1
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
2
|
Oyama M, Watanabe S, Iwai T, Tanabe M. Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn. Neuropharmacology 2024; 254:109994. [PMID: 38750803 DOI: 10.1016/j.neuropharm.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
El Chemali L, Boutary S, Liu S, Liu GJ, Middleton RJ, Banati RB, Bahrenberg G, Rupprecht R, Schumacher M, Massaad-Massade L. GRT-X Stimulates Dorsal Root Ganglia Axonal Growth in Culture via TSPO and Kv7.2/3 Potassium Channel Activation. Int J Mol Sci 2024; 25:7327. [PMID: 39000434 PMCID: PMC11242890 DOI: 10.3390/ijms25137327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.
Collapse
Affiliation(s)
- Léa El Chemali
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Suzan Boutary
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Song Liu
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B Banati
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregor Bahrenberg
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael Schumacher
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Liliane Massaad-Massade
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Zhan D, Zhang J, Su S, Ren X, Zhao S, Zang W, Cao J. TET1 Participates in Complete Freund's Adjuvant-induced Trigeminal Inflammatory Pain by Regulating Kv7.2 in a Mouse Model. Neurosci Bull 2024; 40:707-718. [PMID: 37973721 PMCID: PMC11178721 DOI: 10.1007/s12264-023-01139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 11/19/2023] Open
Abstract
Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.
Collapse
Affiliation(s)
- Dengcheng Zhan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Stampf JL, Ciotu CI, Heber S, Boehm S, Fischer MJM, Salzer I. Analgesic Action of Acetaminophen via Kv7 Channels. Int J Mol Sci 2022; 24:ijms24010650. [PMID: 36614094 PMCID: PMC9820628 DOI: 10.3390/ijms24010650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
The mechanism of acetaminophen (APAP) analgesia is at least partially unknown. Previously, we showed that the APAP metabolite N-acetyl-p-benzoquinone imine (NAPQI) activated Kv7 channels in neurons in vitro, and this activation of Kv7 channels dampened neuronal firing. Here, the effect of the Kv7 channel blocker XE991 on APAP-induced analgesia was investigated in vivo. APAP had no effect on naive animals. Induction of inflammation with λ-carrageenan lowered mechanical and thermal thresholds. Systemic treatment with APAP reduced mechanical hyperalgesia, and co-application of XE991 reduced APAP's analgesic effect on mechanical pain. In a second experiment, the analgesic effect of systemic APAP was not antagonized by intrathecal XE991 application. Analysis of liver samples revealed APAP and glutathione-coupled APAP indicative of metabolization. However, there were no relevant levels of these metabolites in cerebrospinal fluid, suggesting no relevant APAP metabolite formation in the CNS. In summary, the results support an analgesic action of APAP by activating Kv7 channels at a peripheral site through formation of the metabolite NAPQI.
Collapse
|
6
|
Research progress on the mechanism of chronic neuropathic pain. IBRO Neurosci Rep 2022; 14:80-85. [PMID: 36632243 PMCID: PMC9827377 DOI: 10.1016/j.ibneur.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic neuropathic pain (CNP) refers to pain that lasts for more than three months due to a disease or an injury to the somatosensory nervous system. The incidence of CNP has been increasing in the world, causing it to become a global concern and patients often experience spontaneous pain, hyperalgesia, abnormal pain or even abnormal sensation as some of its main symptoms. In addition to serious pain and poor physical health, CNP also negatively affects patients' mental health, thus impacting the overall quality of their lives. The pathogenesis of CNP is not clear, but some studies have proved that central sensitization, peripheral sensitization, neuroinflammation, dysfunction in descending nociceptive modulatory systems, oxidative stress reaction, activation of glial cells and psychological factors play an important role in the occurrence and development of CNP. In this context, this article summarizes the current research progress on the mechanism of CNP to provide a basis for further research in preventing and treating the disease.
Collapse
|
7
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
8
|
Vizcarra VS, Barber KR, Franca-Solomon G, Majuta L, Smith A, Langlais PR, Largent-Milnes TM, Vanderah TW, Riegel AC. Targeting 5-HT 2A receptors and Kv7 channels in PFC to attenuate chronic neuropathic pain in rats using a spared nerve injury model. Neurosci Lett 2022; 789:136864. [PMID: 36063980 PMCID: PMC10088904 DOI: 10.1016/j.neulet.2022.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Translational Biomedical Sciences Graduate Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box URNI, Rochester, NY, 14642, USA
| | - Kara R Barber
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Gabriela Franca-Solomon
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Lisa Majuta
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Angela Smith
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 52242, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona, 85721, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Arthur C Riegel
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA; Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, 85721, USA; James C. Wyant College of Optical Sciences, the University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
9
|
Dong L, Zhou Q, Liang Q, Qiao Z, Liu Y, Shao L, Wang K. Identification of a Partial and Selective TRPV1 Agonist CPIPC for Alleviation of Inflammatory Pain. Molecules 2022; 27:molecules27175428. [PMID: 36080196 PMCID: PMC9457966 DOI: 10.3390/molecules27175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel, predominantly expressed in a subset of peripheral sensory neurons for pain signaling. Topical application of agonist capsaicin for desensitizing TRPV1 currents has been approved for relief of chronic pain. However, the potent TRPV1 capsaicin is not ingestible and even topical capsaicin causes common side effects such as skin irritation, swelling, erythema and pruritus, suggesting that a mild TRPV1 agonist might be helpful for reducing side effects while reliving pain. In this study, we reported on a partial and selective TRPV1 agonist 4-(5-chloropyridin-2-yl)-N-(1H-indazol-6-yl)piperazine-1-carboxamide named CPIPC that was modified based on targeting the residue Arg557, important for conversion between the channel antagonism and agonism. Whole-cell patch clamp recordings indicated a concentration-dependent activation of TRPV1 currents by CPIPC with an EC50 of 1.56 ± 0.13 μM. The maximum efficacy of CPIPC (30 μM) was about 60% of saturated capsaicin (10 μM). Repetitive additions of CPIPC caused TRPV1 current desensitization in both TRPV1-expressing HEK293 cells and dorsal root ganglion (DRG) sensory neurons. Oral administration of CPIPC dose-dependently alleviated inflammatory pain in mice. Further site-directed mutagenesis combined with molecular docking revealed that residue Arg557 is critical for TRPV1 activation by CPIPC. Taken together, we identified a novel partial and selective TRPV1 agonist CPIPC that exhibits antinociceptive activity in mice.
Collapse
Affiliation(s)
- Liying Dong
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
| | - Qiqi Zhou
- Department of Pharmacology, Qilu Medical University, Zibo 255300, China
| | - Qianqian Liang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zhen Qiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yani Liu
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, China
- Correspondence: (Y.L.); (L.S.); (K.W.)
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
- Correspondence: (Y.L.); (L.S.); (K.W.)
| | - Kewei Wang
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, China
- Correspondence: (Y.L.); (L.S.); (K.W.)
| |
Collapse
|
10
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|
11
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|