1
|
Slivicki RA, Earnest T, Chang YH, Pareta R, Casey E, Li JN, Tooley J, Abiraman K, Vachez YM, Wolf DK, Sackey JT, Pitchai DK, Moore T, Gereau RW, Copits BA, Kravitz AV, Creed MC. Oral oxycodone self-administration leads to features of opioid misuse in male and female mice. Addict Biol 2023; 28:e13253. [PMID: 36577735 PMCID: PMC11824864 DOI: 10.1111/adb.13253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Tom Earnest
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yu-Hsuan Chang
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Rajesh Pareta
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Eric Casey
- Department of Psychiatry, Washington University in St. Louis
| | - Jun-Nan Li
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jessica Tooley
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Kavitha Abiraman
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yvan M. Vachez
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Drew K. Wolf
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jason T. Sackey
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | | | | | - Robert W. Gereau
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Bryan A. Copits
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
| | - Alexxai V. Kravitz
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Meaghan C. Creed
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| |
Collapse
|
2
|
Santos EJ, Banks ML, Negus SS. Role of Efficacy as a Determinant of Locomotor Activation by Mu Opioid Receptor Ligands in Female and Male Mice. J Pharmacol Exp Ther 2022; 382:44-53. [PMID: 35489781 PMCID: PMC9341253 DOI: 10.1124/jpet.121.001045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mu opioid receptor (MOR) agonists produce locomotor hyperactivity in mice as one sign of opioid-induced motor disruption. The goal of this study was to evaluate the degree of MOR efficacy required to produce this hyperactivity. Full dose-effect curves were determined for locomotor activation produced in male and female Institute of Cancer Research (ICR) mice by (1) eight different single-molecule opioids with high to low MOR efficacy and (2) a series of fixed-proportion fentanyl/naltrexone mixtures with high to low fentanyl proportions. Data from the mixtures were used to quantify the efficacy requirement for MOR agonist-induced hyperactivity relative to efficacy requirements determined previously for other MOR agonist effects. Specifically, efficacy requirement was quantified as the EP50 value, which is the "Effective Proportion" of fentanyl in a fentanyl/naltrexone mixture that produces a maximal effect equal to 50% of the maximal effect of fentanyl alone. Maximal hyperactivity produced by each drug and mixture in the present study correlated with previously published data for maximal stimulation of GTPɣS binding in MOR-expressing Chinese hamster ovary cells as an in vitro measure of relative efficacy. Additionally, the EP50 value for hyperactivity induced by fentanyl/naltrexone mixtures indicated that opioid-induced hyperactivity in mice has a relatively high efficacy requirement in comparison with some other MOR agonist effects, and in particular is higher than the efficacy requirement for thermal antinociception in mice or fentanyl discrimination in rats. Taken together, these data show that MOR agonist-induced hyperactivity in mice is efficacy dependent and requires relatively high levels of MOR agonist efficacy for its full expression. SIGNIFICANCE STATEMENT: Mu opioid receptor (MOR) agonist-induced hyperlocomotion in mice is dependent on the MOR efficacy of the agonist and requires a relatively high degree of efficacy for its full expression.
Collapse
Affiliation(s)
- Edna J Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Hill R, Conibear A, Dewey W, Kelly E, Henderson G. Role of Acetaldehyde in Ethanol Reversal of Tolerance to Morphine-Induced Respiratory Depression in Mice. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 1. [PMID: 35909497 PMCID: PMC7613180 DOI: 10.3389/adar.2021.10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Opioid users regularly consume other drugs such as alcohol (ethanol). Acute administration of ethanol rapidly reverses tolerance to morphine-induced respiratory depression. However, recent research has suggested that the primary metabolite of ethanol, acetaldehyde, may play a key role in mediating the CNS effects seen after ethanol consumption. This research investigated the role of acetaldehyde in ethanol reversal of tolerance to morphine-induced respiratory depression.Methods: Tolerance was induced in mice by 6-days implantation of a 75 mg morphine pellet with control mice implanted with a placebo pellet. Tolerance was assessed by acute morphine administration on day 6 and respiration measured by plethysmography. Levels of acetaldehyde were inhibited or enhanced by pre-treatments with the acetaldehyde chelator D-penicillamine and the inhibitor of acetaldehyde dehydrogenase disulfiram respectively.Results: Morphine pellet implanted mice displayed tolerance to an acute dose of morphine compared to placebo pellet implanted controls. Acute acetaldehyde administration dose-dependently reversed tolerance to morphine respiratory depression. As previously demonstrated, ethanol reversed morphine tolerance, and this was inhibited by D-penicillamine pre-treatment. An acute, low dose of ethanol that did not significantly reverse morphine tolerance was able to do so following disulfiram pre-treatment.Conclusion: These data suggest that acetaldehyde, the primary metabolite of ethanol, is responsible for the reversal of morphine tolerance observed following ethanol administration.
