1
|
Canfora I, Altamura C, Desaphy JF, Boccanegra B, Vailati S, Caccia C, Melloni E, Padoani G, De Luca A, Pierno S. Preclinical study of the antimyotonic efficacy of safinamide in the myotonic mouse model. Neurotherapeutics 2024; 21:e00455. [PMID: 39322473 PMCID: PMC11586006 DOI: 10.1016/j.neurot.2024.e00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.
Collapse
Affiliation(s)
- Ileana Canfora
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Silvia Vailati
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Carla Caccia
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Elsa Melloni
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Gloria Padoani
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Annamaria De Luca
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
2
|
Gökten M, Zırh S, Sezer C, Zırh EB, Gökten DB. Beyond expectations: safinamide's unprecedented neuroprotective impact on acute spinal cord injury. Eur J Trauma Emerg Surg 2024; 50:2569-2577. [PMID: 38602541 DOI: 10.1007/s00068-024-02513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is the most common preventable cause of morbidity. Despite rapid advances in medicine, effective pharmacological treatment against SCI has not yet been confirmed. This study aimed to investigate the possible anti-inflammatory, antiapoptotic, and neuroprotective effects of safinamide after SCI in a rat model. METHODS A total of 40 male Wistar albino rats were randomly divided into four groups. Group 1 underwent only laminectomy. Group 2 underwent SCI after laminectomy. In group 3, SCI was performed after laminectomy, and immediately afterward, intraperitoneal physiological saline solution was administered. In group 4, SCI was performed after laminectomy, and 90 mg/kg of safinamide was given intraperitoneally immediately afterward. Moderate spinal cord damage was induced at the level of thoracic vertebra nine (T9). Neuromotor function tests were performed and levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured. In both serum and spinal cord tissue, immunohistochemistry and histopathology studies were also conducted. RESULTS TNF-α, IL-1β, and IL-6 levels were found to be significantly increased in group 2 and group 3. In group 4, these levels were statistically significantly decreased. Group 4 also exhibited significant improvement in neuromotor function tests compared to the other groups. Histopathologically, it was found that group 4 showed significantly reduced inflammation and apoptosis compared to the other groups. CONCLUSION This study revealed that safinamide has neuroprotective effects against SCI due to its anti-inflammatory, antiapoptotic, and antioxidant activities.
Collapse
Affiliation(s)
| | - Selim Zırh
- Department of Histology, Binali Yıldırım University, Erzincan, Turkey
| | - Can Sezer
- Department of Neurosurgery, University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| | - Elham Bahador Zırh
- Department of Histology, TOBB University of Economics and Technology, Ankara, Turkey
| | - Dilara Bulut Gökten
- Department of Internal Medicine-Rheumatology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
3
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Bovenzi R, Liguori C, Canesi M, D'Amelio M, De Pandis MF, Marini C, Monge A, Padovani A, Tessitore A, Stefani A, Zappia M. Real-world use of Safinamide in motor fluctuating Parkinson's disease patients in Italy. Neurol Sci 2024; 45:573-583. [PMID: 37684511 PMCID: PMC10791801 DOI: 10.1007/s10072-023-07001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Safinamide is a recent antiparkinsonian drug that modulates both dopaminergic and glutamatergic systems with positive effects on motor and nonmotor symptoms of Parkinson's disease (PD). Here, we aimed to describe the efficacy and safety of safinamide in the Italian PD patients in real-life conditions. METHODS We performed a sub-analysis of the Italian cohort of the SYNAPSES study, a multi-country, multi-center, retrospective-prospective cohort observational study, designed to investigate the use of safinamide in routine clinical practice. Patients received for the first time a treatment with safinamide and were followed up for 12 months. The analysis was conducted on the overall population and in subgroups of interest: i) patients > 75 years, ii) patients with relevant comorbidities and iii) patients affected by psychiatric symptoms. RESULTS Italy enrolled 616/1610 patients in 52 centers, accounting for 38% of the entire SYNAPSES cohort. Of the patients enrolled, 86.0% were evaluable at 12 months, with 23.3% being > 75 years, 42.4% with psychiatric conditions and 67.7% with relevant comorbidities. Safinamide was effective on motor symptoms and fluctuations as measured through the Unified PD rating scale III and IV scores, and on the total score, without safety issues in none of the subgroups considered. CONCLUSION The SYNAPSES data related to Italian patients confirms the good safety profile of safinamide even in special groups of patients. Motor fluctuations and motor impairment improved at the follow-up suggesting the significant role of safinamide in managing motor symptoms in PD patients.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
- Parkinson's Disease Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
| | - Margherita Canesi
- Parkinson Institute, ASST Gaetano Pini CTO, Milan, Italy
- U.O.C of Neurorehabilitation, Parkinson's Disease and Movement Disorders Center, Moriggia Pelascini Hospital, Gravedona ed Uniti, Como, Italy
| | - Marco D'Amelio
- Dipartimento Di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università Degli Studi di Palermo, Palermo, Italy
| | - Maria Francesca De Pandis
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele University, Rome, Italy
- San Raffaele Cassino, Cassino, Italy
| | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgery Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
- Parkinson's Disease Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Mario Zappia
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Alborghetti M, Bianchini E, De Carolis L, Galli S, Pontieri FE, Rinaldi D. Type-B monoamine oxidase inhibitors in neurological diseases: clinical applications based on preclinical findings. Neural Regen Res 2024; 19:16-21. [PMID: 37488838 PMCID: PMC10479837 DOI: 10.4103/1673-5374.375299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Type-B monoamine oxidase inhibitors, encompassing selegiline, rasagiline, and safinamide, are available to treat Parkinson's disease. These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease. There is also evidence supporting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease, such as mood deflection, cognitive impairment, sleep disturbances, and fatigue. Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors, particularly glial cell line-derived neurotrophic factor, which support dopaminergic neurons. Besides, safinamide may interfere with neurodegenerative mechanisms, counteracting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity. Due to the dual mechanism of action, the new generation of type-B monoamine oxidase inhibitors, including safinamide, is gaining interest in other neurological pathologies, and many supporting preclinical studies are now available. The potential fields of application concern epilepsy, Duchenne muscular dystrophy, multiple sclerosis, and above all, ischemic brain injury. The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline, rasagiline, and safinamide in Parkinson's disease and beyond, focusing on possible future therapeutic applications.
