1
|
Peng Q, Jiang H, Cheng X, Wang N, Zhou S, Zhang Y, Yang T, Chen Y, Zhang W, Lv S, Nan W, Wang J, Fan GH, Li J, Zhang J. Cryo-EM Structure and Biochemical Analysis of the Human Chemokine Receptor CCR8. Biochemistry 2024; 63:1892-1900. [PMID: 38985857 DOI: 10.1021/acs.biochem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.
Collapse
Affiliation(s)
- Qi Peng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Na Wang
- Cobio Biotechnology Co., Ltd., No. 9 Building, Building 16 of SHUWU, No. 73 Tanmi Road, Jiangbei New District, Nanjing 211500, China
| | - Sili Zhou
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - JianFei Wang
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Guo-Huang Fan
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
2
|
Jiang S, Lin X, Wu L, Wang L, Wu Y, Xu Z, Xu F. Unveiling the structural mechanisms of nonpeptide ligand recognition and activation in human chemokine receptor CCR8. SCIENCE ADVANCES 2024; 10:eadj7500. [PMID: 38306437 PMCID: PMC10836724 DOI: 10.1126/sciadv.adj7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.
Collapse
Affiliation(s)
- Shan Jiang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ziyi Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research Center, Shanghai 201210, China
| |
Collapse
|
3
|
Lian Y, Huang Z, Liu X, Deng Z, Gao D, Wang X. Discovery of Ten Anti-HIV Hit Compounds and Preliminary Pharmacological Mechanisms Studies. Curr HIV Res 2024; 22:82-90. [PMID: 38532605 DOI: 10.2174/011570162x301289240320082840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity. OBJECTIVE The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research. METHODS In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed. RESULTS Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 μM), Yadanziolide A (8.82 μM), Bruceine D (2.48 μM), Astragaloside IV (4.30 μM), RX-3117 (1.32 μM), Harringtonine (0.63 μM), Tubercidin (0.41 μM), Theaflavine-3, 3'-digallate (0.41 μM), Ginkgetin (10.76 μM), ZK756326 (5.97 μM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process. CONCLUSION A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.
Collapse
Affiliation(s)
- Yushan Lian
- Department of Prevention and control of infectious diseases, School of public health, Southern Medical University, Guangzhou, Guangdong, China
- Department of HIV/AIDS Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhimin Huang
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xinyi Liu
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhicheng Deng
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dan Gao
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaohui Wang
- Department of Prevention and control of infectious diseases, School of public health, Southern Medical University, Guangzhou, Guangdong, China
- Department of HIV/AIDS Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Li Q, Claes S, Verhaegen Y, Anthonissen S, Van Loy T, Schols D, Dehaen W, De Jonghe S. Synthesis and structure-activity relationship study of phenoxybenzylpiperazine analogues as CCR8 agonists. Bioorg Chem 2023; 139:106755. [PMID: 37544272 DOI: 10.1016/j.bioorg.2023.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
CCR8 agonists hold promise for the treatment of various auto-immune diseases. Despite the fact that phenoxybenzylpiperazine derivatives are known to be endowed with CCR8 agonistic activity, systematic structure-activity relationship studies have not been reported. In this study, ZK756326, a previously disclosed CCR8 agonist, was divided in various fragments and each subunit was subjected to structural modifications. All newly synthesized analogues were evaluated in a CCR8 calcium mobilization assay, revealing that only limited structural variation was tolerated in both phenyl rings and at the benzylic position. In contrast, various linkers gave analogues with good CCR8 agonistic potency. In addition, the presence of small substituents on the piperazinyl moiety or the exchange of the piperazinyl for a piperidinyl group afforded compounds with promising CCR8 agonism, with the most potent congener being 10-fold more potent than ZK756326.
Collapse
Affiliation(s)
- Qifei Li
- Sustainable Chemistry for Metals and Molecules (SCM-2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sandra Claes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, B-3000 Leuven, Belgium
| | - Yenthel Verhaegen
- Sustainable Chemistry for Metals and Molecules (SCM-2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Stijn Anthonissen
- Sustainable Chemistry for Metals and Molecules (SCM-2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, B-3000 Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules (SCM-2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
6
|
Wang H, Qin Z, Yan A. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol Divers 2021; 25:1597-1616. [PMID: 33534023 DOI: 10.1007/s11030-020-10165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
Cysteinyl leukotrienes 1 (CysLT1) receptor is a promising drug target for rhinitis or other allergic diseases. In our study, we built classification models to predict bioactivities of CysLT1 receptor antagonists. We built a dataset with 503 CysLT1 receptor antagonists which were divided into two groups: highly active molecules (IC50 < 1000 nM) and weakly active molecules (IC50 ≥ 1000 nM). The molecules were characterized by several descriptors including CORINA descriptors, MACCS fingerprints, Morgan fingerprint and molecular SMILES. For CORINA descriptors and two types of fingerprints, we used the random forests (RF) and deep neural networks (DNN) to build models. For molecular SMILES, we used recurrent neural networks (RNN) with the self-attention to build models. The accuracies of test sets for all models reached 85%, and the accuracy of the best model (Model 2C) was 93%. In addition, we made structure-activity relationship (SAR) analyses on CysLT1 receptor antagonists, which were based on the output from the random forest models and RNN model. It was found that highly active antagonists usually contained the common substructures such as tetrazoles, indoles and quinolines. These substructures may improve the bioactivity of the CysLT1 receptor antagonists.
