1
|
Al Matni MY, Meliton L, Dudek SM, Letsiou E. Dual Inhibition of Phosphodiesterase 3 and 4 Enzymes by Ensifentrine Protects against MRSA-Induced Lung Endothelial and Epithelial Dysfunction. Cells 2024; 13:1750. [PMID: 39513857 PMCID: PMC11545647 DOI: 10.3390/cells13211750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung condition with a high mortality rate for which there are no effective therapeutics. The failure of the alveolar-capillary barrier, composed of lung endothelial (EC) and alveolar epithelial (AEC) cells, is a critical factor leading to excessive inflammation and edema characteristic of acute lung injury (ALI) pathophysiology. Phosphodiesterases (PDE) are enzymes well-recognized for their roles in regulating endothelial permeability and inflammation. Although PDE inhibitors are used as therapeutics for inflammatory diseases like COPD (chronic obstructive pulmonary disease), their efficacy in treating ARDS has not yet been established. In this study, we investigated the effects of ensifentrine, an FDA-approved novel dual PDE 3/4 inhibitor, on lung endothelial and epithelial dysfunction caused by methicillin-resistant S. aureus (MRSA), a pathogen involved in bacterial ARDS. Human primary lung endothelial cells and alveolar epithelial cell lines (A549 and immortalized AEC) were treated with heat-killed MRSA, and their responses were assessed in the presence or absence of ensifentrine. Ensifentrine given either pre- or post-exposure attenuated MRSA-induced increased lung endothelial permeability. VE-cadherin junctions, which serve to stabilize the EC barrier, were disrupted by MRSA; however, ensifentrine effectively prevented this disruption. Pre-treatment with ensifentrine protected against MRSA-induced EC pro-inflammatory signaling by inhibiting the expression of VCAM-1, ICAM-1, and by reducing the IL-6 and IL-8 release. In AEC, MRSA caused the upregulation of ICAM-1, the activation of NF-kB, and the production of IL-8, all of which were inhibited by ensifentrine. These results indicate that the dual inhibition of phosphodiesterases 3 and 4 by ensifentrine is barrier protective and attenuates MRSA-induced inflammation in both lung endothelial and epithelial cells. The PDE3/4 inhibitor ensifentrine may represent a promising novel strategy for the treatment of MRSA-induced ARDS.
Collapse
Affiliation(s)
| | | | | | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (M.Y.A.M.); (L.M.); (S.M.D.)
| |
Collapse
|
2
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
3
|
Matsumoto S, Ohama R, Hoei T, Tojo R, Nakamura T. Two Cases Showing That Cilostazol Administration Leads to an Increase in Cerebral Blood Flow and Has a Positive Effect on Rehabilitation. Cureus 2024; 16:e56376. [PMID: 38633955 PMCID: PMC11022937 DOI: 10.7759/cureus.56376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Cilostazol is a drug that has both antiplatelet and vasodilatory effects. To examine the effects of cilostazol on cerebral blood flow and rehabilitation following stroke, cilostazol was administered to two patients with chronic atherothrombotic cerebral infarction. In both patients, cilostazol administration effectively increased cerebral blood flow and promoted rehabilitation. Therefore, cilostazol was considered to be a useful agent for improving the clinical condition of patients suffering from chronic cerebral infarction. Further clinical studies on the effective use of cilostazol for rehabilitation in stroke patients are needed.
Collapse
Affiliation(s)
- Shuji Matsumoto
- Center for Medical Science, Ibaraki Prefectural University of Health Sciences, Ami, JPN
| | - Rintaro Ohama
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, JPN
| | - Takashi Hoei
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima City, JPN
| | - Ryuji Tojo
- Department of Rehabilitation, Acras Central Hospital, Kagoshima City, JPN
| | - Toshihiro Nakamura
- Department of Rehabilitation, Acras Central Hospital, Kagoshima City, JPN
| |
Collapse
|
4
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
Naderbar L, Pazhang Y, Rezaie J. Inhibiting AKT signaling pathway with cilostazol and meloxicam synergism for suppressing K562 cells in vitro. J Biochem Mol Toxicol 2022; 36:e23185. [PMID: 35920412 DOI: 10.1002/jbt.23185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Despite advances in cancer treatment, chronic myeloid leukemia (CML) is still one of the leading causes of death in the world. Due to the role of inflammation in cancer promotion and progression, thus use of anti-inflammatory agents may suppress cancer cell growth. In this study, we used two anti-inflammatory drugs, cilostazol and meloxicam, for the treatment of CML. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the synergism occurrence was calculated by compusyn software. Annexin V/PI test and Hoechst staining were used to determine the apoptosis rate. To determine the pathway of apoptosis induction, the expression of BCL2 Associated X (Bax) and B-cell lymphoma-2 (Bcl-2) apoptotic genes and caspases activity were evaluated. The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. Western blot analysis and immunofluorescence were performed to estimate alterations in Ak strain transforming-1 (AKT-1), phosphprylated AKT-1 (p-AKT-1), adenosine mono-phosphate-kinase (AMPK), and phosphorylated AMPK (p-AMPK) proteins and BCR/ABL and c-Myc distribution, respectively. Results showed that cilostazol, meloxicam, and their combination drug reduced cell viability (p < 0.05). Compared with control, expression of Bax and Bcl-2 decreased in treated cells, respectively (p < 0.05). The caspase-9 activity increased in treated cells compared to control cells (p < 0.001). The applied drugs decreased the protein level of p-AKT-1 while increasing the p-AMPK protein level (p < 0.05). BCR/ABL and c-Myc Protein distribution significantly decreased in treated cells. In conclusion, the combination drug had more cytotoxic effects than cilostazol and meloxicam alone and induced apoptosis by inhibiting AKT-1 activation and c-Myc reduction. Therefore using combination drugs effectively can treat cancers of CML origin.
Collapse
Affiliation(s)
- Laya Naderbar
- Biology department, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Yaghub Pazhang
- Biology department, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Xue Y, Li X, Wang Z, Lv Q. Cilostazol regulates the expressions of endothelin‑1 and endothelial nitric oxide synthase via activation of the p38 MAPK signaling pathway in HUVECs. Biomed Rep 2022; 17:77. [DOI: 10.3892/br.2022.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ying Xue
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoye Li
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zi Wang
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qianzhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway. Inflammopharmacology 2022; 30:2477-2488. [PMID: 35727381 DOI: 10.1007/s10787-022-01010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Abstract
The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medications for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behavioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus aluminum-induced memory impairment.
Collapse
|
8
|
Cilostazol Induces eNOS and TM Expression via Activation with Sirtuin 1/Krüppel-like Factor 2 Pathway in Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910287. [PMID: 34638626 PMCID: PMC8508979 DOI: 10.3390/ijms221910287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.
Collapse
|
9
|
Dong Y, Fan X, Wang Z, Zhang L, Guo S. Circ_HECW2 functions as a miR-30e-5p sponge to regulate LPS-induced endothelial-mesenchymal transition by mediating NEGR1 expression. Brain Res 2020; 1748:147114. [DOI: 10.1016/j.brainres.2020.147114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
|
10
|
Yi L, Chang M, Zhao Q, Zhou Z, Huang X, Guo F, Huan J. Genistein-3'-sodium sulphonate protects against lipopolysaccharide-induced lung vascular endothelial cell apoptosis and acute lung injury via BCL-2 signalling. J Cell Mol Med 2019; 24:1022-1035. [PMID: 31756053 PMCID: PMC6933390 DOI: 10.1111/jcmm.14815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/26/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Under septic conditions, Lipopolysaccharide (LPS)‐induced apoptosis of lung vascular endothelial cells (ECs) triggers and aggravates acute lung injury (ALI), which so far has no effective therapeutic options. Genistein‐3′‐sodium sulphonate (GSS) is a derivative of native soy isoflavone, which has neuro‐protective effects through its anti‐apoptotic property. However, whether GSS protects against sepsis‐induced lung vascular endothelial cell apoptosis and ALI has not been determined. In this study, we found that LPS‐induced Myd88/NF‐κB/BCL‐2 signalling pathway activation and subsequent EC apoptosis were effectively down‐regulated by GSS in vitro. Furthermore, GSS not only reversed the sepsis‐induced BCL‐2 changes in expression in mouse lungs but also blocked sepsis‐associated lung vascular barrier disruption and ALI in vivo. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis‐induced ALI via its regulating effects on Myd88/NF‐κB/BCL‐2 signalling in lung ECs.