Collapse
Affiliation(s)
- Marika Alborghetti
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Lanfranco De Carolis
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Silvia Galli
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Francesco E. Pontieri
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Domiziana Rinaldi
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Kogo Y, Koebis M, Kobayashi Y, Ishida T, Maeda T. Analgesic effect of safinamide mesylate in a rat model of neuropathic pain. Behav Brain Res 2023; 452:114555. [PMID: 37355233 DOI: 10.1016/j.bbr.2023.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Pain is one of the most frequent non-motor symptoms of Parkinson's disease (PD). Neuropathic pain is highly prevalent in PD and negatively affects the quality of life of patients with PD. However, there is currently no evidence-based treatment for its control. Safinamide, a monoamine oxidase (MAO)-B inhibitor with a sodium channel inhibitory effect, showed improvement in PD-related pain in several clinical trials. However, it is unclear for which of the various types of pain in PD safinamide is effective. The aim of the present study was to examine the effect of safinamide on neuropathic pain in a rat model of chronic constriction injury (CCI). Pain was evaluated on postoperative days 14 and 21 using von Frey or weight-bearing tests. Male CCI model rats showed a decreased paw withdrawal threshold and a weight-bearing deficit on postoperative days 14 and 21. Single oral administration of safinamide (15, 30, 45 or 70 mg/kg) dose-dependently improved neuropathic pain in both pain assessments on day 14. Subsequently, the 15 and 45 mg/kg dose groups were administered safinamide orally once daily until day 21. With repeated administration, the effect of safinamide on pain was enhanced. The present findings show that safinamide improves neuropathic pain in male CCI model rats. Further animal model research and pathological and molecular pharmacological investigations are warranted.
Collapse
Affiliation(s)
- Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Michinori Koebis
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Yoshihisa Kobayashi
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-Cho, Shiwa-Gun, Iwate 028-3694, Japan.
| |
Collapse
|
7
|
Regensburger M, Ip CW, Kohl Z, Schrader C, Urban PP, Kassubek J, Jost WH. Clinical benefit of MAO-B and COMT inhibition in Parkinson's disease: practical considerations. J Neural Transm (Vienna) 2023; 130:847-861. [PMID: 36964457 PMCID: PMC10199833 DOI: 10.1007/s00702-023-02623-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Inhibitors of monoamine oxidase B (MAO-B) and catechol-O-methyltransferase (COMT) are major strategies to reduce levodopa degradation and thus to increase and prolong its effect in striatal dopaminergic neurotransmission in Parkinson's disease patients. While selegiline/rasagiline and tolcapone/entacapone have been available on the market for more than one decade, safinamide and opicapone have been approved in 2015 and 2016, respectively. Meanwhile, comprehensive data from several post-authorization studies have described the use and specific characteristics of the individual substances in clinical practice under real-life conditions. Here, we summarize current knowledge on both medication classes, with a focus on the added clinical value in Parkinson's disease. Furthermore, we outline practical considerations in the treatment of motor fluctuations and provide an outlook on ongoing studies with MAO-B and COMT inhibitors.
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Zacharias Kohl
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | - Peter P Urban
- Abt. für Neurologie, Asklepios Klinik Barmbek, Hamburg, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
8
|
Bhidayasiri R, Koebis M, Kamei T, Ishida T, Suzuki I, Cho JW, Wu SL. Sustained response in early responders to safinamide in patients with Parkinson's disease and motor fluctuations: A post hoc analysis of the SETTLE study. Front Neurol 2023; 14:1147008. [PMID: 37051060 PMCID: PMC10083404 DOI: 10.3389/fneur.2023.1147008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Safinamide is a selective, reversible, monoamine oxidase B inhibitor for the treatment of patients with Parkinson's disease (PD) and motor fluctuations. This was a post hoc analysis of the SETTLE study, in which patients with PD and motor fluctuations were randomly assigned to 24-week treatment with safinamide (50 mg/day for 2 weeks, increased to 100 mg/day if tolerated) or placebo. In the present analysis, responders were defined according to their treatment responses at Week 2 and Week 24 based on changes in ON-time without troublesome dyskinesia from baseline with cutoffs of 1 hour. It was found that 81% (103/127) of the responders at Week 2 maintained the response through Week 24 in the safinamide group. Other outcomes did not necessarily coincide with the ON-time response; however, “Early” responders who showed a treatment response at both Week 2 and Week 24 had substantial improvements from baseline in OFF-time, UPDRS Part II and III scores, and PDQ-39 summary index scores through Week 24. The safinamide group had a higher proportion of early responders than the placebo group (39% vs 20%, p < 0.0001). At baseline, early responders in the safinamide group had significantly higher UPDRS Part II and III scores, shorter ON-time, and longer OFF-time than the other responder populations. In conclusion, the results of the present post hoc analysis suggest that patients with a short ON-time, severe motor symptoms, and highly compromised activities of daily living can benefit from safinamide early in treatment and over the long term.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- *Correspondence: Roongroj Bhidayasiri
| | | | | | | | - Ippei Suzuki
- Clinical Evidence Generation Fulfillment, Deep Human Biology Learning, Eisai Co., Ltd., Tokyo, Japan
| | - Jin Whan Cho
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
9
|
Rinaldi D, Alborghetti M, Bianchini E, Sforza M, Galli S, Pontieri FE. Monoamine-oxidase Type B Inhibitors and Cognitive Functions in Parkinson's Disease: Beyond the Primary Mechanism of Action. Curr Neuropharmacol 2023; 21:1214-1223. [PMID: 36065929 PMCID: PMC10286595 DOI: 10.2174/1570159x20666220905102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Symptoms of cognitive impairment are rather common since the early stage of Parkinson's disease (PD); they aggravate with disease progression and may lead to dementia in a significant proportion of cases. Worsening of cognitive symptoms in PD patients depends on the progression of subcortical dopaminergic damage as well as the involvement of other brain neurotransmitter systems in cortical and subcortical regions. Beyond the negative impact on disability and quality of life, the presence and severity of cognitive symptoms may limit adjustments of dopamine replacement therapy along the disease course. This review focuses on the consequences of the administration of monoamine-oxidase type Binhibitors (MAOB-I) on cognition in PD patients. Two drugs (selegiline and rasagiline) are available for the treatment of motor symptoms of PD as monotherapy or in combination with L-DOPA or dopamine agonists in stable and fluctuating patients; a further drug (safinamide) is usable in fluctuating subjects solely. The results of available studies indicate differential effects according to disease stage and drug features. In early, non-fluctuating patients, selegiline and rasagiline ameliorated prefrontal executive functions, similarly to other dopaminergic drugs. Benefit on some executive functions was maintained in more advanced, fluctuating patients, despite the tendency of worsening prefrontal inhibitory control activity. Interestingly, high-dose safinamide improved inhibitory control in fluctuating patients. The benefit of high-dose safinamide on prefrontal inhibitory control mechanisms may stem from its dual mechanism of action, allowing reduction of excessive glutamatergic transmission, in turn secondary to increased cortical dopaminergic input.
