1
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
2
|
Tonry C, Russel-Hallinan A, McCune C, Collier P, Harbinson M, Dixon L, Watson CJ. Circulating biomarkers for management of cancer therapeutics related cardiac dysfunction. Cardiovasc Res 2022; 119:710-728. [PMID: 35640873 PMCID: PMC10153425 DOI: 10.1093/cvr/cvac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022] Open
Abstract
Cancer therapeutics related cardiac dysfunction (CTRCD) has emerged as a major cause of morbidity and mortality in cancer survivors. Effective clinical management of CTRCD is impeded by a lack of sensitive diagnostic and prognostic strategies. Circulating molecular markers could potentially address this need as they are often indicative of cardiac stress before cardiac damage can be detected clinically. A growing understanding of the underlying physiological mechanisms for CTRCD has inspired research efforts to identify novel pathophysiologically-relevant biomarkers that may also guide development of cardio-protective therapeutic approaches. The purpose of this review is to evaluate current circulating biomarkers of cardiac stress and their potential role in diagnosis and management of CTRCD. We also discuss some emerging avenues for CTRCD-focused biomarker investigations.
Collapse
Affiliation(s)
- Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, United Kingdom
| | - Adam Russel-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, United Kingdom
| | - Claire McCune
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, United Kingdom
| | | | | | | | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Minotti G, Salvatorelli E, Reggiardo G, Mangiacapra F, Camilli M, Menna P. CARDIAC ANTHRACYCLINE ACCUMULATION AND B-TYPE NATRIURETIC PEPTIDE TO DEFINE RISK AND PREDICTORS OF CANCER TREATMENT RELATED EARLY DIASTOLIC DYSFUNCTION. J Pharmacol Exp Ther 2022; 381:266-273. [PMID: 35332076 DOI: 10.1124/jpet.122.001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Diastolic dysfunction (DD) was reported to precede heart failure (HF) in cancer patients treated with chemotherapy. We aimed at defining risk versus dose relationships and risk predictors in cancer patients treated mainly with anthracyclines. Data from 67 comorbid-free patients (60 treated with anthracyclines, 7 with nonanthracycline chemotherapy) were retrospectively incorporated in a mathematical function that correlated DD risk with experimental indices of anthracycline accumulation in human myocardium. Risk was calculated for all patients and for subgroups stratified by intertreatment levels of the endogenous cardiac relaxant agent, B-type natriuretic peptide (BNP). Grade I DD (impaired relaxation) occurred in 14/67 patients and 5% risk doses were much lower for DD than HF (mg of anthracycline/m2: 210 versus 470 or 190 versus 450 for all patients or anthracycline-treated patients in isolation, respectively, P=<0.01 for DD versus HF). Patients with transient BNP elevations showed the lowest 5% risk dose (150 mg/m2) while patients with persistent elevations showed the highest risk dose (280 mg/m2, P<0.05). Patients with or without DD were similar for systemic and cardiac exposure to anthracyclines; however, high risk patients with transient BNP elevations and DD were older and presented at baseline with lower indices of transmitral flow. In conclusion, DD risk develops after lower anthracycline doses than HF and intertreatment levels of BNP help to identify patients with high or low DD risk. These findings are of potential value to monitor or treat the cancer patient at risk of DD. Significance Statement Diastolic dysfunction (DD) is an early manifestation of cardiotoxicity from anthracyclines and nonanthracycline chemotherapeutics. We show that merging preclinical characterization of cardiac anthracycline accumulation with clinical data from patients treated primarily with anthracyclines identifies DD risk from very low anthracycline doses. DD risk is associated with older age, baseline diastolic indices toward the lower limit of normal, and transient intertreatment elevations of the endogenous cardiac relaxant agent, B-type natriuretic peptide. These findings have numerous pharmacological implications.