Collapse
Affiliation(s)
- Lei Yi
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanming Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Kim MY, Noh Y, Son SJ, Shin S, Paik HY, Lee S, Jung YS. Effect of Cilostazol on Incident Dementia in Elderly Men and Women with Ischemic Heart Disease. J Alzheimers Dis 2019; 63:635-644. [PMID: 29660935 DOI: 10.3233/jad-170895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ischemic heart disease (IHD) is associated with cognitive decline and may contribute to an increased risk of dementia. OBJECTIVE The goal of the present study was to investigate whether cilostazol use is associated with a lower risk of incident dementia in Asian patients with IHD, and whether these effects differed based on sex. METHODS This retrospective cohort study was performed using the Korean National Insurance Claim Data of the Health Insurance Review and Assessment Service; the duration of the study was from January 1, 2007 to December 31, 2015. The study group comprised 66,225 patients with IHD, aged >65 years, who had received cilostazol. Age- and sex-matched IHD patients without cilostazol exposure were selected as the control group. The risk of dementia was compared between the cilostazol and control groups. RESULTS Compared to the control group, total cilostazol users had a marginally significant lower risk of incident dementia. After stratification by sex, the reducing effect of cilostazol on incident dementia was significant in female participants, but not in male participants. Female patients who had cilostazol for over 2 years showed a clinically meaningful preventive effect (HR, 0.85; 95% CI, 0.82-0.88). CONCLUSIONS This study suggested that cilostazol treatment may reduce the risk of incident dementia in Korean patients with IHD. Its beneficial effect was remarkably significant in female patients who received cilostazol for over a 2-year period.
Collapse
Affiliation(s)
- Mi-Young Kim
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Yoojin Noh
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University, School of Medicine, Suwon, Republic of Korea
| | - Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon, Republic of Korea
| | - Hee-Young Paik
- Center for Gendered Innovations in Science and Technology Research, Seoul, Republic of Korea.,Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sukhyang Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Nan D, Jin H, Deng J, Yu W, Liu R, Sun W, Huang Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J 2019; 33:10152-10164. [PMID: 31184927 DOI: 10.1096/fj.201900326r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress is essential for brain ischemia/reperfusion (I/R) injury. However, whether it contributes to I/R-induced blood-brain barrier (BBB) injury remains unclear. cilostazol exerts protective effects toward I/R-induced BBB injury, with unclear mechanisms. This study explored the potential role of ER stress in I/R-induced endothelial cell damage and determined whether the therapeutic potential of cilostazol, with respect to I/R-induced endothelial cell damage, is related to inhibition of ER stress. We found that exposing brain endothelial cells (bEnd.3) to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly activated ER stress and diminished the barrier function of cell monolayers; treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) or cilostazol prevented OGD/R-induced ER stress and preserved barrier function. Furthermore, OGD/R induced the expression and secretion of matrix metalloproteinase-9 and nuclear translocation of phosphorylated NF-κB. These changes were partially reversed by 4-PBA or cilostazol treatment. In vivo, 4-PBA or cilostazol significantly attenuated I/R-induced ER stress and ameliorated Evans blue leakage and tight junction loss. These results demonstrate that I/R-induced ER stress participates in BBB disruption. Targeting ER stress could be a useful strategy to protect the BBB from ischemic stroke, and cilostazol is a promising therapeutic agent for this process.-Nan, D., Jin, H., Deng, J., Yu, W., Liu, R., Sun, W., Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Insights into the potential antidepressant mechanisms of cilostazol in chronically restraint rats: impact on the Nrf2 pathway. Behav Pharmacol 2019; 29:28-40. [PMID: 28763303 DOI: 10.1097/fbp.0000000000000335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ample evidence has pointed to a close link between oxidative stress, mitochondrial dysfunction, and depression. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of cellular redox homeostasis and affects mitochondrial function. Nrf2 holds promise for depression prevention and treatment. This study aimed to investigate the potential prophylactic antidepressant effect of cilostazol and the contribution of the Nrf2 pathway toward the putative neuroprotection. The behavioral and neurochemical effects of concomitant treatment of oral cilostazol at doses of 7.5, 15, and 30 mg/kg/day in Wistar rats exposed to chronic restraint stress (CRS) for 4 weeks were assayed. Cilostazol prevented CRS-induced depressive-like behavior shown in sucrose-preference, forced-swimming, and open-field tests, and hypothalamus-pituitary-adrenal axis hyperactivity (adrenal gland weight and serum corticosterone). Cilostazol prevented CRS-induced increase in hippocampal lipid peroxidation and 8-hydroxy-2'-deoxyguanosine, and a decrease in antioxidant activities (glutathione level, superoxide dismutase, and catalase). Western blot and PCR showed that cilostazol favorably modulated the Nrf2 protein and heme oxygenase-1 and NAD(P)H: quinone oxidoreductase-1 gene expression in the hippocampus of CRS rats. Cilostazol also prevented the decrease in the hippocampal activities of mitochondrial respiratory enzyme complexes I-IV. These behavioral and biochemical findings indicated the potential prophylactic antidepressant effect and mechanism of cilostazol by preventing oxidative stress by activation of redox defense mechanisms mediated through the Nrf2 pathway and restoring mitochondrial dysfunction.
Collapse
|
14
|
Xie X, Xu X, Sun C, Yu Z. Protective effects of cilostazol on ethanol-induced damage in primary cultured hepatocytes. Cell Stress Chaperones 2018; 23:203-211. [PMID: 29264710 PMCID: PMC5823801 DOI: 10.1007/s12192-017-0828-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023] Open
Abstract
Alcoholic liver disease (ALD) caused by excessive alcohol consumption is associated with oxidative stress, mitochondrial dysfunction, and hepatocellular apoptosis. Cilostazol, a licensed clinical drug used to treat intermittent claudication, has been reported to act as a protective agent in a spectrum of diseases. However, little information regarding its role in ethanol-induced hepatocellular toxicity has been reported. In the current study, we investigated the protective effects and mechanisms of cilostazol on ethanol-induced hepatocytic injury. Rat primary hepatocytes were pretreated with cilostazol prior to ethanol treatment. MTT and LDH assay indicated that ethanol-induced cell death was ameliorated by cilostazol in a dose-dependent manner. Our results display that overproduction of intracellular reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE) induced by ethanol was attenuated by pretreatment with cilostazol. Furthermore, cilostazol significantly inhibited ethanol-induced generation of ROS in mitochondria. Importantly, it was shown that cilostazol could improve mitochondrial function in primary hepatocytes by restoring the levels of ATP and mitochondrial membrane potential (MMP). Additionally, cilostazol was found to reduce apoptosis induced by ethanol using a terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Mechanistically, we found that cilostazol prevented mitochondrial pathway-mediated apoptotic signals by reversing the expression of Bax and Bcl2, the level of cleaved caspase-3, and attenuating cytochrome C release. These findings suggest the possibility of novel ALD therapies using cilostazol.
Collapse
Affiliation(s)
- Xuhua Xie
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Xiaopei Xu
- Department of Physical Examination, The Third People's Hospital of Henan Province, Zhengzhou, Henan, 450006, China
| | - Changyu Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
15
|
Umebayashi R, Uchida HA, Kakio Y, Subramanian V, Daugherty A, Wada J. Cilostazol Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysms but Not Atherosclerosis in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:903-912. [PMID: 29437572 DOI: 10.1161/atvbaha.117.309707] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a permanent dilation of the abdominal aorta associated with rupture, which frequently results in fatal consequences. AAA tissue is commonly characterized by localized structural deterioration accompanied with inflammation and profound accumulation of leukocytes, although the specific function of these cells is unknown. Cilostazol, a phosphodiesterase III inhibitor, is commonly used for patients with peripheral vascular disease or stroke because of its anti-platelet aggregation effect and anti-inflammatory effect, which is vasoprotective effect. In this study, we evaluated the effects of cilostazol on angiotensin II-induced AAA formation. APPROACH AND RESULTS Male apolipoprotein E-deficient mice were fed either normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, mice were infused with angiotensin II (1000 ng/kg per minute) for 4 weeks. Angiotensin II infusion increased maximal diameters of abdominal aortas, whereas cilostazol administration significantly attenuated dilatation of abdominal aortas, thereby, reducing AAA incidence. Cilostazol also reduced macrophage accumulation, matrix metalloproteinases activation, and inflammatory gene expression in the aortic media. In cultured vascular endothelial cells, cilostazol reduced expression of inflammatory cytokines and adhesive molecules through activation of the cAMP-PKA (protein kinase A) pathway. CONCLUSIONS Cilostazol attenuated angiotensin II-induced AAA formation by its anti-inflammatory effect through phosphodiesterase III inhibition in the aortic wall. Cilostazol may be a promising new therapeutic option for AAAs.
