanning Qiao
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Cheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 PMCID: PMC6901330 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
16
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
18
|
Kanai SM, Edwards AJ, Rurik JG, Osei-Owusu P, Blumer KJ. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of G q/11 signaling and vascular contraction. J Biol Chem 2017; 292:19266-19278. [PMID: 28974581 DOI: 10.1074/jbc.m117.797134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the Gq/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of Gq/11-evoked Ca2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of Gq/11-coupled receptor signaling in the cardiovascular, immune, and nervous systems.
Collapse
Affiliation(s)
- Stanley M Kanai
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Alethia J Edwards
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Joel G Rurik
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Kendall J Blumer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
19
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Liu L, Wu J, Kennedy DJ. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms. Front Physiol 2016; 7:382. [PMID: 27667975 PMCID: PMC5016610 DOI: 10.3389/fphys.2016.00382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| | - Jian Wu
- Center for Craniofacial Molecular Biology, University of Southern California Los Angeles, CA, USA
| | - David J Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|