Collapse
Affiliation(s)
- Giorgio Minotti
- Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | | | - Giorgio Reggiardo
- Biostatistics and Data Management Unit, Mediservice S.r.l., Agrate Brianza, Monza, Italy
| | - Fabio Mangiacapra
- Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | | | - Pierantonio Menna
- Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| |
Collapse
|
4
|
Martinez HR, Beasley GS, Goldberg JF, Absi M, Ryan KA, Guerrier K, Joshi VM, Johnson JN, Morin CE, Hurley C, Morrison RR, Rai P, Hankins JS, Bishop MW, Triplett BM, Ehrhardt MJ, Pui CH, Inaba H, Towbin JA. Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121200. [PMID: 34943396 PMCID: PMC8699848 DOI: 10.3390/children8121200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
Survival for pediatric patients diagnosed with cancer has improved significantly. This achievement has been made possible due to new treatment modalities and the incorporation of a systematic multidisciplinary approach for supportive care. Understanding the distinctive cardiovascular characteristics of children undergoing cancer therapies has set the underpinnings to provide comprehensive care before, during, and after the management of cancer. Nonetheless, we acknowledge the challenge to understand the rapid expansion of oncology disciplines. The limited guidelines in pediatric cardio-oncology have motivated us to develop risk-stratification systems to institute surveillance and therapeutic support for this patient population. Here, we describe a collaborative approach to provide wide-ranging cardiovascular care to children and young adults with oncology diseases. Promoting collaboration in pediatric cardio-oncology medicine will ultimately provide excellent quality of care for future generations of patients.
Collapse
Affiliation(s)
- Hugo R. Martinez
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
- Correspondence:
| | - Gary S. Beasley
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason F. Goldberg
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Mohammed Absi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Kaitlin A. Ryan
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Karine Guerrier
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Vijaya M. Joshi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason N. Johnson
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Cara E. Morin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Caitlin Hurley
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Ronald Ray Morrison
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
| | - Parul Rai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Michael W. Bishop
- Division of Solid Tumor, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Matthew J. Ehrhardt
- Division of Cancer Survivorship, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Hiroto Inaba
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Jeffrey A. Towbin
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| |
Collapse
|
5
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Reggiardo G. Predictors of Early or Delayed Diastolic Dysfunction After Anthracycline-Based or Nonanthracycline Chemotherapy: A Pharmacological Appraisal. J Pharmacol Exp Ther 2020; 376:231-239. [DOI: 10.1124/jpet.120.000323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
|
6
|
Dent SF, Suter TM, López-Fernández T, Opolski G, Menna P, Minotti G. Cardio-oncology in clinical studies and real life. Semin Oncol 2019; 46:421-425. [PMID: 31767270 DOI: 10.1053/j.seminoncol.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Session V of the Colloquium was chaired by Professors Teresa López-Fernández of Spain and Grzegorz Opolski of Poland. The 3 speakers addressed cardio-oncology issues as they relate to both clinical studies and real life situations. Professor Susan Dent discussed cardio-oncology networks for patients, emphasizing the importance of establishing a framework where the expertise of the cardiology consultant can supplement and reinforce the goals of optimal cancer therapy. Professor Thomas Suter moved the discussion further, sharing his insight into cardiac monitoring in clinical trials, emphasizing the lack of uniform criteria and lack of consensus regarding reversibility of cardiac events and long-term implications of modest declines in systolic function frequently found in clinical trials for which long-term follow-up may not be a component of the trial. Professor Giorgio Minotti added important considerations to the discussion of clinical trials. He emphasized that the usual reporting of cardiac systolic function omits important diastolic dysfunction data generated but often ignored during the routine cardiac exams. The inclusion of cardiac biomarker changes would also help to broaden the perspective of cardiac effects and events seen in patients enrolled in clinical trials.