Collapse
Affiliation(s)
- Ryoko Umebayashi
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Haruhito A Uchida
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington.
| | - Yuki Kakio
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Venkateswaran Subramanian
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Jun Wada
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| |
Collapse
|
16
|
Phosphodiesterase-3 inhibitor cilostazol reverses endothelial dysfunction with ageing in rat mesenteric resistance arteries. Eur J Pharmacol 2018; 822:59-68. [PMID: 29355555 DOI: 10.1016/j.ejphar.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Ageing impairs endothelial function, which is considered a hallmark of the development of cardiovascular diseases in elderly. Cilostazol, a phosphodiesterase-3 inhibitor, has antiplatelet, antithrombotic and protective effects on endothelial cells. Here, we hypothesized that cilostazol could improve endothelial function in mesenteric resistance arteries (MRA) from old rats. Using eight-week cilostazol-treated (100mg/kg/day) or untreated 72-week-old Wistar rats, we evaluate the relaxation to acetylcholine, sodium nitroprusside (SNP), forskolin and isoproterenol and the noradrenaline-induced contraction in MRA. Superoxide anion and nitric oxide (NO) was measured by dihydroethidium- and diaminofluorescein-2-emitted fluorescence, respectively. Normotensive old rats had impaired acetylcholine-induced NO- and EDHF-mediated relaxation and increased noradrenaline vasoconstriction than young rats. This age-associated endothelial dysfunction was restored by cilostazol treatment. Relaxation to SNP, forskolin or isoproterenol remained unmodified by cilostazol. Diaminofluorescein-2-emitted fluorescence was increased while dihydroethidium-emitted was decreased by cilostazol, indicating increased NO and reduced superoxide generation, respectively. Cilostazol improves endothelial function in old MRA without affecting blood pressure. This protective effect of cilostazol could be attributed to reduced oxidative stress, increased NO bioavailability and EDHF-type relaxation. Although these results are preliminary, we believe that should stimulate further interest in cilostazol as an alternative for the treatment of age-related vascular disorders.
Collapse
|
17
|
Sumbria RK, Vasilevko V, Grigoryan MM, Paganini-Hill A, Kim R, Cribbs DH, Fisher MJ. Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. J Neuroinflammation 2017; 14:114. [PMID: 28583195 PMCID: PMC5460510 DOI: 10.1186/s12974-017-0885-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development. METHODS The effect of PDE3A pathway inhibition was studied in the inflammation-induced and cerebral amyloid angiopathy (CAA)-associated mouse models of CMH. The PDE3A pathway was modulated using two approaches: genetic deletion of PDE3A and pharmacological inhibition of PDE3A by cilostazol. The effects of PDE3A pathway modulation on H&E- and Prussian blue (PB)-positive CMH development, BBB function (IgG, claudin-5, and fibrinogen), and neuroinflammation (ICAM-1, Iba-1, and GFAP) were investigated. RESULTS Robust development of CMH in the inflammation-induced and CAA-associated spontaneous mouse models was observed. Inflammation-induced CMH were associated with markers of BBB dysfunction and inflammation, and CAA-associated spontaneous CMH were associated primarily with markers of neuroinflammation. Genetic deletion of the PDE3A gene did not alter BBB function, microglial activation, or CMH development, but significantly reduced endothelial and astrocyte activation in the inflammation-induced CMH mouse model. In the CAA-associated CMH mouse model, PDE3A modulation via pharmacological inhibition by cilostazol did not alter BBB function, neuroinflammation, or CMH development. CONCLUSIONS Modulation of the PDE3A pathway, either by genetic deletion or pharmacological inhibition, does not alter CMH development in an inflammation-induced or in a CAA-associated mouse model of CMH. The role of microglial activation and BBB injury in CMH development warrants further investigation.
Collapse
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | | | | - Ronald Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, CA, USA. .,Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA. .,UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
18
|
Russell TE, Kasper GC, Seiwert AJ, Comerota AJ, Lurie F. Cilostazol May Improve Maturation Rates and Durability of Vascular Access for Hemodialysis. Vasc Endovascular Surg 2017; 51:120-124. [DOI: 10.1177/1538574417692464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cilostazol is effective in controlling pathophysiological pathways similar or identical to those involved in nonmaturation and failure of the arteriovenous access. This case–control study examined whether cilostazol would improve maturation rates and durability of vascular access for hemodialysis. The treatment group included 33 patients who received cilostazol for ≥30 days prior to creation of a dialysis access and continued with cilostazol therapy for ≥60 days after surgery. The matched (gender, age, race, diabetes, and the year of surgery) control group included 116 patients who underwent the same procedure but did not receive cilostazol prior to and at least 3 months after surgery. Primary outcomes were maturation and, for those that matured, time of functioning access, defined as the time from the first use to irreparable failure of the access. Secondary outcomes were time to maturation, complications, and time to first complication. Study group patients were 3.8 times more likely to experience fistula maturation compared to the controls (88% vs 66%, RR = 3.8, 95% confidence interval: 1.3-11.6, P = .016). Fewer patients in the study group had complications (76% vs 92%, P = .025), and the time from construction of the fistula to the first complication was longer (345.6 ± 441 days vs 198.3 ± 185.0 days, P = .025). Time to maturation was similar in both groups (119.3 ± 62.9 days vs 100.2 ± 61.7 days, P = .2). However, once matured, time to failure was significantly longer in the treatment group (903.7 ± 543.6 vs 381.6 ± 317.2 days, P = .001). Multivariate analysis confirmed that the likelihood of maturation was significantly higher in the treatment group patients. These results suggest that dialysis access patients may benefit from preoperative and postoperative cilostazol therapy. If confirmed by a randomized trial, this treatment will have a major beneficial impact on patients dependent on a well-functioning access for their hemodialysis.
Collapse
Affiliation(s)
- Todd E. Russell
- Jobst Vascular Institute, The Toledo Hospital, Toledo, OH, USA
| | | | | | - Anthony J. Comerota
- Jobst Vascular Institute, The Toledo Hospital, Toledo, OH, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Fedor Lurie
- Jobst Vascular Institute, The Toledo Hospital, Toledo, OH, USA
- University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Mustapha O, Kim KS, Shafique S, Kim DS, Jin SG, Seo YG, Youn YS, Oh KT, Lee BJ, Park YJ, Yong CS, Kim JO, Choi HG. Development of novel cilostazol–loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation. Colloids Surf B Biointerfaces 2017; 150:216-222. [DOI: 10.1016/j.colsurfb.2016.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
20
|
Malhotra K, Khunger M, Ouyang B, Liebeskind DS, Mohammad YM. Interaction of incidental microbleeds and prior use of antithrombotics with early hemorrhagic transformation: Causative or protective? Ann Indian Acad Neurol 2016; 19:467-471. [PMID: 27994355 PMCID: PMC5144467 DOI: 10.4103/0972-2327.194423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Gradient echo (GRE) sequence of magnetic resonance imaging (MRI) is a sensitive tool to detect hemorrhagic transformation (HT) and old cerebral microbleeds (CMBs). Presence of CMBs and prior use of antithrombotics pose a risk of HT in ischemic stroke. We evaluated the association of CMBs and antithrombotic use with resultant HT in acute ischemic stroke (AIS). METHODS This retrospective study included AIS patients admitted to our center between January 2009 and August 2010 who underwent GRE-weighted MRI within 48 h of admission. Demographic and clinical data including diabetes mellitus, hypertension, hyperlipidemia, prior intake of antiplatelets/anticoagulants/statins, and presence of CMBs at admission were collected and compared between patients who developed HT and those who did not. We did a multivariate analysis using logistic regression to assess the effect of CMBs and prior use of antithrombotic agents on the risk of development for early HT in ischemic stroke. RESULTS Of 529 AIS patients, 81 (15%) were found to have HT during the initial hospital course. CMBs were found in only 9 of 81 patients (11%) with HT and in 40 out of remaining 448 patients (9%) who did not develop HT. The presence of CMBs was not associated with increased risk of HT (P = 0.53). However, prior use of antiplatelets (33% vs. 47% in the patients without HT, P = 0.02) was associated with decreased risk of HT in ischemic stroke. CONCLUSION Presence of incidental CMBs was not associated with increased risk for early HT of an ischemic stroke. Interestingly, the prior intake of antiplatelets was found to be protective against HT of ischemic stroke.