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Correspondence: Rob Hill,
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - William Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Steel TL, Afshar M, Edwards S, Jolley SE, Timko C, Clark BJ, Douglas IS, Dzierba AL, Gershengorn HB, Gilpin NW, Godwin DW, Hough CL, Maldonado JR, Mehta AB, Nelson LS, Patel MB, Rastegar DA, Stollings JL, Tabakoff B, Tate JA, Wong A, Burnham EL. Research Needs for Inpatient Management of Severe Alcohol Withdrawal Syndrome: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204:e61-e87. [PMID: 34609257 PMCID: PMC8528516 DOI: 10.1164/rccm.202108-1845st] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Severe alcohol withdrawal syndrome (SAWS) is highly morbid, costly, and common among hospitalized patients, yet minimal evidence exists to guide inpatient management. Research needs in this field are broad, spanning the translational science spectrum. Goals: This research statement aims to describe what is known about SAWS, identify knowledge gaps, and offer recommendations for research in each domain of the Institute of Medicine T0-T4 continuum to advance the care of hospitalized patients who experience SAWS. Methods: Clinicians and researchers with unique and complementary expertise in basic, clinical, and implementation research related to unhealthy alcohol consumption and alcohol withdrawal were invited to participate in a workshop at the American Thoracic Society 2019 International Conference. The committee was subdivided into four groups on the basis of interest and expertise: T0-T1 (basic science research with translation to humans), T2 (research translating to patients), T3 (research translating to clinical practice), and T4 (research translating to communities). A medical librarian conducted a pragmatic literature search to facilitate this work, and committee members reviewed and supplemented the resulting evidence, identifying key knowledge gaps. Results: The committee identified several investigative opportunities to advance the care of patients with SAWS in each domain of the translational science spectrum. Major themes included 1) the need to investigate non-γ-aminobutyric acid pathways for alcohol withdrawal syndrome treatment; 2) harnessing retrospective and electronic health record data to identify risk factors and create objective severity scoring systems, particularly for acutely ill patients with SAWS; 3) the need for more robust comparative-effectiveness data to identify optimal SAWS treatment strategies; and 4) recommendations to accelerate implementation of effective treatments into practice. Conclusions: The dearth of evidence supporting management decisions for hospitalized patients with SAWS, many of whom require critical care, represents both a call to action and an opportunity for the American Thoracic Society and larger scientific communities to improve care for a vulnerable patient population. This report highlights basic, clinical, and implementation research that diverse experts agree will have the greatest impact on improving care for hospitalized patients with SAWS.
Collapse
|
5
|
Maternal Opioid Exposure Culminates in Perturbed Murine Neurodevelopment and Hyperactive Phenotype in Adolescence. Neuroscience 2021; 463:272-287. [PMID: 33811940 DOI: 10.1016/j.neuroscience.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Opioid use by women during pregnancy has risen dramatically since 2004, accompanied by a striking increase in the prevalence of neonatal opioid withdrawal syndrome (NOWS) and other long-term neurological deficits. However, the mechanisms underlying the impact of prenatal opioid exposure on fetal neurodevelopment are largely unknown. To translate from the clinical presentation, we developed a novel mouse model to study the neurodevelopmental consequences of maternal opioid use and management. Female mice were treated with oxycodone (OXY) before mating to mimic opioid use disorder (OUD) in humans. Following pregnancy confirmation, dams were switched to buprenorphine (BUP) via oral administration, simulating medication management of OUD (MOUD) in pregnant women. Here, we document critical changes in fetal brain development including reduced cortical thickness, altered corticogenesis, and ventriculomegaly in embryos from dams that were treated with opioids before and throughout pregnancy. Maternal care giving behavior was slightly altered without affecting gross growth of offspring. However, adolescent offspring exposed to maternal opioid use during pregnancy exhibited hyperactivity in late adolescence. Remarkably, we also show increased generation of dopaminergic neurons within the ventral tegmental area (VTA) of mice exposed to prenatal opioids. These data provide critical evidence of teratogenic effects of opioid use during pregnancy and suggest a causal relationship between maternal opioid use and neurodevelopmental/behavioral anomalies in adolescence.