Collapse
Affiliation(s)
- Hongzhao Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 668] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Petersen TP, Mirsharghi S, Rummel PC, Thiele S, Rosenkilde MM, Ritzén A, Ulven T. Multistep Continuous-Flow Synthesis in Medicinal Chemistry: Discovery and Preliminary Structure-Activity Relationships of CCR8 Ligands. Chemistry 2013; 19:9343-50. [DOI: 10.1002/chem.201204350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/02/2013] [Indexed: 11/07/2022]
|
10
|
Rummel PC, Arfelt KN, Baumann L, Jenkins TJ, Thiele S, Lüttichau HR, Johnsen A, Pease J, Ghosh S, Kolbeck R, Rosenkilde MM. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions. Br J Pharmacol 2013; 167:1206-17. [PMID: 22708643 DOI: 10.1111/j.1476-5381.2012.02076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative structural probes. EXPERIMENTAL APPROACH The compounds were tested as inverse agonists and as antagonists against CCL1-induced activity in Gα(i) signalling and chemotaxis. Furthermore, they were assessed by heterologous competition binding against two radiolabelled receptor ligands: the endogenous agonist CCL1 and the virus-encoded antagonist MC148. KEY RESULTS All compounds were highly potent inverse agonists with EC(50) values from 1.7 to 23 nM. Their potencies as antagonists were more widely spread (EC(50) values from 5.9 to 1572 nM). Some compounds were balanced antagonists/inverse agonists whereas others were predominantly inverse agonists with >100-fold lower potency as antagonists. A correspondingly broad range of affinities, which followed the antagonist potencies, was disclosed by competition with [(125)I]-CCL1 (K(i) 3.4-842 nM), whereas the affinities measured against [(125)I]-MC148 were less widely spread (K(i) 0.37-27 nM), and matched the inverse agonist potencies. CONCLUSION AND IMPLICATIONS Despite highly potent and direct effects as inverse agonists, competition-binding experiments against radiolabelled agonist and tests for antagonism revealed a probe-dependent allosteric effect of these compounds. Thus, minor chemical changes affected the ability to modify chemokine binding and action, and divided the compounds into two groups: predominantly inverse agonists and balanced antagonists/inverse agonists. These studies have important implications for the design of new inverse agonists with or without antagonist properties.
Collapse
Affiliation(s)
- P C Rummel
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
12
|
Jensen PC, Thiele S, Steen A, Elder A, Kolbeck R, Ghosh S, Frimurer TM, Rosenkilde MM. Reversed binding of a small molecule ligand in homologous chemokine receptors - differential role of extracellular loop 2. Br J Pharmacol 2012; 166:258-75. [PMID: 22050085 DOI: 10.1111/j.1476-5381.2011.01771.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The majority of small molecule compounds targeting chemokine receptors share a similar pharmacophore with a centrally located aliphatic positive charge and flanking aromatic moieties. Here we describe a novel piperidine-based compound with structural similarity to previously described CCR8-specific agonists, but containing a unique phenyl-tetrazol moiety which, in addition to activity at CCR8 was also active at CCR1. EXPERIMENTAL APPROACH Single point mutations were introduced in CCR1 and CCR8, and their effect on small molecule ligand-induced receptor activation was examined through inositol trisphosphate (IP(3) ) accumulation. The molecular interaction profile of the agonist was verified by molecular modeling. KEY RESULTS The chemokine receptor conserved glutamic acid in TM-VII served as a common anchor for the positively charged amine in the piperidine ring. However, whereas the phenyl-tetrazol group interacted with TyrIV:24 (Tyr(172) ) and TyrIII:09 (Tyr(114) ) in the major binding pocket (delimited by TM-III to VII) of CCR8, it also interacted with TrpII:20 (Trp(90) ) and LysII:24 (Lys(94) ) in the minor counterpart (delimited TM-I to III, plus TM-VII) in CCR1. A straightening of TM-II by Ala-substitution of ProII:18 confirmed its unique role in CCR1. The extracellular loop 2 (ECL-2) contributed directly to the small molecule binding site in CCR1, whereas it contributed to efficacy, but not potency in CCR8. CONCLUSION AND IMPLICATIONS Despite high ligand potency and efficacy and receptor similarity, this dual-active and bitopic compound binds oppositely in CCR1 and CCR8 with different roles of ECL-2, thereby expanding and diversifying the influence of extracellular receptor regions in drug action.