Collapse
Affiliation(s)
- Konark Malhotra
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Bichun Ouyang
- Department of Neurology, RUSH University Medical Center, Chicago, IL, USA
| | - David S Liebeskind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yousef M Mohammad
- Department of Internal Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Jiang Y, Zeng Y, Huang X, Qin Y, Luo W, Xiang S, Sooranna SR, Pinhu L. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1023-L1035. [PMID: 27765761 PMCID: PMC5206403 DOI: 10.1152/ajplung.00043.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.
Collapse
MESH Headings
- A549 Cells
- Active Transport, Cell Nucleus/drug effects
- Animals
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Endothelin-1/metabolism
- Kidney/drug effects
- Kidney/pathology
- Lipopolysaccharides/pharmacology
- Liver/drug effects
- Liver/pathology
- Lung/drug effects
- Lung/metabolism
- Male
- NF-kappa B/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Respiratory Distress Syndrome/enzymology
- Respiratory Distress Syndrome/genetics
- Respiratory Distress Syndrome/pathology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yujie Jiang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yi Zeng
- Department of Central Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xia Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yueqiu Qin
- Department of Digestive, Youjiang Medical University for Nationalities, Baise, Guangxi, China; Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | | | - Shulin Xiang
- Department of Intensive Care Unit, the People's Hospital of Guangxi, Nanning, Guangxi, China
| | - Suren R Sooranna
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdon; and
| | - Liao Pinhu
- Department of Intensive Care Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
22
|
Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, Huan J. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway. Front Cell Infect Microbiol 2016; 6:133. [PMID: 27807512 PMCID: PMC5069405 DOI: 10.3389/fcimb.2016.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Orthopedics, Shanghai Fengxian Central Hospital, Branch of The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jiajun Tang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
23
|
Qi DS, Tao JH, Zhang LQ, Li M, Wang M, Qu R, Zhang SC, Liu P, Liu F, Miu JC, Ma JY, Mei XY, Zhang F. Neuroprotection of Cilostazol against ischemia/reperfusion-induced cognitive deficits through inhibiting JNK3/caspase-3 by enhancing Akt1. Brain Res 2016; 1653:67-74. [PMID: 27769787 DOI: 10.1016/j.brainres.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
Cilostazol(CTL) is a phosphodiesterase inhibitor, which has been widely used as anti-platelet agent. It also has preventive effects on various central nervous system (CNS) diseases, including ischemic stroke, Parkinson's disease and Alzheimer disease. However, the molecular mechanism underlying the protective effects of CTL is still unclear, and whether CTL can prevent I/R induced cognitive deficit has not been reported. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of CTL on anxiety-like behavioral and cognitive impairment after I/R. Western blotting were performed to examine the expression of related proteins, and HE-staining was used to detect the percentage of neuronal death in the hippocampal CA1 region. Here we found that CTL significantly improved cognitive deficits and the behavior of rats in Morris water maze and open field tasks (P<0.05). HE staining results showed that CTL could significantly protect CA1 neurons against cerebral I/R (P<0.05). Additionally, Akt1 phosphorylation levels were evidently up-regulated (P<0.05), while the activation of JNK3, which is an important contributor to I/R-induced neuron apoptosis, was reduced by CTL after I/R (P<0.05), and caspase-3 levels were also decreased by CTL treatment. Furthermore, all of CTL's protective effects were reversed by LY294002, which is a PI3K/Akt1 inhibitor. Taken together, our results suggest that CTL could protect hippocampal neurons and ameliorate the impairment of learning/memory abilities and locomotor/ exploratory activities in ischemic stroke via a PI3K-Akt1/JNK3/caspase-3 dependent mechanism.
Collapse
Affiliation(s)
- Da-Shi Qi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, People's Republic of China; Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China.
| | - Jin-Hao Tao
- Pediatric Emergency and Critical Care Center, Children' Hospital of Fudan University, Shanghai, People's Republic of China
| | - Lian-Qin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, People's Republic of China; Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Man Li
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, People's Republic of China; Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Mei Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Rui Qu
- Xuzhou Medical College affiliated Hospital, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Shi-Chun Zhang
- Xuzhou Mine Hosptial, Xuzhou, Jiangsu, People's Republic of China
| | - Pei Liu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Fuming Liu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Jian-Cheng Miu
- Sino-British SIPPR/B&K Lab Animal Ltd., People's Republic of China
| | - Jing-Yi Ma
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Xin-Yu Mei
- Interdisciplinary Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Fayong Zhang
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
El-Dessouki AM, Galal MA, Awad AS, Zaki HF. Neuroprotective Effects of Simvastatin and Cilostazol in L-Methionine-Induced Vascular Dementia in Rats. Mol Neurobiol 2016; 54:5074-5084. [PMID: 27544235 DOI: 10.1007/s12035-016-0051-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Vascular dementia (VaD) is a degenerative cerebrovascular disorder that leads to progressive decline in cognitive abilities and memory. Several reports demonstrated that oxidative stress and endothelial dysfunction are principal pathogenic factors in VaD. The present study was constructed to determine the possible neuroprotective effects of simvastatin in comparison with cilostazol in VaD induced by L-methionine in rats. Male Wistar rats were divided into four groups. Group I (control group), group II received L-methionine (1.7 g/kg, p.o.) for 32 days. The remaining two groups received simvastatin (50 mg/kg, p.o.) and cilostazol (100 mg/kg, p.o.), respectively, for 32 days after induction of VaD by L-methionine. Subsequently, rats were tested for cognitive performance using Morris water maze test then sacrificed for biochemical and histopathological assays. L-methionine induced VaD reflected by alterations in rats' behavior as well as the estimated neurotransmitters, acetylcholinesterase activity as well as increased brain oxidative stress and inflammation parallel to histopathological changes in brain tissue. Treatment of rats with simvastatin ameliorated L-methionine-induced behavioral, neurochemical, and histological changes in a manner comparable to cilostazol. Simvastatin may be regarded as a potential therapeutic strategy for the treatment of VaD. To the best of our knowledge, this is the first study to reveal the neuroprotective effects of simvastatin or cilostazol in L-methionine-induced VaD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
25
|
Design and Rationale for a Cognitive Outcome Substudy in Ischemic Stroke Patients with High Risk of Cerebral Hemorrhage. J Stroke Cerebrovasc Dis 2016; 25:2061-6. [PMID: 27263034 DOI: 10.1016/j.jstrokecerebrovasdis.2016.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022] Open
Abstract
GOAL Cognitive impairment and dementia are common disabilities after stroke and are associated with increased risks of mortality and recurrent stroke. The prevention of dementia and preserving cognitive function are also important in stroke patients, but its strategy is not established yet. This PICASSO-COG (PreventIon of CArdiovascular events in iSchemic Stroke patients with high risk of cerebral hemOrrhage for reducing COGnitive decline) substudy aims to assess the effects of cilostazol and/or probucol on cognitive function. MATERIALS AND METHODS The substudy aims to assess the reduction in cognitive decline of patients treated with cilostazol and/or probucol in the PICASSO trial. Patients will be assessed using the Korean version of mini-mental state examination and Montreal Cognitive Assessment at 4, 7, 10, 13, 25, 37, and 49 months after randomization. The primary outcome is the change in mini-mental status examination score, compared between treatment groups, with a modified intention-to-treat population using a restricted maximum likelihood-based mixed effects model repeat measurement. This will allow a within-subject correlation due to repeated cognitive tests as well as a different number of measurements among subjects at baseline and each follow-up period. CONCLUSION PICASSO-COG is a novel study for assessing the effect on cognitive function of different antiplatelet regimens and the addition of a nonstatin lipid-lowering agent to the current standard statin therapy in patients who have a recent ischemic lesion and prior intracerebral macro- or microbleeds.