Collapse
Affiliation(s)
- Domiziana Rinaldi
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Marika Alborghetti
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Edoardo Bianchini
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
| | - Michela Sforza
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Silvia Galli
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
| | - Francesco E. Pontieri
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, Sapienza Università di Roma, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
10
|
Chavarria D, Benfeito S, Soares P, Lima C, Garrido J, Serrão P, Soares-da-Silva P, Remião F, Oliveira PJ, Borges F. Boosting caffeic acid performance as antioxidant and monoamine oxidase B/catechol-O-methyltransferase inhibitor. Eur J Med Chem 2022; 243:114740. [PMID: 36116233 DOI: 10.1016/j.ejmech.2022.114740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Increased oxidative stress (OS) and depletion of nigrostriatal dopamine (DA) are closely linked to the neurodegeneration observed in Parkinson's Disease (PD). Caffeic acid (CA)-based antioxidants were developed, and their inhibitory activities towards monoamine oxidases (MAOs) and catechol O-methyltransferases (COMT) were screened. The results showed that the incorporation of an extra double bond maintained or even boosted the antioxidant properties of CA. α-CN derivatives displayed redox potentials (Ep) similar to CA (1) and inhibited hMAO-B with low μM IC50 values. Moreover, catechol amides acted as MB-COMT inhibitors, showing IC50 values within the low μM range. In general, CA derivatives presented safe cytotoxicity profiles at concentrations up to 10 μM. The formation of reactive oxygen species (ROS) induced by CA derivatives may be underlying the cytotoxic effects observed at higher concentrations. Catechol amides 3-6, 8-11 at 10 μM protected cells against oxidative damage. Compounds 3 and 8 were predicted to cross the blood-brain barrier (BBB) by passive diffusion. In summary, we report for the first time BBB-permeant CA-based multitarget lead compounds that may restore DAergic neurotransmission (dual hMAO-B/MB-COMT inhibition) and prevent oxidative damage. The data represents a groundbreaking advancement towards the discovery of the next generation of new drugs for PD.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carla Lima
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jorge Garrido
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; Department of Chemical Engineering, School of Engineering (ISEP), Polytechnic of Porto, 4200-072, Porto, Portugal
| | - Paula Serrão
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology. University of Coimbra, UC Biotech Building, Cantanhede, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
De Masi C, Liguori C, Spanetta M, Fernandes M, Cerroni R, Garasto E, Pierantozzi M, Mercuri NB, Stefani A. Non-motor symptoms burden in motor-fluctuating patients with Parkinson's disease may be alleviated by safinamide: the VALE-SAFI study. J Neural Transm (Vienna) 2022; 129:1331-1338. [PMID: 36070008 PMCID: PMC9550691 DOI: 10.1007/s00702-022-02538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Parkinson’s disease (PD) is characterized by motor symptoms often experienced in concomitance with non-motor symptoms (NMS), such as depression, apathy, pain, sleep disorders, and urinary dysfunction. The present study aimed to explore the effect of safinamide treatment on NMS and quality of life in motor-fluctuating PD patients. VALE-SAFI is an observational single-centre study performed in fluctuating PD patients starting safinamide treatment and followed for 6 months. The effects of safinamide on NMS, sleep, fatigue, depression and pain were assessed through validated sales. Changes in the scales from baseline to the 6-month follow-up visit were analysed. 60 PD patients (66.67% males) were enrolled at baseline, and 45 patients completed the 6-month follow-up. PD patients improved motor symptoms at follow-up, with the significant reduction of motor fluctuations. The global score of the NMS Scale significantly decreased between baseline and the follow-up. Regarding pain domains, patients reported a significant improvement in discolouration and oedema/swelling. Further, a significant improvement was observed from baseline to follow-up in sleep quality measured through the Pittsburgh Sleep Quality Index, while no changes were documented in daytime sleepiness. No differences were found in depression and fatigue between baseline and follow-up. Finally, the patient’s perception of the impact of PD on functioning and well-being decreased from baseline to follow-up. The present findings confirmed the beneficial effect of safinamide on both motor and non-motor symptoms, also improving the quality of life of PD patients. Furthermore, these data support the positive effects of safinamide on pain and mood, as well as on sleep quality and continuity.