Collapse
Affiliation(s)
- P C Jensen
- Department of Neuroscience and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012; 165:1617-1643. [PMID: 21699506 DOI: 10.1111/j.1476-5381.2011.01551.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - D Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - L Roumen
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - H F Vischer
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Denis C, Deiteren K, Mortier A, Tounsi A, Fransen E, Proost P, Renauld JC, Lambeir AM. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity. PLoS One 2012; 7:e34199. [PMID: 22479563 PMCID: PMC3313992 DOI: 10.1371/journal.pone.0034199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
Collapse
Affiliation(s)
- Catherine Denis
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kathleen Deiteren
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Amel Tounsi
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Edegem, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Petersen TP, Ritzén A, Ulven T. A Multistep Continuous-Flow System for Rapid On-Demand Synthesis of Receptor Ligands. Org Lett 2009; 11:5134-7. [DOI: 10.1021/ol902101c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Trine P. Petersen
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and Medicinal Chemistry Research DK, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Andreas Ritzén
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and Medicinal Chemistry Research DK, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Trond Ulven
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and Medicinal Chemistry Research DK, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| |
Collapse
|
17
|
Zabel BA, Wang Y, Lewén S, Berahovich RD, Penfold MET, Zhang P, Powers J, Summers BC, Miao Z, Zhao B, Jalili A, Janowska-Wieczorek A, Jaen JC, Schall TJ. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. THE JOURNAL OF IMMUNOLOGY 2009; 183:3204-11. [PMID: 19641136 DOI: 10.4049/jimmunol.0900269] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CXCR7 binds chemokines CXCL11 (I-TAC) and CXCL12 (SDF-1) but does not act as a classical chemoattractant receptor. Using CCX771, a novel small molecule with high affinity and selectivity for CXCR7, we found that, although CXCR7 is dispensable for "bare filter" in vitro chemotaxis, CXCR7 plays an essential role in the CXCL12/CXCR4-mediated transendothelial migration (TEM) of CXCR4(+)CXCR7(+) human tumor cells. Importantly, although CXCL11 is unable to stimulate directly the migration of these cells, it acts as a potent antagonist of their CXCL12-induced TEM. Furthermore, even though this TEM is driven by CXCR4, the CXCR7 ligand CCX771 is substantially more potent at inhibiting it than the CXCR4 antagonist AMD3100, which is more than 100 times weaker at inhibiting TEM when compared with its ability to block bare filter chemotaxis. Far from being a "silent" receptor, we show that CXCR7 displays early hallmark events associated with intracellular signaling. Upon cognate chemokine binding, CXCR7 associates with beta-arrestin2, an interaction that can be blocked by CXCR7-specific mAbs. Remarkably, the synthetic CXCR7 ligand CCX771 also potently stimulates beta-arrestin2 recruitment to CXCR7, with greater potency and efficacy than the endogenous chemokine ligands. These results indicate that CXCR7 can regulate CXCL12-mediated migratory cues, and thus may play a critical role in driving CXCR4(+)CXCR7(+) tumor cell metastasis and tissue invasion. CXCR7 ligands, such as the chemokine CXCL11 and the newly described synthetic molecule CCX771, may represent novel therapeutic opportunities for the control of such cells.