Collapse
|
26
|
Wang W, Zhang L, Liu W, Zhu Q, Lan Q, Zhao J. Antiplatelet Agents for the Secondary Prevention of Ischemic Stroke or Transient Ischemic Attack: A Network Meta-Analysis. J Stroke Cerebrovasc Dis 2016; 25:1081-1089. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/01/2022] Open
|
27
|
Abdelsameea AA, Mohamed AM, Amer MG, Attia SM. Cilostazol attenuates gentamicin-induced nephrotoxicity in rats. ACTA ACUST UNITED AC 2016; 68:247-53. [DOI: 10.1016/j.etp.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/26/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
|
28
|
Xi H, Zhang Y, Xu Y, Yang WY, Jiang X, Sha X, Cheng X, Wang J, Qin X, Yu J, Ji Y, Yang X, Wang H. Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circ Res 2016; 118:1525-39. [PMID: 27006445 DOI: 10.1161/circresaha.116.308501] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 01/22/2023]
Abstract
RATIONALE Endothelial injury is an initial mechanism mediating cardiovascular disease. OBJECTIVE Here, we investigated the effect of hyperhomocysteinemia on programed cell death in endothelial cells (EC). METHODS AND RESULTS We established a novel flow-cytometric gating method to define pyrotosis (Annexin V(-)/Propidium iodide(+)). In cultured human EC, we found that: (1) homocysteine and lipopolysaccharide individually and synergistically induced inflammatory pyroptotic and noninflammatory apoptotic cell death; (2) homocysteine/lipopolysaccharide induced caspase-1 activation before caspase-8, caspase-9, and caspase-3 activations; (3) caspase-1/caspase-3 inhibitors rescued homocysteine/lipopolysaccharide-induced pyroptosis/apoptosis, but caspase-8/caspase-9 inhibitors had differential rescue effect; (4) homocysteine/lipopolysaccharide-induced nucleotide-binding oligomerization domain, and leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) protein caused NLRP3-containing inflammasome assembly, caspase-1 activation, and interleukin (IL)-1β cleavage/activation; (5) homocysteine/lipopolysaccharide elevated intracellular reactive oxygen species, (6) intracellular oxidative gradient determined cell death destiny as intermediate intracellular reactive oxygen species levels are associated with pyroptosis, whereas high reactive oxygen species corresponded to apoptosis; (7) homocysteine/lipopolysaccharide induced mitochondrial membrane potential collapse and cytochrome-c release, and increased B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio which were attenuated by antioxidants and caspase-1 inhibitor; and (8) antioxidants extracellular superoxide dismutase and catalase prevented homocysteine/lipopolysaccharide -induced caspase-1 activation, mitochondrial dysfunction, and pyroptosis/apoptosis. In cystathionine β-synthase-deficient (Cbs(-/-)) mice, severe hyperhomocysteinemia-induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1, caspase-9 protein/activity and B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio in Cbs(-/-) aorta and human umbilical vein endothelial cells. Finally, homocysteine-induced DNA fragmentation was reversed in caspase-1(-/-) EC. Hyperhomocysteinemia-induced aortic endothelial dysfunction was rescued in caspase-1(-/-) and NLRP3(-/-) mice. CONCLUSIONS Hyperhomocysteinemia preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis.
Collapse
Affiliation(s)
- Hang Xi
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Yuling Zhang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Yanjie Xu
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - William Y Yang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Xiaojin Sha
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Xiaoshu Cheng
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Jingfeng Wang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Xuebin Qin
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Jun Yu
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Yong Ji
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.).
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research (H.X., Y.Z., Y.X., W.Y.Y., X.J., J.Y., X.Y., H.W.), Cardiovascular Research (X.S., X.Y., H.W.), Thrombosis Research (X.Y., H.W.), Departments of Pharmacology (X.Y., H.W.), Neuroscience (X.Q.), Temple University School of Medicine, Philadelphia, PA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China (Y.Z., J.W.); Department of Cardiology, Second Hospital of Nanchang University, Institute of Cardiovascular Disease in Nanchang University, Nan Chang, Jiang Xi, China (Y.X., X.C.); and Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China (Y.J.).
| |
Collapse
|
29
|
Shi MQ, Su FF, Xu X, Liu XT, Wang HT, Zhang W, Li X, Lian C, Zheng QS, Feng ZC. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells. Mol Med Rep 2016; 13:2597-605. [PMID: 26862035 PMCID: PMC4768974 DOI: 10.3892/mmr.2016.4881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/20/2016] [Indexed: 01/14/2023] Open
Abstract
Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Miao-Qian Shi
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Fei-Fei Su
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuan Xu
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Xiong-Tao Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Tao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Cheng Lian
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiang-Sun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Chun Feng
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| |
Collapse
|
30
|
Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3949813. [PMID: 27057275 PMCID: PMC4736599 DOI: 10.1155/2016/3949813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
The selective type-3 phosphodiesterase inhibitor cilostazol and the antihyperlipidemic agent probucol have antioxidative, anti-inflammatory, and antiatherogenic properties. Moreover, cilostazol and probucol can regulate mitochondrial biogenesis. However, the combinatorial effect of cilostazol and probucol on mitochondrial biogenesis remains unknown. Endoplasmic reticulum (ER) stress is a well-known causative factor of nonalcoholic fatty liver disease (NAFLD) which can impair mitochondrial function in hepatocytes. Here, we investigated the synergistic effects of cilostazol and probucol on mitochondrial biogenesis and ER stress-induced hepatic steatosis. A synergistic effect of cilostazol and probucol on HO-1 and mitochondrial biogenesis gene expression was found in human hepatocellular carcinoma cells (HepG2) and murine primary hepatocytes. Furthermore, in an animal model of ER stress involving tunicamycin, combinatorial treatment with cilostazol and probucol significantly increased the expression of HO-1 and mitochondrial biogenesis-related genes and proteins, whereas it downregulated serum ALT, eIF2 phosphorylation, and CHOP expression, as well as the lipogenesis-related genes SREBP-1c and FAS. Based on these results, we conclude that cilostazol and probucol exhibit a synergistic effect on the activation of mitochondrial biogenesis via upregulation of HO-1, which confers protection against ER stress-induced hepatic steatosis.
Collapse
|
31
|
Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model. Int J Mol Sci 2015; 16:29329-44. [PMID: 26690139 PMCID: PMC4691110 DOI: 10.3390/ijms161226166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022] Open
Abstract
It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage.