Collapse
Affiliation(s)
- Claudia De Masi
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy. .,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy. .,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rocco Cerroni
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Elena Garasto
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Stefani
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
12
|
Hattori N, Kamei T, Ishida T, Suzuki I, Nomoto M, Tsuboi Y. Long-term effects of safinamide adjunct therapy on levodopa-induced dyskinesia in Parkinson's disease: post-hoc analysis of a Japanese phase III study. J Neural Transm (Vienna) 2022; 129:1277-1287. [PMID: 36001147 PMCID: PMC9468087 DOI: 10.1007/s00702-022-02532-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
This post-hoc analysis investigated the long-term effects of safinamide on the course of dyskinesia and efficacy outcomes using data from a phase III, open-label 52-week study of safinamide 50 or 100 mg/day in Japanese patients with Parkinson’s disease (PD) with wearing-off. Patients (N = 194) were grouped using the UPDRS Part IV item 32: with and without pre-existing dyskinesia (pre-D subgroup; item 32 > 0 at baseline [n = 81], without pre-D subgroup; item 32 = 0 at baseline [n = 113]). ON-time with troublesome dyskinesia (ON-TD) increased significantly from baseline to Week 4 in the pre-D subgroup (+ 0.25 ± 0.11 h [mean ± SE], p = 0.0355) but gradually decreased up to Week 52 (change from baseline: − 0.08 ± 0.17 h, p = 0.6224); ON-TD did not change significantly in the Without pre-D subgroup. UPDRS Part IV item 32 score increased significantly at Week 52 compared with baseline in the Without pre-D subgroup, but no UPDRS Part IV dyskinesia related-domains changed in the pre-D subgroup. Both subgroups improved in ON-time without TD, UPDRS Part III, and Part II [OFF-phase] scores. The cumulative incidence of new or worsening dyskinesia (adverse drug reaction) at Week 52 was 32.5 and 5.0% in the pre-D and Without pre-D subgroups, respectively. This study suggested that safinamide led to short-term increasing dyskinesia but may be not associated with marked dyskinesia at 1-year follow-up in patients with pre-existing dyskinesia, and that it improved motor symptoms regardless of the presence or absence of dyskinesia at baseline. Further studies are warranted to investigate this association in more details. Trial registration: JapicCTI-153057 (Registered: 2015/11/02).
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Kamei
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Ippei Suzuki
- Medicine Development, Deep Human Biology Learning, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Masahiro Nomoto
- Saiseikai Imabari Center for Health and Welfare, 7-6-1 Kitamura, Imabari, Ehime, 799-1592, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
13
|
Collective Expert Perspectives on the Use of Safinamide as Adjunctive Therapy for Parkinson’s Disease: Online-Based Delphi Survey. PARKINSON'S DISEASE 2022; 2022:3203212. [PMID: 35873701 PMCID: PMC9307399 DOI: 10.1155/2022/3203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Background. Safinamide is a selective, reversible monoamine oxidase-B inhibitor with a sodium channel inhibitory effect. Published clinical evidence supports safinamide as an effective therapy for Parkinson’s disease (PD) with wearing-off. However, to date, no consensus recommendations have been available to guide physicians in Asia on the optimal use of safinamide in clinical practice. To summarize opinions on the optimal patient profile and methods of using safinamide in common clinical scenarios, Japanese movement disorder specialists with expertise in PD investigated the perspectives of neurologists and neurosurgeons. Methods. The Delphi panel approach was used to summarize the opinions of panelists. The panel comprised doctors from Japan with extensive clinical practice experience in the use of safinamide (n = 46 at the final round). The consensus was defined as 80% or more agreement between panelists for each scenario at the final round. Results. There was a high level of agreement that patients with the following symptoms are suitable for safinamide treatment such as bradykinesia (100%), rigidity (95.7%), and/or gait disorder (89.1%) based on motor symptoms and PD-related pain (97.8%) and/or depression or apathy (93.5%) based on non-motor symptoms. Morning-off (95.7%), but not dyskinesia (71.7%), also reached consensus. The use of high-dose safinamide (100 mg/day) was recommended when the improvement in PD symptoms is insufficient and increasing the doses of other anti-PD medications is difficult (97.8%) or when the abovementioned non-motor symptoms adversely affect daily life (93.5%). Conclusions. This report provides expert perspectives on the use of safinamide for a wide range of clinical scenarios in Japan.
Collapse
|
14
|
Tsuboi T, Satake Y, Hiraga K, Yokoi K, Hattori M, Suzuki M, Hara K, Ramirez-Zamora A, Okun MS, Katsuno M. Effects of MAO-B inhibitors on non-motor symptoms and quality of life in Parkinson's disease: A systematic review. NPJ Parkinsons Dis 2022; 8:75. [PMID: 35697709 PMCID: PMC9192747 DOI: 10.1038/s41531-022-00339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Non-motor symptoms (NMS) are common among patients with Parkinson's disease and reduce patients' quality of life (QOL). However, there remain considerable unmet needs for NMS management. Three monoamine oxidase B inhibitors (MAO-BIs), selegiline, rasagiline, and safinamide, have become commercially available in many countries. Although an increasing number of studies have reported potential beneficial effects of MAO-BIs on QOL and NMS, there has been no consensus. Thus, the primary objective of this study was to provide an up-to-date systematic review of the QOL and NMS outcomes from the available clinical studies of MAO-BIs. We conducted a literature search using the PubMed, Scopus, and Cochrane Library databases in November 2021. We identified 60 publications relevant to this topic. Overall, rasagiline and safinamide had more published evidence on QOL and NMS changes compared with selegiline. This was likely impacted by selegiline being introduced many years prior to the field embarking on the study of NMS. The impact of MAO-BIs on QOL was inconsistent across studies, and this was unlikely to be clinically meaningful. MAO-BIs may potentially improve depression, sleep disturbances, and pain. In contrast, cognitive and olfactory dysfunctions are likely unresponsive to MAO-BIs. Given the paucity of evidence and controlled, long-term studies, the effects of MAO-BIs on fatigue, autonomic dysfunctions, apathy, and ICD remain unclear. The effects of MAO-BIs on static and fluctuating NMS have never been investigated systematically. More high-quality studies will be needed and should enable clinicians to provide personalized medicine based on a non-motor symptom profile.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