Collapse
Affiliation(s)
- Susan F Dent
- Duke University School of Medicine, Durham, North Carolina
| | - Thomas M Suter
- Swiss Cardiovascular Centre, Bern University, Bern, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Djamgoz MBA, Fraser SP, Brackenbury WJ. In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers (Basel) 2019; 11:E1675. [PMID: 31661908 PMCID: PMC6895836 DOI: 10.3390/cancers11111675] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - William J Brackenbury
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
8
|
Minotti G, Menna P, Calabrese V, Greco C, Armento G, Annibali O, Marchesi F, Salvatorelli E, Reggiardo G. Pharmacology of Ranolazine versus Common Cardiovascular Drugs in Patients with Early Diastolic Dysfunction Induced by Anthracyclines or Nonanthracycline Chemotherapeutics: A Phase 2b Minitrial. J Pharmacol Exp Ther 2019; 370:197-205. [PMID: 31101682 DOI: 10.1124/jpet.119.258178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
We have reported that anthracyclines and nonanthracycline chemotherapeutics caused diastolic dysfunction in cancer patients without cardiovascular risk factors. Diastolic dysfunction occurred as early as 1 week after the last chemotherapy cycle and manifested as impaired myocardial relaxation at echocardiography or persistent elevations of B-type natriuretic peptide (BNP) or troponin. The antianginal drug ranolazine shows cardiac relaxant effects that we considered of value to treat early diastolic dysfunction induced by cancer drugs; therefore, 24 low-risk patients with post-chemotherapy diastolic dysfunction were randomized (1:1) to ranolazine or the investigator's choice of common cardiovascular drugs, such as β-blockers and/or angiotensin-converting enzyme inhibitors or loop diuretics (best standard therapy, BST). After 5 weeks, 12 of 12 patients on ranolazine recovered from diastolic dysfunction, whereas 3 of 12 patients on BST did not improve; however, adverse events (not serious) were apparently more frequent for ranolazine than for BST (4/12 vs. 1/12). Ranolazine did not lower blood pressure, whereas BST reduced systolic pressure and caused a trend toward a reduced diastolic pressure. Most patients at randomization showed tachycardia resulting from chemotherapy-related anemia. Hemoglobin recovery contributed to normalizing heart rate in these patients; however, some patients in the ranolazine arm developed tachycardia through chronotropic effects of high BNP levels and returned to a normal heart rate through the effects of ranolazine on decreasing BNP levels. This minitrial describes the potential effects of ranolazine on relieving chemotherapy-related diastolic dysfunction; however, clinical implications of these findings need to be characterized by studies with an adequate sample size. SIGNIFICANCE STATEMENT: The antianginal drug ranolazine causes cardiac relaxant effects that might relieve diastolic dysfunction. In a clinical pharmacology study, 24 patients were randomized (1:1) to receive ranolazine or common cardiovascular drugs to treat early diastolic dysfunction induced by anthracycline-based or nonanthracycline chemotherapy. Ranolazine relieved diastolic dysfunction in these patients. The safety profile of ranolazine in cancer patients is similar to that of the general population. Compared with common cardiovascular drugs, ranolazine relieved diastolic dysfunction without lowering blood pressure. The sample size of this study was nonetheless too small to permit considerations about the potential clinical value of ranolazine for oncologic patients with early diastolic dysfunction induced by anthracyclines or nonanthracycline chemotherapeutics. This information should be obtained by studies with an adequate sample size.
Collapse
Affiliation(s)
- Giorgio Minotti
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Pierantonio Menna
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Vito Calabrese
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Carlo Greco
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Grazia Armento
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Ombretta Annibali
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Francesco Marchesi
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Emanuela Salvatorelli
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Giorgio Reggiardo
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| |
Collapse
|
9
|
Długosz-Danecka M, Gruszka AM, Szmit S, Olszanecka A, Ogórka T, Sobociński M, Jaroszyński A, Krawczyk K, Skotnicki AB, Jurczak W. Primary Cardioprotection Reduces Mortality in Lymphoma Patients with Increased Risk of Anthracycline Cardiotoxicity, Treated by R-CHOP Regimen. Chemotherapy 2018; 63:238-245. [PMID: 30372698 DOI: 10.1159/000492942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Advances in anti-lymphoma therapy prolong overall survival, making late adverse effects, like doxorubicin-related cardiotoxicity, an even more important clinical issue. The effectiveness of cardioprotective strategies with close monitoring, angiotensin-converting enzyme inhibitors and/or β-blockers as well as liposomal doxorubicin are still unconfirmed in clinical practice. METHODS This study evaluated the role of a primary cardioprotection strategy in preventing cardiovascular mortality and heart failure occurrence in non-Hodgkin lymphoma (NHL) patients with a high risk of anthracycline cardiotoxicity. Thirty-five NHL patients were subjected prospectively to ramipril and/or bisoprolol at NHL diagnosis, before implementing doxorubicin-containing regimens. Additionally, patients with a diagnosis of asymptomatic/mild heart failure received the liposomal form of doxorubicin. The clinical outcome and frequency of all serious cardiac events were compared with the results in a historical cohort of 62 high-risk cases treated without primary cardioprotection. RESULTS NHL patients with a primary cardioprotection strategy did not experience cardiovascular deaths in contrast to the retrospective control group where cardiovascular mortality was 14.5% at 3 years (p < 0.05). Primary cardioprotection also decreased the frequency of new cardiotoxicity-related clinical symptoms (2.8 vs. 24.1%; p < 0.05) and prevented the occurrence of cardiac systolic dysfunction (0 vs. 8.5%, respectively; p < 0.05). Although the study was not planned to detect any survival benefit, it demonstrated a trend towards increased response rates (complete response 82 vs. 67%; p not significant) and prolonged survival (projected 5-year overall survival 74 vs. 60%; p < 0.05) for patients treated with primary cardioprotection. CONCLUSIONS A primary personalized cardioprotection strategy decreases the number of cardiac deaths and may potentially prolong overall survival in NHL patients with increased risk of anthracycline cardiotoxicity.