Collapse
|
32
|
Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G21-9. [PMID: 25951827 DOI: 10.1152/ajpgi.00307.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Zheng
- School of Biological Sciences, University of Ulsan, Ulsan, Korea; Department of Neurology, Affiliated Hospital of YanBian University, YanJi, China
| | - Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Md Jamal Uddin
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Seul-Ki Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Yingqing Chen
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; and
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, Korea;
| |
Collapse
|
33
|
Ke K, Safder AM, Sul OJ, Suh JH, Joe Y, Chung HT, Choi HS. Cilostazol attenuates ovariectomy-induced bone loss by inhibiting osteoclastogenesis. PLoS One 2015; 10:e0124869. [PMID: 25992691 PMCID: PMC4436362 DOI: 10.1371/journal.pone.0124869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/21/2015] [Indexed: 01/13/2023] Open
Abstract
Background Cilostazol has been reported to alleviate the metabolic syndrome induced by increased intracellular adenosine 3’,5’-cyclic monophosphate (cAMP) levels, which is also associated with osteoclast (OC) differentiation. We hypothesized that bone loss might be attenuated via an action on OC by cilostazol. Methodology and Principal Findings To test this idea, we investigated the effect of cilostazol on ovariectomy (OVX)-induced bone loss in mice and on OC differentiation in vitro, using μCT and tartrate-resistant acid phosphatase staining, respectively. Cilostazol prevented from OVX-induced bone loss and decreased oxidative stress in vivo. It also decreased the number and activity of OC in vitro. The effect of cilostazol on reactive oxygen species (ROS) occurred via protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factor 1, two major effectors of cAMP. Knockdown of NADPH oxidase using siRNA of p47phox attenuated the inhibitory effect of cilostazol on OC formation, suggesting that decreased OC formation by cilostazol was partly due to impaired ROS generation. Cilostazol enhanced phosphorylation of nuclear factor of activated T cells, cytoplasmic 1 (NFAT2) at PKA phosphorylation sites, preventing its nuclear translocation to result in reduced receptor activator of nuclear factor-κB ligand-induced NFAT2 expression and decreased binding of nuclear factor-κB-DNA, finally leading to reduced levels of two transcription factors required for OC differentiation. Conclusions/Significance Our data highlight the therapeutic potential of cilostazol for attenuating bone loss and oxidative stress caused by loss of ovarian function.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Ali Muhammad Safder
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 682-714, Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hun-Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
34
|
Ihara M, Nishino M, Taguchi A, Yamamoto Y, Hattori Y, Saito S, Takahashi Y, Tsuji M, Kasahara Y, Takata Y, Okada M. Cilostazol add-on therapy in patients with mild dementia receiving donepezil: a retrospective study. PLoS One 2014; 9:e89516. [PMID: 24586841 PMCID: PMC3935872 DOI: 10.1371/journal.pone.0089516] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
Goal Combinatorial therapy directed at both vascular and neurodegenerative aspects of dementia may offer a promising strategy for treatment of dementia, which often has a multifactorial basis in the elderly. We investigated whether the phosphodiesterase III inhibitor cilostazol, which is often used in the prevention of stroke and peripheral artery disease, may delay cognitive decline in the elderly receiving donepezil. Methods Medical records were retrospectively surveyed to identify patients who had received donepezil for more than one year and had undergone Mini-Mental State Examination (MMSE) at least at two time points. Those with an initial MMSE score of less than 27 points were subjected to analysis (n = 156), with a cut-point of 21/22 applied to assign them to mild (n = 70) and moderate/severe (n = 86) dementia. The change of total MMSE score per year was compared between patients who had received donepezil and those given both donepezil and cilostazol. Findings In patients with mild dementia who had received donepezil and cilostazol (n = 34; 77.2±6.8 years old), the annual change in MMSE score was −0.5±1.6 during an observational period of 28.6±11.7 months, with those receiving donepezil only (n = 36; 78.4±6.5 years old) scoring less (−2.2±4.1) during 30.4±12.8 months with a statistical intergroup difference (p = 0.022). Multivariate analysis showed that absence of cilostazol treatment was the only significant predictor of MMSE decline. A positive effect of cilostazol was found in three subscale scores of MMSE, orientation for time or place and delayed recall. By clear contrast, in patients with moderate/severe dementia, there were no intergroup differences in decrease of total or subscale MMSE scores between the two groups. Conclusions These results suggest potential for cilostazol treatment in the suppression of cognitive decline in patients receiving donepezil with mild dementia but not in those with moderate/severe dementia.
Collapse
Affiliation(s)
- Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
- * E-mail: (MI); (MO)
| | - Madoka Nishino
- Department of Neurosurgery, Sumoto Itsuki Hospital, Hyogo, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine and Research, Institute of Biomedical Research and Innovation, Hyogo, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yorito Hattori
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yukako Takahashi
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yukiko Kasahara
- Department of Regenerative Medicine and Research, Institute of Biomedical Research and Innovation, Hyogo, Japan
| | - Yu Takata
- Department of Neurosurgery, Sumoto Itsuki Hospital, Hyogo, Japan
| | - Masahiro Okada
- Department of Neurosurgery, Sumoto Itsuki Hospital, Hyogo, Japan
- * E-mail: (MI); (MO)
| |
Collapse
|
35
|
Cilostazol inhibits leukocyte-endothelial cell interactions in murine microvessels after transient bilateral common carotid artery occlusion. Brain Res 2014; 1543:173-8. [PMID: 24309140 DOI: 10.1016/j.brainres.2013.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
Abstract
Leukocyte behavior in the cerebral microvasculature following vessel occlusion has not been fully elucidated. The purpose of this study was to investigate the effects of cilostazol on leukocyte behavior (rolling and adhesion) in murine cerebral microvessels following transient bilateral carotid artery occlusion using intravital fluorescence microscopy. Four groups of mice were assigned: a sham group (n=16); an ischemia (induced by 15-min occlusion of bilateral common carotid arteries) and reperfusion (I/R) group (n=13); I/R+cilostazol (I/R+CZ3 mg/kg) group (I/R after oral administration of cilostazol at 3 mg/kg) (n=8); and I/R+cilostazol (I/R+CZ30 mg/kg) group (I/R after oral administration of cilostazol at 30 mg/kg) (n=12). Leukocytes labeled with 0.05% acridine orange were administered intravenously and their behavior was investigated at 3 and 6 h after reperfusion. Numbers of rolling or adherent leukocytes were expressed as the count per square millimeter per 30s. Numbers of rolling and adherent leukocytes at 3 and 6h after reperfusion were significantly higher in the I/R group than in the sham or I/R+CZ30 mg/kg groups in both pial veins (P<0.05) and pial arteries (P<0.05). Cilostazol (30 mg/kg) inhibited leukocyte-endothelial interactions following cerebral ischemia and reperfusion.
Collapse
|
36
|
Niu PP, Yang G, Xing YQ, Guo ZN, Yang Y. Effect of cilostazol in patients with aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J Neurol Sci 2014; 336:146-51. [DOI: 10.1016/j.jns.2013.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022]
|
37
|
Yamamoto S, Kurokawa R, Kim P. Cilostazol, a selective Type III phosphodiesterase inhibitor: prevention of cervical myelopathy in a rat chronic compression model. J Neurosurg Spine 2014; 20:93-101. [DOI: 10.3171/2013.9.spine121136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Regional blood flow is decreased in experimental models of chronic spinal cord compression, and the alteration presumably contributes to the development of myelopathy. Cilostazol (Otsuka Pharmaceuticals Co.), a selective Type III phosphodiesterase inhibitor, has been shown to be neuroprotective in cerebral hypoperfusion animal models and clinically effective in preventing the recurrence of cerebral infarction. To investigate the neuroprotective effect of cilostazol on cervical spondylotic myelopathy, the preventive effect against progressive motor dysfunction and the loss of anterior horn motor neurons were assessed using a chronic cord compression model in rats.
Methods
To produce chronic cervical cord compression in male Wistar rats, thin polyurethane sheets (3 × 5 × 0.7 mm) that gradually expand over 48–72 hours by absorbing water were implanted under the C5–6 laminae. In sham operations, the sheets were momentarily placed and then immediately removed. This model has been shown to reproduce characteristic features of clinical cervical myelopathy, with progressive motor disturbances after a latency period and insidious neuronal loss preceding the onset of symptoms. In the treatment group, cilostazol (30 mg/kg/day) was orally administered to the rats once a day, starting the day after surgery and continuing through the entire observation period of 25 weeks. In the control group, vehicle solution was administered under the same protocol. Changes in motor function were monitored by measuring bilateral forepaw grip strength and the duration of forced running on a treadmill. Twenty-five weeks after surgery, cervical spinal cords were examined histopathologically.
Results
Cilostazol preserved both forepaw grip strength and forced running capability. The drug also preserved anterior horn motor neurons in the C5–6 spinal cord segment, which diminished in number in the untreated chronic compression group. The drug decreased the number of TUNEL-positive apoptotic cells.
Conclusions
These results indicate that cilostazol is neuroprotective in the chronically compressed cervical cord and is potentially useful in the treatment of cervical spondylotic myelopathy.