Collapse
|
18
|
|
19
|
|
20
|
Wijtmans M, Verzijl D, Leurs R, de Esch IJ, Smit M. Towards Small-Molecule CXCR3 Ligands with Clinical Potential. ChemMedChem 2008; 3:861-72. [DOI: 10.1002/cmdc.200700365] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Shi YL, Luo XZ, Zhu XY, Li DJ. Combination of 17β-estradiol with the environmental pollutant TCDD is involved in pathogenesis of endometriosis via up-regulating the chemokine I-309–CCR8. Fertil Steril 2007; 88:317-25. [PMID: 17693327 DOI: 10.1016/j.fertnstert.2006.11.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the effects of the combined E(2) with the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on CCR8-I-309 expression by the endometriotic lesion-associated cells in the pathogenesis of endometriosis. DESIGN Prospective laboratory study. SETTING University hospital. PATIENT(S) Chinese women with endometriosis. INTERVENTION(S) The endometriotic tissue and matched eutopic endometrium were collected. Endometrial stromal cells (ESCs), HPMC, and U937 cells were treated with 17beta-E(2) or TCDD. The ESCs were stimulated with I-309. MAIN OUTCOME MEASURE(S) The expression of CCR8 in tissues was analyzed by reverse transcription-polymerase chain reaction and immunohistochemistry. The effect of I-309 on integrin beta1 and alphavbeta3 expression intensity was analyzed by flow cytometry, and the chemotactic activity of I-309 on the ESC was explored by chemotactic assay. Concentration of I-309 in the culture supernatant was quantified by enzyme-linked immunosorbent assay. RESULT(S) CCR8 was overexpressed in the endometriotic tissue. I-309 promoted the expression of integrin beta1. Estradiol and TCDD up-regulated CCR8 expression by ESCs. Estradiol magnified the stimulatory effect of TCDD on I-309 secretion by U937. The interaction of HPMC and U937 cells promoted I-309 secretion. CONCLUSION(S) These findings imply that the combination of 17beta-E(2) with the environmental pollutant TCDD is involved in the pathogenesis of endometriosis via up-regulating the chemokine CCR8-I-309.
Collapse
Affiliation(s)
- Ying-Li Shi
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | |
Collapse
|
22
|
Wise E, Pease JE. Unravelling the mechanisms underpinning chemokine receptor activation and blockade by small molecules: a fine line between agonism and antagonism? Biochem Soc Trans 2007; 35:755-9. [PMID: 17635141 DOI: 10.1042/bst0350755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemokines are a family of small basic proteins which induce the directed migration of cells, notably leucocytes, by binding to specific GPCRs (G-protein-coupled receptors). Both chemokines and their receptors have been implicated in a host of clinically important diseases, leading to the notion that antagonism of the chemokine–chemokine receptor network may be therapeutically advantageous. Consequently, considerable effort has been put into the development of small-molecule antagonists of chemokine receptors and several such compounds have been described in the literature. One curious by-product of this activity has been the description of several small-molecule agonists of the receptors, which are typically discovered following the optimization of lead antagonists. In this review we discuss these findings and conclude that these small-molecule agonists might be exploited to further our understanding of the molecular mechanisms by which chemokine receptors are activated.
Collapse
Affiliation(s)
- E Wise
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
23
|
Wise EL, Duchesnes C, da Fonseca PCA, Allen RA, Williams TJ, Pease JE. Small molecule receptor agonists and antagonists of CCR3 provide insight into mechanisms of chemokine receptor activation. J Biol Chem 2007; 282:27935-43. [PMID: 17635911 PMCID: PMC2151197 DOI: 10.1074/jbc.m703255200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokine receptor CCR3 is highly expressed by eosinophils and signals in response to binding of the eotaxin family of chemokines, which are up-regulated in allergic disorders. Consequently, CCR3 blockade is of interest as a possible therapeutic approach for the treatment of allergic disease. We have described previously a bispecific antagonist of CCR1 and CCR3 named UCB35625 that was proposed to interact with the transmembrane residues Tyr-41, Tyr-113, and Glu-287 of CCR1, all of which are conserved in CCR3. Here, we show that cells expressing the CCR3 constructs Y113A and E287Q are insensitive to antagonism by UCB35625 and also exhibit impaired chemotaxis in response to CCL11/eotaxin, suggesting that these residues are important for antagonist binding and also receptor activation. Furthermore, mutation of the residue Tyr-113 to alanine was found to turn the antagonist UCB35625 into a CCR3 agonist. Screens of small molecule libraries identified a novel specific agonist of CCR3 named CH0076989. This was able to activate eosinophils and transfectants expressing both wild-type CCR3 and a CCR1-CCR3 chimeric receptor lacking the CCR3 amino terminus, indicating that this region of CCR3 is not required for CH0076989 binding. A direct interaction with the transmembrane helices of CCR3 was supported by mutation of the residues Tyr-41, Tyr-113, and Glu-287 that resulted in complete loss of CH0076989 activity, suggesting that the compound mimics activation by CCL11. We conclude that both agonists and antagonists of CCR3 appear to occupy overlapping sites within the transmembrane helical bundle, suggesting a fine line between agonism and antagonism of chemokine receptors.