Collapse
|
6
|
Phillips AG, McGovern DJ, Lee S, Ro K, Huynh DT, Elvig SK, Fegan KN, Root DH. Oral prescription opioid-seeking behavior in male and female mice. Addict Biol 2020; 25:e12828. [PMID: 31489746 DOI: 10.1111/adb.12828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023]
Abstract
A significant portion of prescription opioid users self-administer orally rather than intravenously. Animal models of opioid addiction have demonstrated that intravenous cues are sufficient to cause drug seeking. However, intravenous models may not characterize oral users, and the preference to self-administer orally appears to be partially influenced by the user's sex. Our objectives were to determine whether oral opioid-associated cues are sufficient for relapse and whether sex differences exist in relapse susceptibility. Mice orally self-administered escalating doses of oxycodone under postprandial (prefed) or non-postprandial (no prefeeding) conditions. Both sexes demonstrated cue-induced reinstatement following abstinence. In separate mice, we found that oral oxycodone cues were sufficient to reinstate extinguished oral oxycodone-seeking behavior following abstinence without prior postprandial or water self-administration training. During self-administration, we incidentally found that female mice earned significantly more mg/kg oxycodone than male mice. Follow-up studies indicated sex differences in psychomotor stimulation and plasma oxycodone/oxymorphone following oral oxycodone administration. In addition, gonadal studies were performed in which we found divergent responses where ovariectomy-enhanced and orchiectomy-suppressed oral self-administration. While the suppressive effects of orchiectomy were identified across doses and postprandial conditions, the enhancing effects of ovariectomy were selective to non-postprandial conditions. These studies establish that (a) oral drug cues are sufficient to cause reinstatement that is independent of prandial conditions and water-seeking behavior, (b) earned oral oxycodone is larger in female mice compared with male mice potentially through differences in psychomotor stimulation and drug metabolism, and (c) gonadectomy produces divergent effects on oral oxycodone self-administration between sexes.
Collapse
Affiliation(s)
- Alysabeth G. Phillips
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - Soo Lee
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - Kyu Ro
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - David T. Huynh
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - Sophie K. Elvig
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - Katelynn N. Fegan
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| | - David H. Root
- Department of Psychology and Neuroscience University of Colorado Boulder Colorado USA
| |
Collapse
|
7
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Prolonged ethanol administration prevents the development of tolerance to morphine-induced respiratory depression. Drug Alcohol Depend 2019; 205:107674. [PMID: 31715438 DOI: 10.1016/j.drugalcdep.2019.107674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Opioid users regularly consume other drugs such as alcohol (ethanol). Acute administration of ethanol can rapidly reverse tolerance to morphine-induced respiratory depression. However, alcohol consumption by opioid users is likely to occur over prolonged time periods. We have therefore sought to determine the effect of prolonged alcohol consumption on the development of tolerance to opioid respiratory depression. METHODS Mice were fed control or ethanol (5%) liquid diet for 16 days. On days 9-16 morphine tolerance was induced by administration of 3 priming injections of morphine followed by subcutaneous implantation of a morphine-filled osmotic mini-pump. Control mice received saline. Respiration was measured by plethysmography and the effect of an acute morphine challenge dose was measured on day 16 to assess the development of morphine tolerance. RESULTS Prolonged ethanol consumption for 14 days did not alter the respiratory depressant effect of an acute dose of morphine. Control mice treated with prolonged morphine developed tolerance to acute morphine respiratory depression whereas ethanol diet fed mice treated with prolonged morphine showed significant respiratory depression during morphine-pump treatment and remained sensitive to the respiratory depressant effect of the acute challenge dose of morphine. The ethanol consumption did not alter blood or brain levels of morphine, whilst conversely prolonged morphine treatment did not alter blood levels of ethanol. CONCLUSIONS Prolonged ethanol consumption prevents the development and maintenance of tolerance to the respiratory depressant effect of morphine. These data suggest that ethanol inhibition of tolerance will greatly increase the risk of fatal heroin overdose in humans.