Collapse
|
38
|
Takase B, Nagata M, Hattori H, Tanaka Y, Ishihara M. Combined therapeutic effect of probucol and cilostazol on endothelial function in patients with silent cerebral lacunar infarcts and hypercholesterolemia: a preliminary study. Med Princ Pract 2014; 23:59-65. [PMID: 24216721 PMCID: PMC5586847 DOI: 10.1159/000355825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 09/18/2013] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE This study evaluated the efficacy of combined therapy with probucol and cilostazol on endothelial function in silent lacunar cerebral infarcts (SLCI) and mild hypercholesterolemia. SUBJECTS AND METHODS Flow-mediated vasodilatation (FMD) and nitroglycerin-induced vasodilatation (NMD) were measured before and after 4 weeks of combined therapy with probucol (500 mg/day) and cilostazol (200 mg/day) in 34 patients with a mean age of 72 ± 7 years (range 57-80 years) with SLCI, mild hypercholesterolemia (low-density lipoprotein cholesterol >100 mg/dl) and impaired endothelial function (FMD <6%). Patients were randomly allocated to one of the following two treatment groups: (1) aspirin (100 mg/day) with behavioral modifications, such as diet and/or exercise therapy (A group or control group, n = 17), and (2) probucol and cilostazol treatment (PC group, n = 17), also with behavioral modifications. RESULTS Although the baseline FMD was not different between the two treatment arms (2.7 ± 1.5 vs. 2.6 ± 1.5%, n.s.), the posttreatment FMD was significantly improved in the PC group (from 2.7 ± 1.5 to 3.5 ± 1.7%, p < 0.05) but not in the A group (from 2.6 ± 1.5 to 2.9 ± 1.4%, n.s.). No differences were observed between baseline and posttreatment NMD in either group. The effects of treatments on lipid profiles were more profound in the PC group. CONCLUSION Combined treatment with probucol and cilostazol resulted in subacute improvement in FMD/endothelial function in patients with SLCI with mild hypercholesterolemia. This combination therapy has the potential to reduce the risk of cardiovascular events via improvements in endothelial function and lipid profiles.
Collapse
Affiliation(s)
- Bonpei Takase
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Japan
- *Bonpei Takase, MD, 3−2 Namiki, Tokorozawa, Saitama 359-8513 (Japan), E-Mail
| | | | - Hidemi Hattori
- Division of Biomedical Engineering, National Defense Medical College Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Yoshihiro Tanaka
- Division of Biomedical Engineering, National Defense Medical College Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
39
|
Ko YG, Choi SH, Chol Kang W, Kwon Lee B, Wook Kim S, Shim WH. Effects of Combination Therapy with Cilostazol and Probucol versus Monotherapy with Cilostazol on Coronary Plaque, Lipid and Biomarkers: SECURE Study, a Double-Blind Randomized Controlled Clinical Trial. J Atheroscler Thromb 2014; 21:816-30. [DOI: 10.5551/jat.22657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Chen Y, Zhao S, Huang B, Wang Y, Li Y, Waqar AB, Liu R, Bai L, Fan J, Liu E. Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits. Thromb Res 2013; 132:565-71. [DOI: 10.1016/j.thromres.2013.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
|
41
|
Kim NH, Kim HY, An H, Seo JA, Kim NH, Choi KM, Baik SH, Choi DS, Kim SG. Effect of cilostazol on arterial stiffness and vascular adhesion molecules in type 2 diabetic patients with metabolic syndrome: a randomised, double-blind, placebo-controlled, crossover trial. Diabetol Metab Syndr 2013; 5:41. [PMID: 23886346 PMCID: PMC3733748 DOI: 10.1186/1758-5996-5-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phosphodiesterase inhibitor cilostazol has beneficial effects on atherosclerosis by virtue of vasodilatory and antiplatelet effects. However, less is known about the effect of cilostazol on arterial stiffness and biochemical markers related to vascular inflammation and endothelial dysfunction in type 2 diabetic patients with metabolic syndrome. METHODS In this randomized, double-blind, crossover trial, 45 diabetic patients with metabolic syndrome were randomly assigned to either the cilostazol group (50 mg for 2 weeks, 100 mg for 6 weeks) or placebo group for an 8-week treatment phase, and then crossed over. Brachial-ankle pulse wave velocity (baPWV) and serum levels of inflammatory cytokines and vascular cellular adhesion molecules were measured before and after each treatment phase. RESULTS Compared with the placebo group, the mean baPWV did not improve in the cilostazol group (mean difference 31.42 cm/sec, 95% CI -55.67 to 118.5). Cilostazol treatment significantly reduced soluble vascular cellular adhesion molecule-1 (sVCAM-1) level (from 1288.7 ± 285.6 to 1168.2 ± 252.3 ng/dL, P = 0.0003), and there was also significant mean difference between groups (mean difference 105.18 ng/dL, 95% CI 10.65 to 199.71). However, other biochemical markers including lipid profiles, high sensitivity C-reactive protein, adiponectin, interleukin-6, tumor necrosis factor-alpha, monocyte chemotactic protein-1, and soluble intercellular adhesion molecule-1 did not improve with cilostazol treatment. CONCLUSION Cilostazol treatment significantly reduced serum sVCAM-1 level, but this short term treatment was not associated with beneficial effect on arterial stiffness and other inflammatory markers. TRIAL REGISTRATION (Clinical trial reg. no. NCT00573950, clinicaltrials.gov.).
Collapse
Affiliation(s)
- Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Hee Young Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyonggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Dong Seop Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea
| |
Collapse
|
42
|
Kitashoji A, Egashira Y, Mishiro K, Suzuki Y, Ito H, Tsuruma K, Shimazawa M, Hara H. Cilostazol ameliorates warfarin-induced hemorrhagic transformation after cerebral ischemia in mice. Stroke 2013; 44:2862-8. [PMID: 23881959 DOI: 10.1161/strokeaha.113.001183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Although long-term treatment with the oral anticoagulant warfarin is widely used to prevent cardioembolic ischemic stroke, it has been reported that warfarin can exacerbate hemorrhagic transformation (HT) after cerebral ischemia. We investigated whether cilostazol, a phosphodiesterase-III inhibitor, suppressed the warfarin-induced HT after cerebral ischemia in mice. METHODS Male ddY mice were treated with oral warfarin before 3-hour middle cerebral artery occlusion followed by 21-hour reperfusion to induce HT. The duration of warfarin pretreatment was determined by measurement of prothrombin time-international normalized ratio value. Cilostazol or vehicle was administered by intraperitoneal injection immediately after reperfusion. The infarct volume, brain swelling, and brain hemoglobin content were evaluated at 24 hours after middle cerebral artery occlusion. We also evaluated the survival rate of each treated group for 7 days after surgery. To investigate the mechanism underlying cilostazol's effects, the proteins involved in vascular endothelial integrity were investigated using Western blotting. RESULTS HT volume was exacerbated by warfarin treatment, and cilostazol (3 mg/kg, i.p.) suppressed this exacerbation (sham, mean±SD, 29.2±13.4 mg/dL; vehicle, 33.3±11.9 mg/dL; warfarin, 379.4±428.9 mg/dL; warfarin+cilostazol 1 mg/kg, 167.5±114.2 mg/dL; warfarin+cilostazol 3 mg/kg, 116.9±152.3 mg/dL). Furthermore, cilostazol improved survival rate and upregulated the expression of tight junction proteins and vascular endothelial cadherin. CONCLUSIONS Cilostazol reduced the warfarin-related risk of HT after ischemia by protecting the vascular endothelial cells. This result suggested that cilostazol administration in patients with acute ischemic stroke might reduce HT.
Collapse
Affiliation(s)
- Akira Kitashoji
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan (A.K., Y.E., K.M., Y.S., K.T., M.S., H.H.); and First Institute of New Drug Discovery, Otsuka Pharmaceutical Co Ltd, Tokushima, Japan (H.I.)