15
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
16
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
17
|
Hattori N, Kogo Y, Koebis M, Ishida T, Suzuki I, Tsuboi Y, Nomoto M. The Effects of Safinamide Adjunct Therapy on Depression and Apathy in Patients With Parkinson's Disease: Post-hoc Analysis of a Japanese Phase 2/3 Study. Front Neurol 2022; 12:752632. [PMID: 35222225 PMCID: PMC8869178 DOI: 10.3389/fneur.2021.752632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Neuropsychiatric symptoms in Parkinson's disease (PD) have been shown to significantly affect quality of life (QOL). We investigated the impact of safinamide on depression and apathy when administered as an adjunct to levodopa in Japanese patients with PD. Methods This was a post-hoc analysis of data from a phase 2/3 clinical study of safinamide in Japanese patients with PD experiencing wearing-off (JapicCTI-153056; https://www.clinicaltrials.jp/cti-user/trial/ShowDirect.jsp?japicId=JapicCTI-153056). Patients received placebo, safinamide 50 mg, or safinamide 100 mg as an adjunct therapy. The endpoints for this analysis were changes from baseline to Week 24 in the Unified Parkinson's Disease Rating Scale (UPDRS) Part I item 3 (depression) and item 4 (apathy) scores and the Parkinson's Disease Questionnaire (PDQ-39) “emotional well-being” domain score. Subgroup analyses investigated the relationship between neuropsychologic symptoms and improvements in motor fluctuation and assessed which patient populations might be expected to obtain neuropsychologic benefit from safinamide. Results Compared with placebo, safinamide (both doses) significantly improved UPDRS Part I item 3 scores in the overall analysis population, and the 100-mg dose improved UPDRS Part I item 4 scores in the population with apathy at baseline. Changes in the PDQ-39 “emotional well-being” score showed numerical, but not significant, dose-related improvements. Notable reductions in depression were associated with a change in daily ON-time ≥1 h, pain during OFF-time at baseline, and female sex. Conclusions The results from this post-hoc analysis of the Japanese phase 2/3 study suggest that safinamide could bring benefits to patients with PD who have mild depression, pain during the OFF phase. In addition, safinamide might provide particular benefits for patients with PD who have mild apathy and female.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., Tokyo, Japan
| | | | | | - Ippei Suzuki
- Medicine Development Center, Eisai Co., Ltd., Tokyo, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Masahiro Nomoto
- Department of Neurology, Saiseikai Imabari Center for Health and Welfare, Ehime, Japan
| |
Collapse
|
18
|
Grychowska K, Olejarz-Maciej A, Blicharz K, Pietruś W, Karcz T, Kurczab R, Koczurkiewicz P, Doroz-Płonka A, Latacz G, Keeri AR, Piska K, Satała G, Pęgiel J, Trybała W, Jastrzębska-Więsek M, Bojarski AJ, Lamaty F, Partyka A, Walczak M, Krawczyk M, Malikowska-Racia N, Popik P, Zajdel P. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1 H-pyrrolo-[3,2-c]quinolines. Eur J Med Chem 2022; 236:114329. [DOI: 10.1016/j.ejmech.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
19
|
Liu H, Li J, Wang X, Huang J, Wang T, Lin Z, Xiong N. Excessive Daytime Sleepiness in Parkinson's Disease. Nat Sci Sleep 2022; 14:1589-1609. [PMID: 36105924 PMCID: PMC9464627 DOI: 10.2147/nss.s375098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is one of the most common sleep disorders in Parkinson's disease (PD). It has attracted much attention due to high morbidity, poor quality of life, increased risk for accidents, obscure mechanisms, comorbidity with PD and limited therapeutic approaches. In this review, we summarize the current literature on epidemiology of EDS in PD to address the discrepancy between subjective and objective measures and clarify the reason for the inconsistent prevalence in previous studies. Besides, we focus on the effects of commonly used antiparkinsonian drugs on EDS and related pharmacological mechanisms to provide evidence for rational clinical medication in sleepy PD patients. More importantly, degeneration of wake-promoting nuclei owing to primary neurodegenerative process of PD is the underlying pathogenesis of EDS. Accordingly, altered wake-promoting nerve nuclei and neurotransmitter systems in PD patients are highlighted to providing clues for identifying EDS-causing targets in the sleep and wake cycles. Future mechanistic studies toward this direction will hopefully advance the development of novel and specific interventions for EDS in PD patients.
Collapse
Affiliation(s)
- Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital; Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Characteristics of wearing-off and motor symptoms improved by safinamide adjunct therapy in patients with Parkinson's disease: A post hoc analysis of a Japanese phase 2/3 study. J Neurol Sci 2021; 434:120083. [PMID: 35007919 DOI: 10.1016/j.jns.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Patients with Parkinson's disease (PD) experience various motor and non-motor symptoms. We conducted a post hoc analysis of a Japanese phase 2/3 study of safinamide (50 or 100 mg/day) in patients with Parkinson's disease and wearing-off to evaluate response according to background factors. Safinamide efficacy against major motor symptoms was also assessed. METHODS Multiple regression analyses in safinamide-treated patients (50 or 100 mg/day) assessed changes in daily ON-time without troublesome dyskinesia (hereafter referred to as ON-time) according to baseline clinical variables. Subgroup analyses by baseline Unified Parkinson's Disease Rating Scale (UPDRS) part III score were also conducted. We evaluated cardinal motor symptoms using the UPDRS. RESULTS In the multiple regression analysis, changes in ON-time were related to baseline non-motor symptoms (UPDRS part I score) and ON-time in the 50-mg group, but no relationships with non-motor symptoms were observed in the 100-mg group. Additionally, in the subgroup analysis of patients with more severe motor symptoms (UPDRS part III score > 20), a significant improvement in ON-time was observed only with 100 mg/day (p = 0.01). At both doses, safinamide significantly improved cardinal motor symptom scores (bradykinesia, rigidity, tremor, axial symptoms, and gait disturbances). CONCLUSIONS The observed response profile to the 50-mg/day dose may be related to baseline non-motor symptoms, but this was not true for the 100-mg/day dose. Both safinamide doses improved major motor symptoms in levodopa-treated patients with PD.