Collapse
|
9
|
|
10
|
Walentiny DM, Wiebelhaus JM, Beardsley PM. Nociceptin/orphanin FQ receptors modulate the discriminative stimulus effects of oxycodone in C57BL/6 mice. Drug Alcohol Depend 2018; 187:335-342. [PMID: 29705547 DOI: 10.1016/j.drugalcdep.2018.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Nociceptin/orphanin FQ (NOP) receptor ligands have shown efficacy as putative analgesics and can modulate the abuse-related effects of opioids, suggesting therapeutic applications. The discriminative stimulus effects of a drug are related to their subjective effects, a predictor of abuse potential. To determine whether activation of NOP receptors could alter the subjective effects of an abused opioid analgesic, a novel oxycodone discrimination was established in mice, characterized with positive and negative controls, and its expression evaluated with a NOP receptor agonist. METHODS Adult male C57BL/6 mice were trained to discriminate 1.3 mg/kg oxycodone from vehicle in a two-lever operant procedure. The discrimination was characterized with naloxone challenge, and generalization tests with the μ-opioid receptor agonists, heroin and morphine, and the κ-opioid receptor selective agonist, U50488. Subsequently, effects of the NOP agonist Ro64-6198 were evaluated with and without oxycodone. RESULTS Oxycodone generalization occurred in a dose-dependent manner and was reversed by naloxone pretreatment. Heroin and morphine, but not U50488, substituted for oxycodone. Co-treatment of 1 mg/kg Ro64-6198 with the oxycodone training dose reduced % oxycodone lever responding (%OLR) and restored response rates to vehicle control levels. J-113397, a NOP antagonist, reversed these effects. Co-administration of 1 mg/kg Ro64-6198 with a range of oxycodone doses resulted in rightward dose-effect curve shifts in %OLR and response rates compared to oxycodone alone. CONCLUSIONS These results provide additional evidence that NOP receptor activation can modulate the subjective effects of opioid analgesics and represent the first characterization of oxycodone's discriminative stimulus effects in mice.
Collapse
Affiliation(s)
- D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States.
| | - Jason M Wiebelhaus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States; Institute for Drug and Alcohol Studies and Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980613, Richmond, VA, 23298-0613, United States
| |
Collapse
|
11
|
Hill R, Dewey WL, Kelly E, Henderson G. Oxycodone-induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. Br J Pharmacol 2018; 175:2492-2503. [PMID: 29574756 PMCID: PMC5980627 DOI: 10.1111/bph.14219] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxycodone, a prescription opioid, is a major drug of abuse, especially in the USA, and contributes significantly to opioid overdose deaths each year. Overdose deaths result primarily from respiratory depression. We have studied respiratory depression by oxycodone and have characterized how tolerance develops on prolonged exposure to the drug. We have investigated the role of PKC in maintaining tolerance and have examined whether ethanol or pregabalin reverses oxycodone-induced tolerance. EXPERIMENTAL APPROACH Respiration was measured in male CD-1 mice by whole-body plethysmography. Mice were preinjected with oxycodone then implanted with mini-pumps (s.c.) delivering 20, 45 or 120 mg·kg-1 ·day-1 oxycodone for 6 days and subsequently challenged with oxycodone (3 mg·kg-1 , i.p.) or morphine (10 mg·kg-1 , i.p.) to assess the level of tolerance. KEY RESULTS Oxycodone-treated mice developed tolerance to oxycodone and cross tolerance to morphine-induced respiratory depression. Tolerance was less with 20 mg·kg-1 ·day-1 than with 45 or 120 mg·kg-1 ·day-1 oxycodone treatment. At doses that do not depress respiration, ethanol (0.3 g·kg-1 ), pregabalin (20 mg·kg-1 ) and calphostin C (45 μg·kg-1 ) all reversed oxycodone-induced tolerance resulting in significant respiratory depression. Reversal of tolerance was less in mice treated with oxycodone (120 mg·kg-1 ·day-1 ). In mice receiving ethanol and calphostin C or ethanol and pregabalin, there was no greater reversal of tolerance than seen with either drug alone. CONCLUSION AND IMPLICATIONS These data suggest that oxycodone-induced tolerance is mediated by PKC and that reversal of tolerance by ethanol or pregabalin may be a contributory factor in oxycodone overdose deaths.