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nishino A, Umegaki M, Fujinaka T, Yoshimine T. Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res 2013; 32:873-8. [DOI: 10.1179/016164109x12608733393791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Lee JH, Park SY, Lee WS, Hong KW. Lack of antiapoptotic effects of antiplatelet drug, aspirin and clopidogrel, and antioxidant, MCI-186, against focal ischemic brain damage in rats. Neurol Res 2013; 27:483-92. [PMID: 15978173 DOI: 10.1179/016164105x17134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES This study evaluated the antiapoptotic effect of antiplatelet drugs, aspirin and clopidogrel, and the antioxidant drug, MCI-186, against focal cerebral ischemic rat brain damage. METHODS Cerebral ischemia was mechanically induced by 2-hour occlusion of the left middle cerebral artery (MCA) using an intraluminal filament followed by 24-hour reperfusion. RESULTS The cerebral infarct size was little affected by oral administration of 300 mg/kg aspirin, 30 mg/kg clopidogrel or 100 mg/kg MCI-186, but was significantly reduced by 30 mg/kg cilostazol. However, intravenous administration of 10 mg/kg MCI-186 suppressed the infarct size. DNA fragmentation observed in the cortical tissues corresponding to the penumbral zone was not suppressed by aspirin, clopidogrel or MCI-186, but was significantly suppressed by cilostazol. Increased phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and Bax protein, and decreased Akt/cyclic AMP response element binding protein (CREB) phosphorylation, including Bcl-2 protein in the vehicle-treated group were not affected by treatment with aspirin, clopidogrel and MCI-186, whereas those effects were reversed by cilostazol. CONCLUSION Thus, it is suggested that antiplatelet drugs, aspirin and clopidogrel, and antioxidant drug, MCI-186, showed little antiapoptotic effect in contrast to cilostazol.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Pharmacology, College of Medicine, Pusan National University, Busan, Korea
| | | | | | | |
Collapse
|
45
|
Abstract
Antiplatelet agents are one of the main interventions for recurrent ischemic stroke prevention. Their time of use, dosage, and combination of therapy have different effects in terms of stroke risk reduction and adverse effects. This review provides an evidence-based update of the latest on antiplatelet therapy for stroke prevention.
Collapse
Affiliation(s)
- Sarkis G Morales Vidal
- Neurology Department, Stritch School of Medicine, Loyola University Chicago, 2160 South 1st Avenue, Building 105, Room 2700, Maywood, IL 60153, USA.
| | | |
Collapse
|
46
|
Zuo L, Li Q, Sun B, Xu Z, Ge Z. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α. Biochem Biophys Res Commun 2013; 433:52-7. [PMID: 23485471 DOI: 10.1016/j.bbrc.2013.02.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in HUVECs, which was mediated by PKA/CREB pathway.
Collapse
Affiliation(s)
- Luning Zuo
- Shandong University, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | | | | | | | | |
Collapse
|
47
|
A combination of cilostazol and Ginkgo biloba extract protects against cisplatin-induced Cochleo-vestibular dysfunction by inhibiting the mitochondrial apoptotic and ERK pathways. Cell Death Dis 2013; 4:e509. [PMID: 23429295 PMCID: PMC3734837 DOI: 10.1038/cddis.2013.33] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cisplatin (cis-diammine-dichloroplatinum; CDDP) is an anticancer drug that induces significant hearing loss and balance dysfunction as side effects. Cilostazol (CS, 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3, 4-dihydro-2-(1H)-quinolinone) has neuroprotective and antioxidant effects, whereas Ginkgo biloba extract (GbE) has preventive effects on CDDP-induced hearing loss in rats, and GbE enhances the antiatherogenic effect of CS by inhibiting the generation of reactive oxygen species (ROS). The purpose of this study was to investigate the effects of renexin (RXN), which contains GbE and CS, against CDDP-induced cochleo-vestibular dysfunction in rats and to elucidate the mechanism underlying the protective effects of RXN on auditory cells. Rats intraperitoneally injected with CDDP exhibited an increase in hearing threshold and vestibular dysfunction, which agreed with hair cell damage in the Organ of Corti and otoliths. However, these impairments were significantly prevented in a dose-dependent manner by pre- and co-treatment with RXN, and these preventive effects in RXN-treated rats were more prominent than those in GbE-treated rats. In a CDDP pharmacokinetic study, platinum concentration was very similar between CDDP-only treated and RXN+CDDP cotreated rats. RXN markedly attenuated CDDP-induced intracellular ROS and significantly reduced CDDP-activated expression of p-extracellular regulated kinase (ERK), BAX, cytochrome c, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, but increased BCL-XL expression. These results show that RXN may have a synergistic effect by strongly protecting hearing and vestibular dysfunction induced by CDDP by inhibiting ROS production, mitochondrial pathways and the ERK pathway, without interfering with CDDP pharmacokinetics. Therefore, RXN could potentially be used to reduce CDDP-related hearing loss and dizziness.
Collapse
|
48
|
Yu BC, Lee DS, Bae SM, Jung WK, Chun JH, Urm SH, Lee DY, Heo SJ, Park SG, Seo SK, Yang JW, Choi JS, Park WS, Choi IW. The effect of cilostazol on the expression of matrix metalloproteinase-1 and type I procollagen in ultraviolet-irradiated human dermal fibroblasts. Life Sci 2013; 92:282-8. [PMID: 23333827 DOI: 10.1016/j.lfs.2012.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022]
Abstract
AIM Cilostazol is a selective inhibitor of type III phosphodiesterase that inhibits platelet aggregation. Cilostazol is a useful vasodilator, antithrombotic, and cardiotonic agent. Ultraviolet B (UVB) irradiation increases the production of matrix metalloproteinase-1 (MMP-1) during skin photoaging. The UVB-induced increase of MMP-1 results in connective tissue damage, and the skin becomes wrinkled and aged. Here, we investigated the capacity of cilostazol to inhibit MMP-1 expression in UVB-irradiated human dermal fibroblasts. MAIN METHODS Cultured human dermal fibroblasts were irradiated with UVB, followed by the addition of cilostazol to the culture medium. KEY FINDINGS Post-treatment with cilostazol attenuated UVB-induced production of MMP-1 and prevented the reduction of type I procollagen. Cilostazol inhibited UVB irradiation-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling molecules Jun-N-terminal kinase (JNK) and p38 kinase, as well as activator protein-1 (AP-1) in dermal fibroblasts. SIGNIFICANCE Overall, these results demonstrate that cilostazol regulates UVB-induced MMP-1 expression and type I procollagen synthesis by inhibiting MAPK signaling and AP-1 activity. Therefore, we suggest that cilostazol may be useful for the prevention and treatment of skin photodamage caused by UVB-irradiation.
Collapse
Affiliation(s)
- Byeng Chul Yu
- Department of Preventive Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abe Y, Marukawa R, Tsuru N, Sato M, Matsuda H, Sadakata H, Kameda T, Minegishi T. Gram-negative bacterial lipopolysaccharide stimulates activin a secretion from human amniotic epithelial cells. Int J Endocrinol 2013; 2013:789012. [PMID: 23956746 PMCID: PMC3730212 DOI: 10.1155/2013/789012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Activin A is involved in inflammation. The present study was performed to clarify if lipopolysaccharide, a component of Gram-negative bacteria, stimulates activin A secretion from human amniotic epithelial cells and to determine if activin A plays a role in amnionitis. Fetal membranes were obtained during elective cesarean sections performed in full-term pregnancies of patients without systemic disease, signs of premature delivery, or fetal complications. Amniotic epithelial cells were isolated by trypsinization. The activin A concentrations in the culture media were measured by enzyme-linked immunosorbent assay, and cell proliferation was assessed by 5-bromo-2'-deoxyuridine incorporation. Amniotic epithelial cells secreted activin A in a cell density-dependent manner, and lipopolysaccharide (10 μ g/mL) enhanced the secretion at each cell density. Lipopolysaccharide (10-50 μ g/mL) also stimulated activin A secretion in a dose-dependent manner. Contrary to the effect of activin A secretion, lipopolysaccharide inhibited cell proliferation in amniotic epithelial cells. The present study suggests that lipopolysaccharide stimulation of activin A secretion may be a mechanism in the pathogenesis of amnionitis.
Collapse
Affiliation(s)
- Yumiko Abe
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
- *Yumiko Abe:
| | - Risa Marukawa
- Kuki General Hospital, Kuki, Saitama 346-0021, Japan
| | - Nami Tsuru
- Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Miyazaki 882-0835, Japan
| | - Maki Sato
- Yokota Maternity Hospital, Maebashi, Gunma 371-0031, Japan
| | - Hiroko Matsuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gunma University, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Hisanobu Sadakata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gunma University, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Takashi Kameda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gunma University, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gunma University, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
50
|
Ikeda Y, Sudo T, Kimura Y. Cilostazol. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|