Collapse
|
21
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Suppa A, Fabbrini G, Berardelli A. Long-term changes in short-interval intracortical facilitation modulate motor cortex plasticity and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimul 2021; 15:99-108. [PMID: 34823038 DOI: 10.1016/j.brs.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Abnormal glutamatergic neurotransmission in the primary motor cortex (M1) contributes to Parkinson's disease (PD) pathophysiology and is related to l-dopa-induced dyskinesia (LID). We previously showed that short-term treatment with safinamide, a monoamine oxidase type-B inhibitor with anti-glutamatergic properties, improves abnormally enhanced short-interval intracortical facilitation (SICF) in PD patients. OBJECTIVE To examine whether a long-term SICF modulation has beneficial effects on clinical measures, including LID severity, and whether these changes parallel improvement in cortical plasticity mechanisms in PD. METHODS We tested SICF in patients with and without LID before (S0) and after short- (14 days - S1) and long-term (12 months - S2) treatment with safinamide 100 mg/day. Possible changes in M1 plasticity were assessed using intermittent theta-burst stimulation (iTBS). Finally, we correlated safinamide-related neurophysiological changes with modifications in clinical scores. RESULTS SICF was enhanced at S0, and prominently in patients with LID. Safinamide normalized SICF at S1, and this effect persisted at S2. Impaired iTBS-induced plasticity was present at S0 and safinamide restored this alteration at S2. There was a significant correlation between the degree of SICF and the amount of iTBS-induced plasticity at S0 and S2. In patients with LID, the degree of SICF at S0 and S2 correlated with long-term changes in LID severity. CONCLUSIONS Altered SICF contributes to M1 plasticity impairment in PD. Both SICF and M1 plasticity improve after long-term treatment with safinamide. The abnormality in SICF-related glutamatergic circuits plays a role in LID pathophysiology, and its long-term modulation may prevent LID worsening over time.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Italy.
| |
Collapse
|
22
|
Kurihara K, Mishima T, Fujioka S, Tsuboi Y. Efficacy and safety evaluation of safinamide as an add-on treatment to levodopa for parkinson's disease. Expert Opin Drug Saf 2021; 21:137-147. [PMID: 34597253 DOI: 10.1080/14740338.2022.1988926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION While levodopa is still the most effective treatment for Parkinson's disease, concerns about long-term complications such as wearing-off and dyskinesia with levodopa usage remain. AREAS COVERED Safinamide is a highly selective and reversible monoamine oxidase B inhibitor introduced in the European Union, Japan, and the United States as an adjunctive agent to levodopa in PD patients with motor fluctuation. This review outlines the pharmacological properties, therapeutic effects, and tolerability of safinamide as an adjunct to levodopa in patients with advanced PD. Efficacy and safety findings from double-blind and placebo-controlled clinical trials for safinamide as an adjunct therapy to levodopa for PD are summarized. EXPERT OPINION Safinamide was well tolerated as a treatment for PD, and there was no significant difference in the frequency and severity of adverse events between the safinamide and placebo groups. It was also suggested that safinamide had a beneficial effect on the accompanying non-motor symptoms such as PD-related pain. Safinamide may exhibit neuroprotective effects through antioxidant and anti-glutamate effects, and research on the disease-modifying effect of PD is desired in the future.
Collapse
Affiliation(s)
| | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University Fukuoka, Japan
| |
Collapse
|
23
|
Pagonabarraga J, Tinazzi M, Caccia C, Jost WH. The role of glutamatergic neurotransmission in the motor and non-motor symptoms in Parkinson's disease: Clinical cases and a review of the literature. J Clin Neurosci 2021; 90:178-183. [PMID: 34275546 DOI: 10.1016/j.jocn.2021.05.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and, as such, many brain regions, including the basal ganglia, are rich in glutamatergic neurons. The importance of the basal ganglia in the control of voluntary movement has long been recognised, with the effect of dysfunction of the region exemplified by the motor symptoms seen in Parkinson's disease (PD). However, the basal ganglia and the associated glutamatergic system also play a role in the modulation of emotion, nociception and cognition, dysregulation of which result in some of the non-motor symptoms of PD (depression/anxiety, pain and cognitive deficits). Thus, while the treatment of PD has traditionally been approached from the perspective of dopaminergic replacement, using agents such as levodopa and dopamine receptor agonists, the glutamatergic system offers a novel treatment target for the disease. Safinamide has been approved in over 20 countries globally for fluctuating PD as add-on therapy to levodopa regimens for the management of 'off' episodes. The drug has both dopaminergic and non-dopaminergic pharmacological effects, the latter including inhibition of abnormal glutamate release. The effect of safinamide on the glutamatergic system might present some advantages over dopamine-based therapies for PD by providing efficacy for motor (levodopa-induced dyskinesia) as well as non-motor (anxiety, mood disorders, pain) symptoms. In this article, we discuss the potential role of glutamatergic inhibition on these symptoms, using illustrative real-world examples of patients we have treated with safinamide.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Michele Tinazzi
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
| | - Carla Caccia
- CNS Preclinical Pharmacology, Independent Advisor, Milan, Italy.
| | | |
Collapse
|
24
|
Qian L, Li JZ, Sun X, Chen JB, Dai Y, Huang QX, Jin YJ, Duan QN. Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling. Int Immunopharmacol 2021; 96:107712. [PMID: 34162132 DOI: 10.1016/j.intimp.2021.107712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a basal host defense response that eliminates the causes and consequences of infection and tissue injury. Macrophages are the primary immune cells involved in the inflammatory response. When activated by LPS, macrophages release various pro-inflammatory cytokines, chemokines, inflammatory mediators, and MMPs. However, unbridled inflammation causes further damage to tissues. Safinamide is a selective and reversible monoamine oxidase B (MAOB) inhibitor that has been used for the treatment of Parkinson's disease. In this study, we aimed to investigate whether safinamide has effects on LPS-treated macrophages. Our results show that safinamide inhibited the expression of pro-inflammatory cytokines such as IL-1α, TNF-α, and IL-6. Furthermore, safinamide suppressed the production of CXCL1 and CCL2, thereby preventing leukocyte migration. In addition, safinamide reduced iNOS-derived NO, COX-2-derived PGE2, MMP-2, and MMP-9. Importantly, the functions of safinamide mentioned above were found to be dependent on its inhibitory effect on the TLR4/NF-κB signaling pathway. Our data indicates that safinamide may exert a protective effect against inflammatory response.