Collapse
Affiliation(s)
| | - Alicja M Gruszka
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sebastian Szmit
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | | | - Tomasz Ogórka
- Department of Haematology, Jagiellonian University, Krakow, Poland
| | | | - Andrzej Jaroszyński
- Department of Nephrology, Family Medicine and Geriatrics, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | | | | - Wojciech Jurczak
- Department of Haematology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Menna P, Salvatorelli E, Armento G, Annibali O, Greco C, Marchesi F, Calabrese V, Reggiardo G, Minotti G. The Endogenous Lusitropic and Chronotropic Agent, B-Type Natriuretic Peptide, Limits Cardiac Troponin Release in Cancer Patients with an Early Impairment of Myocardial Relaxation Induced by Anthracyclines. J Pharmacol Exp Ther 2018; 367:518-527. [PMID: 30275150 DOI: 10.1124/jpet.118.253104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
We have reported that cancer patients treated with anthracycline-based or nonanthracycline chemotherapy developed an early impairment of myocardial relaxation at echocardiography or persistent elevations of the cardiac hormone B-type natriuretic peptide (BNP). Post-hoc pharmacologic analyses showed that BNP elevations were induced by impaired relaxation and caused positive lusitropic effects that maintained normal relaxation. High BNP levels and impaired relaxation were therefore characterized as mutually exclusive manifestations of diastolic dysfunction, but high BNP levels resulted in positive chronotropism and inappropriate tachycardia. Some patients developed increased circulating levels of cardiac troponin I isoform (cTnI), a marker of cardiomyocyte necrosis. Here we have characterized whether cTnI elevations correlated with diastolic dysfunction that manifested as impaired relaxation or a high level of BNP. The effects of high BNP levels on cTnI elevations were also characterized. We show that impaired relaxation or high BNP levels were significantly more frequent in patients with cTnI elevations. High BNP levels diminished the plasma peak and area under the curve of cTnI, but this result was accompanied by inappropriate tachycardia. cTnI elevations occurred only in patients treated with anthracyclines; moreover, the association of impaired relaxation or high BNP levels with cTnI elevations was significantly more frequent in doxorubicin-treated patients compared with patients treated with its analog, epirubicin. These findings describe cause-and-effect relations between impaired relaxation and cardiomyocyte necrosis, illuminate the role of anthracycline analogs, denote that the beneficial effects of BNP in relieving impaired relaxation and cardiomyocyte necrosis are counterbalanced by inappropriate tachycardia. Patients showing troponin elevations and impaired relaxation or high BNP levels should be treated with lusitropic drugs that lack a positive chronotropism.
Collapse
Affiliation(s)
- Pierantonio Menna
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Emanuela Salvatorelli
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Grazia Armento
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Ombretta Annibali
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Carlo Greco
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Francesco Marchesi
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Vito Calabrese
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Giorgio Reggiardo
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Giorgio Minotti
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| |
Collapse
|