1
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of a dimeric full-length ABC transporter. Nat Commun 2024; 15:9946. [PMID: 39550367 PMCID: PMC11569179 DOI: 10.1038/s41467-024-54147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Activities of ATP binding cassette (ABC) proteins are regulated by multiple mechanisms, including protein interactions, phosphorylation, proteolytic processing, and/or oligomerization of the ABC protein itself. Here we present the structure of yeast cadmium factor 1 (Ycf1p) in its mature form following cleavage by Pep4p protease. Ycf1p, a C subfamily ABC protein (ABCC), is homologue of human multidrug resistance protein 1. Remarkably, a portion of cleaved Ycf1p forms a well-ordered dimer, alongside monomeric particles also present in solution. While numerous other ABC proteins have been proposed to dimerize, no high-resolution structures have been reported. Both phosphorylation of the regulatory (R) region and ATPase activity are lower in the Ycf1p dimer compared to the monomer, indicating that dimerization affects Ycf1p function. The interface between Ycf1p protomers features protein-protein interactions and contains bound lipids, suggesting that lipids stabilize the dimer. The Ycf1p dimer structure may inform the dimerization interfaces of other ABCC dimers.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
3
|
Mao YX, Chen ZP, Wang L, Wang J, Zhou CZ, Hou WT, Chen Y. Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain. Nat Commun 2024; 15:1061. [PMID: 38316776 PMCID: PMC10844203 DOI: 10.1038/s41467-024-45337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Collapse
Affiliation(s)
- Yao-Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
4
|
Lv JJ, Yuan KK, Lu GX, Li HY, Kwok HF, Yang WD. Responses of ABCB and ABCC transporters to the toxic dinoflagellate Prorocentrum lima in the mussel Perna viridis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106368. [PMID: 36493563 DOI: 10.1016/j.aquatox.2022.106368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Bivalve mollusks can accumulate diarrheic shellfish poisoning (DSP) toxins through filter-feeding, but they exhibit some resistance to the toxins. Previous studies have suggested that the ABC transporters may have an important role in the resistance to DSP toxins, but comprehensive studies are lacking. In this study, we comprehensively analyzed the distribution of ABC transporters in the mussel Perna viridis, and observed responses of ABCB and ABCC transporters to the DSP toxins-producing dinoflagellate Prorocentrum lima. Total 39 members of ABC transporters were identified in P. viridis, including 3 full PvABCBs, 3 half PvABCBs, and 7 PvABCCs transporters. We found that PvABCBs and PvABCCs subfamilies were expressed in hemocytes, gills and digestive gland with some difference, especially in hemocytes. After exposure to P. lima, PvABCBs and PvABCCs displayed different expression changes in different tissues. The short-term (3 h) exposure to P. lima induced the transcription of PvABCB1_like1, PvABCB6, PvABCC1, PvABCC1_like and PvABCC1/3, and the longer-term (96 h) exposure increased the transcription of PvABCB1, PvABCB1_like, PvABCB10, PvABCC1 and PvABCC1_like1 in gills and PvABCC10 in digestive gland. These results suggest that different types of PvABCBs and PvABCCs in P. viridis may contribute to the detoxification of DSP toxins in different tissues at different time after exposure to DSP toxins. Our finding provides new evidence for further understanding the role of ABC transporters in the tolerance of mussel to DSP toxins.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Kuan-Kuan Yuan
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Guan-Xiu Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Hou W, Xu D, Wang L, Chen Y, Chen Z, Zhou C, Chen Y. Plastic structures for diverse substrates: A revisit of human
ABC
transporters. Proteins 2022; 90:1749-1765. [DOI: 10.1002/prot.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Tao Hou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Da Xu
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Liang Wang
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yu Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Zhi‐Peng Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Cong‐Zhao Zhou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yuxing Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
6
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
7
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Proc Natl Acad Sci U S A 2021; 118:e2025853118. [PMID: 34021087 PMCID: PMC8166025 DOI: 10.1073/pnas.2025853118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
8
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Nasr R, Lorendeau D, Khonkarn R, Dury L, Pérès B, Boumendjel A, Cortay JC, Falson P, Chaptal V, Baubichon-Cortay H. Molecular analysis of the massive GSH transport mechanism mediated by the human Multidrug Resistant Protein 1/ABCC1. Sci Rep 2020; 10:7616. [PMID: 32377003 PMCID: PMC7203140 DOI: 10.1038/s41598-020-64400-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
The transporter Multidrug Resistance Protein 1 (MRP1, ABCC1) is implicated in multidrug resistant (MDR) phenotype of cancer cells. Glutathione (GSH) plays a key role in MRP1 transport activities. In addition, a ligand-stimulated GSH transport which triggers the death of cells overexpressing MRP1, by collateral sensitivity (CS), has been described. This CS could be a way to overcome the poor prognosis for patients suffering from a chemoresistant cancer. The molecular mechanism of such massive GSH transport and its connection to the other transport activities of MRP1 are unknown. In this context, we generated MRP1/MRP2 chimeras covering different regions, MRP2 being a close homolog that does not trigger CS. The one encompassing helices 16 and 17 led to the loss of CS and MDR phenotype without altering basal GSH transport. Within this region, the sole restoration of the original G1228 (D1236 in MRP2) close to the extracellular loop between the two helices fully rescued the CS (massive GSH efflux and cell death) but not the MDR phenotype. The flexibility of that loop and the binding of a CS agent like verapamil could favor a particular conformation for the massive transport of GSH, not related to other transport activities of MRP1.