Collapse
Affiliation(s)
- LuLu Qian
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jun-Zhao Li
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - XueMei Sun
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jie-Bin Chen
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qiu-Xiang Huang
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying-Ji Jin
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qing-Ning Duan
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
25
|
Santos García D, Labandeira Guerra C, Yáñez Baña R, Cimas Hernando MI, Cabo López I, Paz Gonález JM, Alonso Losada MG, González Palmás MJ, Martínez Miró C. Safinamide Improves Non-Motor Symptoms Burden in Parkinson's Disease: An Open-Label Prospective Study. Brain Sci 2021; 11:316. [PMID: 33801565 PMCID: PMC7999475 DOI: 10.3390/brainsci11030316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Some studies observed a benefit of Parkinson's disease (PD) patients after treatment with safinamide in some non-motor symptoms (NMSs). The aim of this study was to analyze the effectiveness of safinamide on NMS burden in PD. SAFINONMOTOR (an open-label study of the effectiveness of safinamide on non-motor symptoms in Parkinson's disease patients) is a prospective open-label single-arm study conducted in five centers from Spain. The primary efficacy outcome was the change from baseline (V1) to the end of the observational period (6 months) (V4) in the non-motor symptoms scale (NMSS) total score. Between May/2019 and February/2020 50 patients were included (age 68.5 ± 9.12 years; 58% females; 6.4 ± 5.1 years from diagnosis). At 6 months, 44 patients completed the follow-up (88%). The NMSS total score was reduced by 38.5% (from 97.5 ± 43.7 in V1 to 59.9 ± 35.5 in V4; p < 0.0001). By domains, improvement was observed in sleep/fatigue (-35.8%; p = 0.002), mood/apathy (-57.9%; p < 0.0001), attention/memory (-23.9%; p = 0.026), gastrointestinal symptoms (-33%; p = 0.010), urinary symptoms (-28.3%; p = 0.003), and pain/miscellaneous (-43%; p < 0.0001). Quality of life (QoL) also improved with a 29.4% reduction in the PDQ-39SI (from 30.1 ± 17.6 in V1 to 21.2 ± 13.5 in V4; p < 0.0001). A total of 21 adverse events in 16 patients (32%) were reported, 5 of which were severe (not related to safinamide). Dyskinesias and nausea were the most frequent (6%). Safinamide is well tolerated and improves NMS burden and QoL in PD patients with severe or very severe NMS burden at 6 months.
Collapse
Affiliation(s)
- Diego Santos García
- Department of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (J.M.P.G.); (C.M.M.)
| | - Carmen Labandeira Guerra
- Department of Neurology, CHUVI, Complejo Hospitalario Universitario de Vigo, 36213 Vigo, Spain; (C.L.G.); (M.G.A.L.)
| | - Rosa Yáñez Baña
- Department of Neurology, CHUO, Complejo Hospitalario Universitario de Ourense, 32005 Ourense, Spain;
| | | | - Iria Cabo López
- Department of Neurology, CHOP, Complejo Hospitalario Universitario de Pontevedra, 36002 Pontevedra, Spain; (I.C.L.); (M.J.G.P.)
| | - Jose Manuel Paz Gonález
- Department of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (J.M.P.G.); (C.M.M.)
| | - Maria Gemma Alonso Losada
- Department of Neurology, CHUVI, Complejo Hospitalario Universitario de Vigo, 36213 Vigo, Spain; (C.L.G.); (M.G.A.L.)
| | - María José González Palmás
- Department of Neurology, CHOP, Complejo Hospitalario Universitario de Pontevedra, 36002 Pontevedra, Spain; (I.C.L.); (M.J.G.P.)
| | - Cristina Martínez Miró
- Department of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (J.M.P.G.); (C.M.M.)
| |
Collapse
|
26
|
Long-term safety and efficacy of safinamide as add-on therapy in levodopa-treated Japanese patients with Parkinson's disease with wearing-off: Results of an open-label study. J Neurol Sci 2020; 416:117012. [PMID: 32673884 DOI: 10.1016/j.jns.2020.117012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Safinamide, a selective, reversible monoamine oxidase B inhibitor with a sodium channel inhibitory effect, improves symptoms in advanced Parkinson's disease (PD). This study aimed to confirm the long-term safety and efficacy of safinamide in Japanese PD patients with wearing-off. METHODS Japanese PD patients aged ≥30 years with wearing-off were eligible. The primary efficacy endpoint was change from baseline in the mean daily ON-time without troublesome dyskinesias at 52 weeks of treatment. Other efficacy endpoints included changes from baseline in mean daily OFF-time and unified Parkinson's disease rating scale (UPDRS) and PDQ-39 scores. RESULTS In total, 203 patients entered the study, and 142 completed the 52-week treatment. Adverse events (AEs) occurred in 78.3% of patients, with nasopharyngitis (20.7%) and dyskinesias (17.7%) as the most common; serious AEs occurred in 17.2%, causing discontinuation in 10.8%. At Week 52, the mean daily ON-time without troublesome dyskinesias increased from baseline by 1.42 h. Change from baseline in mean daily OFF-time was -1.40 h, and that in the UPDRS Part III score in the ON-phase was -6.20. CONCLUSIONS As adjunctive treatment with levodopa, safinamide was safe, well tolerated, and effective in improving ON-time and other PD symptoms at 52 weeks.