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - William L Dewey
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVA23298‐0613USA
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
12
|
Jacob JC, Sakakibara K, Mischel RA, Henderson G, Dewey WL, Akbarali HI. Ethanol Reversal of Oxycodone Tolerance in Dorsal Root Ganglia Neurons. Mol Pharmacol 2018; 93:417-426. [PMID: 29467238 PMCID: PMC5878666 DOI: 10.1124/mol.117.110775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/08/2018] [Indexed: 01/23/2023] Open
Abstract
Oxycodone is a semisynthetic opioid compound that is widely prescribed, used, and abused today, and has a well-established role in shaping the current opioid epidemic. Previously, we have shown that tolerance develops to the antinociceptive and respiratory depressive effects of oxycodone in mice, and that a moderate dose of acute ethanol or a protein kinase C (PKC) inhibitor reversed that tolerance. To investigate further if tolerance was occurring through neuronal mechanisms, our aims for this study were to assess the effects of acute and prolonged oxycodone in isolated dorsal root ganglia (DRG) neurons and to determine if this tolerance was reversed by either ethanol or a PKC inhibitor. We found that an acute exposure to 3 μM oxycodone reduced neuronal excitability, as measured by increased threshold potentials and reduced action potential amplitude, without eliciting measurable changes in resting membrane potential. Exposure to 10 μM oxycodone for 18-24 hours prevented oxycodone's effect on neuronal excitability, indicative of tolerance development. The development of opioid tolerance was mitigated in DRG neurons from β-arrestin 2 knockout mice. Oxycodone tolerance was reversed in isolated DRG neurons by the acute application of either ethanol (20 mM) or the PKC inhibitor, bisindolylmaleimide XI hydrochloride (Bis XI), when a challenge of 3 µM oxycodone significantly reduced neuronal excitability following prolonged exposure. Through these studies, we concluded that oxycodone acutely reduced neuronal excitability, tolerance developed to this effect, and reversal of that tolerance occurred at the level of a single neuron, suggesting that reversal of oxycodone tolerance by either ethanol or Bis XI involves cellular mechanisms.
Collapse
Affiliation(s)
- Joanna C Jacob
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Kensuke Sakakibara
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Ryan A Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Graeme Henderson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| |
Collapse
|
13
|
Withey SL, Paronis CA, Bergman J. Concurrent Assessment of the Antinociceptive and Behaviorally Disruptive Effects of Opioids in Squirrel Monkeys. THE JOURNAL OF PAIN 2018; 19:728-740. [PMID: 29477761 DOI: 10.1016/j.jpain.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/10/2018] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
Abstract
Although the clinical application of opioids for pain management is often hindered by undesired behavioral impairment, preclinical assays of antinociception typically do not provide information regarding the behaviorally disruptive effects of opioids that may accompany their antinociceptive effects. To address this, we modified a warm water tail withdrawal procedure to determine concurrently the effects of opioids on tail withdrawal latency (antinociception) and indices of food-maintained operant behavior (rates of responding and reinforcement density) in squirrel monkeys. Six opioid agonists were tested, and all produced dose-dependent antinociception and impairment of operant behavior. The ratio of median effective dose (ED50) values for both measures (behavioral impairment:antinociception) was used as a quantitative measure of therapeutic index. Nalbuphine had the highest ED50 ratio (4.88), reflecting antinociception with minimal behavioral disruption. Oxycodone, heroin, buprenorphine, and methadone all produced similar ED50 ratios (.82-1.14), whereas butorphanol yielded a significantly lower ED50 ratio (.17) reflecting behavioral disruption at doses producing only minimal antinociception. The antinociceptive and behaviorally disruptive effects of oxycodone and buprenorphine were further characterized using Schild analysis to calculate apparent pA2 values for antagonism of the 2 drugs by naltrexone. These analyses suggest that µ-receptor mechanisms likely mediate the antinociceptive as well as behaviorally disruptive effects of oxycodone (pA2 values: 8.13 and 8.57) and buprenorphine (pA2 values: 8.6 and 7.9). PERSPECTIVE This article presents an assay that allows for the concurrent assessment of the antinociceptive and behaviorally disruptive effects of opioids. Our results show that the tail withdrawal assay in squirrel monkeys can provide a useful index of the behavioral selectivity with which opioids produce antinociception.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts.
| | - Carol A Paronis
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|