Collapse
Affiliation(s)
- Emma L Wise
- Leukocyte Biology Section, National Heart and Lung Institute Division, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Jensen PC, Nygaard R, Thiele S, Elder A, Zhu G, Kolbeck R, Ghosh S, Schwartz TW, Rosenkilde MM. Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Mol Pharmacol 2007. [DOI: 10.1124/mol.107.035543] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Kellenberger E, Springael JY, Parmentier M, Hachet-Haas M, Galzi JL, Rognan D. Identification of Nonpeptide CCR5 Receptor Agonists by Structure-based Virtual Screening. J Med Chem 2007; 50:1294-303. [PMID: 17311371 DOI: 10.1021/jm061389p] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-dimensional model of the chemokine receptor CCR5 has been built to fulfill structural peculiarities of its alpha-helix bundle and to distinguish known CCR5 antagonists from randomly chosen drug-like decoys. In silico screening of a library of 1.6 million commercially available compounds against the CCR5 model by sequential filters (drug-likeness, 2-D pharmacophore, 3-D docking, scaffold clustering) yielded a hit list of 59 compounds, out of which 10 exhibited a detectable binding affinity to the CCR5 receptor. Unexpectedly, most binders tested in a functional assay were shown to be agonists of the CCR5 receptor. A follow-up database query based on similarity to the most potent binders identified three new CCR5 agonists. Despite a moderate affinity of all nonpeptide ligands for the CCR5 receptor, one of the agonists was shown to promote efficient receptor internalization, which is a process therapeutically favorable for protection against HIV-1 infection.
Collapse
|
26
|
Fox JM, Najarro P, Smith GL, Struyf S, Proost P, Pease JE. Structure/Function Relationships of CCR8 Agonists and Antagonists. J Biol Chem 2006; 281:36652-61. [PMID: 17023422 DOI: 10.1074/jbc.m605584200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here the interactions of CCR8 with its ligands using both CCR8 transfectants and a T-cell line expressing the receptor endogenously. Of the CCR8 agonists reported previously, only CCL1 and vMIP-I exhibited potency in assays of intracellular calcium flux, chemotaxis, and receptor internalization, this latter mechanism being dependent upon the expression of beta-arrestins 1 and 2 but independent of Galpha(i) signaling. NH(2)-terminal extension of the mature CCL1 sequence by a serine residue (Ser-CCL1) resulted in a partial agonist with a reduced affinity for CCR8, suggesting that the NH(2) terminus of the ligand plays a role in ligand binding to an intrahelical site. Attempts to identify key residues within this site revealed that the conserved glutamic acid residue in transmembrane helix 7, Glu-286, is crucial for trafficking of the receptor to the cell surface, while Asp-97 of transmembrane helix 2 is dispensable. CCL7 was found to inhibit both Ser-CCL1 and vMIP-I responses but not those of CCL1 itself. Similarly, vMIP-I responses were more than 2 orders of magnitude more sensitive to the specific CCR8 antagonist MC148 than those induced by CCL1, which is difficult to reconcile with the reported affinities for the receptor. Collectively, these data suggest that the CCR8 ligands are allotropic, binding to distinct sites within CCR8 and that the human immune system may have evolved to use CCL7 as a selective antagonist of viral chemokine activity at CCR8 but not those of the host ligand.
Collapse
Affiliation(s)
- James M Fox
- National Heart and Lung Institute Division, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Stroke IL, Cole AG, Simhadri S, Brescia MR, Desai M, Zhang JJ, Merritt JR, Appell KC, Henderson I, Webb ML. Identification of CXCR3 receptor agonists in combinatorial small-molecule libraries. Biochem Biophys Res Commun 2006; 349:221-8. [PMID: 16930533 DOI: 10.1016/j.bbrc.2006.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
In a high-throughput screen of four million compounds from combinatorial libraries for small-molecule modulators of the chemokine receptor CXCR3, two classes of receptor agonists, based on tetrahydroisoquinoline and piperidinyl diazepanone templates, were identified. Several of these compounds stimulated calcium flux in HEK293 cells expressing the recombinant human CXCR3 receptor with efficacies and kinetics similar to those of native ligand CXCL11/I-TAC and stimulated chemotaxis of activated human T-cells. The agonist small molecules also inhibited binding of another CXCR3 ligand, CXCL10/IP-10, to the receptor. The response to small-molecule agonists was inhibited by a CXCR3-specific small-molecule antagonist previously identified within the same combinatorial compound collection but structurally unrelated to the agonists. Remarkably, while other, non-amino acid substituents were present in the majority of the library compounds screened, the agonists from both classes contained a positively charged amino acid component, with preference for Arg>Lys, as well as a hydrophobic component.
Collapse
Affiliation(s)
- Ilana L Stroke
- Pharmacopeia Drug Discovery, Inc., P.O. Box 5350, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|