Collapse
|
27
|
Koebisu M, Ishida T. [Safinamide Mesilate (Equfina ® TABLETS 50 mg): preclinical and clinical pharmacodynamics, efficacy, and safety]. Nihon Yakurigaku Zasshi 2020; 155:269-276. [PMID: 32612042 DOI: 10.1254/fpj.20012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the degenerative loss of dopaminergic neurons in the substantia nigra. Dopamine deficiency is thought to disrupt motor control of the basal ganglia and cause characteristic motor symptoms in Parkinson's disease such as bradykinesia, akinesia, and tremor. Therefore, dopamine replacement therapy is widely used in the clinical setting. Safinamide is a novel, selective, and reversible inhibitor of monoamine oxidase B expected to increase dopamine levels in the brain and improve the symptoms of Parkinson's disease. In addition, safinamide shows non-dopaminergic actions such as sodium channel blockade and inhibition of glutamate release. Preclinical studies have demonstrated that safinamide ameliorates "wearing off" symptoms after administration in rat and monkey models with selectively destroyed dopaminergic neurons. In the monkeys, safinamide concurrently inhibited levodopa-induced dyskinesia. These findings suggest that safinamide not only increases the dopaminergic effect of levodopa, but also reduces levodopa-induced adverse events via its non-dopaminergic effects. In clinical trials of patients with Parkinson's disease with the "wearing off" phenomenon, safinamide has been found to prolong the "on time" and improve motor function as assessed by Unified Parkinson's Disease Rating Scale Part III. In Japan, safinamide was approved in September 2019 as a levodopa combination drug for Parkinson's disease with "wearing off" phenomenon. Safinamide is therefore expected to be a new treatment option for patients with Parkinson's disease.
Collapse
|
28
|
Xu T, Sun R, Wei G, Kong S. The Protective Effect of Safinamide in Ischemic Stroke Mice and a Brain Endothelial Cell Line. Neurotox Res 2020; 38:733-740. [DOI: 10.1007/s12640-020-00246-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
|
29
|
Hattori N, Tsuboi Y, Yamamoto A, Sasagawa Y, Nomoto M. Efficacy and safety of safinamide as an add-on therapy to L-DOPA for patients with Parkinson's disease: A randomized, double-blind, placebo-controlled, phase II/III study. Parkinsonism Relat Disord 2020; 75:17-23. [DOI: 10.1016/j.parkreldis.2020.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022]
|
30
|
Pisanò CA, Brugnoli A, Novello S, Caccia C, Keywood C, Melloni E, Vailati S, Padoani G, Morari M. Safinamide inhibits in vivo glutamate release in a rat model of Parkinson's disease. Neuropharmacology 2020; 167:108006. [DOI: 10.1016/j.neuropharm.2020.108006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
31
|
Desaphy JF, Farinato A, Altamura C, De Bellis M, Imbrici P, Tarantino N, Caccia C, Melloni E, Padoani G, Vailati S, Keywood C, Carratù MR, De Luca A, Conte D, Pierno S. Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo. Exp Neurol 2020; 328:113287. [PMID: 32205118 DOI: 10.1016/j.expneurol.2020.113287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022]
Abstract
The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 μM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 μM for closed channels and 9 μM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 μM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 μM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Alessandro Farinato
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Nancy Tarantino
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Carla Caccia
- Open R&D Department, Zambon S.p.A., Bresso, MI, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon S.p.A., Bresso, MI, Italy
| | | | | | | | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Diana Conte
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
32
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
33
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
34
|
Guerra A, Suppa A, D'Onofrio V, Di Stasio F, Asci F, Fabbrini G, Berardelli A. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimul 2019; 12:1517-1525. [DOI: 10.1016/j.brs.2019.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022] Open
|
35
|
Tzvetkov NT, Stammler HG, Georgieva MG, Russo D, Faraone I, Balacheva AA, Hristova S, Atanasov AG, Milella L, Antonov L, Gastreich M. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur J Med Chem 2019; 179:404-422. [DOI: 10.1016/j.ejmech.2019.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
36
|
(Pyrrolo-pyridin-5-yl)benzamides: BBB permeable monoamine oxidase B inhibitors with neuroprotective effect on cortical neurons. Eur J Med Chem 2019; 162:793-809. [DOI: 10.1016/j.ejmech.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
|
37
|
Alborghetti M, Nicoletti F. Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson's Disease: From Bench to Bedside. Curr Neuropharmacol 2019; 17:861-873. [PMID: 30160213 PMCID: PMC7052841 DOI: 10.2174/1570159x16666180830100754] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Three inhibitors of type-B monoamine oxidase (MAOB), selegiline, rasagiline, and safinamide, are used for the treatment of Parkinson's disease (PD). All three drugs improve motor signs of PD, and are effective in reducing motor fluctuations in patients undergoing long-term L-DOPA treatment. The effect of MAOB inhibitors on non-motor symptoms is not uniform and may not be class-related. Selegiline and rasagiline are irreversible inhibitors forming a covalent bond within the active site of MAOB. In contrast, safinamide is a reversible MAOB inhibitor, and also inhibits voltage- sensitive sodium channels and glutamate release. Safinamide is the prototype of a new generation of multi-active MAOB inhibitors, which includes the antiepileptic drug, zonisamide. Inhibition of MAOB-mediated dopamine metabolism largely accounts for the antiparkinsonian effect of the three drugs. Dopamine metabolism by MAOB generates reactive oxygen species, which contribute to nigro-striatal degeneration. Among all antiparkinsonian agents, MAOB inhibitors are those with the greatest neuroprotective potential because of inhibition of dopamine metabolism, induction of neurotrophic factors, and, in the case of safinamide, inhibition of glutamate release. The recent development of new experimental animal models that more closely mimic the progressive neurodegeneration associated with PD will allow to test the hypothesis that MAOB inhibitors may slow the progression of PD.
Collapse
Affiliation(s)
| | - Ferdinando Nicoletti
- Address correspondence to this author at the Department of Physiology and Pharmacology, University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Tel: 39-3662816464; E-mail:
| |
Collapse
|
38
|
Liguori C, Stefani A, Ruffini R, Mercuri NB, Pierantozzi M. Safinamide effect on sleep disturbances and daytime sleepiness in motor fluctuating Parkinson's disease patients: A validated questionnaires-controlled study. Parkinsonism Relat Disord 2018; 57:80-81. [DOI: 10.1016/j.parkreldis.2018.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
39
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C. Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 2018; 367:442-451. [DOI: 10.1124/jpet.118.251645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
|