Collapse
Affiliation(s)
- Rachad Nasr
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Doriane Lorendeau
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Ruttiros Khonkarn
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Lauriane Dury
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Basile Pérès
- Department of Molecular Pharmacochemistry (DPM), UMR 5063, Grenoble Alpes University, 38041, Grenoble, France
| | - Ahcène Boumendjel
- Department of Molecular Pharmacochemistry (DPM), UMR 5063, Grenoble Alpes University, 38041, Grenoble, France
| | - Jean-Claude Cortay
- INSERM U1052, CNRS-University of Lyon UMR-5286, Cancer Research Center of Lyon (CRCL), 69008, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Hélène Baubichon-Cortay
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France.
| |
Collapse
|
10
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Brehm MA, Klemm U, Rehbach C, Erdmann N, Kolšek K, Lin H, Aponte-Santamaría C, Gräter F, Rauch BH, Riley AM, Mayr GW, Potter BVL, Windhorst S. Inositol hexakisphosphate increases the size of platelet aggregates. Biochem Pharmacol 2018; 161:14-25. [PMID: 30557554 PMCID: PMC6372069 DOI: 10.1016/j.bcp.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
The inositol phosphates, InsP5 and InsP6, have recently been identified as binding partners of fibrinogen, which is critically involved in hemostasis by crosslinking activated platelets at sites of vascular injury. Here, we investigated the putative physiological role of this interaction and found that platelets increase their InsP6 concentration upon stimulation with the PLC-activating agonists thrombin, collagen I and ADP and present a fraction of it at the outer plasma membrane. Cone and plate analysis in whole blood revealed that InsP6 specifically increases platelet aggregate size. This effect is fibrinogen-dependent, since it is inhibited by an antibody that blocks fibrinogen binding to platelets. Furthermore, InsP6 has only an effect on aggregate size of washed platelets when fibrinogen is present, while it has no influence in presence of von Willebrand factor or collagen. By employing blind docking studies we predicted the binding site for InsP6 at the bundle between the γ and β helical subunit of fibrinogen. Since InsP6 is unable to directly activate platelets and it did not exhibit an effect on thrombin formation or fibrin structure, our data indicate that InsP6 might be a hemostatic agent that is produced by platelets upon stimulation with PLC-activating agonists to promote platelet aggregation by supporting crosslinking of fibrinogen and activated platelets.
Collapse
Affiliation(s)
- Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Klemm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Rehbach
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Nina Erdmann
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Katra Kolšek
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Hongying Lin
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Bernhard H Rauch
- Institute of Pharmacology, University Medicine Greifswald, Ernst-Moritz-Arndt University, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Georg W Mayr
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
12
|
Ostuni A, Castiglione Morelli MA, Cuviello F, Bavoso A, Bisaccia F. Structural characterization of the L0 cytoplasmic loop of human multidrug resistance protein 6 (MRP6). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:380-386. [PMID: 30423326 DOI: 10.1016/j.bbamem.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/15/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
ABCC6 is a member of the C subfamily of ATP-binding cassette transporters whose mutations are correlated to Pseudoxanthoma elasticum, an autosomal recessive, progressive disorder characterized by ectopic mineralization and fragmentation of elastic fibers. Structural studies of the entire protein have been hindered by its large size, membrane association, and domain complexity. Studies previously performed have contributed to shed light on the structure and function of the nucleotide binding domains and of the N-terminal region. Here we report the expression in E. coli of the polypeptide E205-G279 contained in the cytoplasmic L0 loop. For the first time structural studies in solution were performed. Far-UV CD spectra showed that L0 is structured, assuming predominantly α-helix in TFE solution and turns in phosphate buffer. Fluorescence spectra indicated some flexibility of the regions containing aromatic residues. 1H NMR spectroscopy identified three helical regions separated by more flexible regions.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, Potenza 85100, Italy.
| | | | - Flavia Cuviello
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, Potenza 85100, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, Potenza 85100, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, Potenza 85100, Italy
| |
Collapse
|
13
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
14
|
Järvinen E, Deng F, Kidron H, Finel M. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol 2018; 178:99-107. [PMID: 29175180 DOI: 10.1016/j.jsbmb.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023]
Abstract
Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E1-G), estradiol-3- and 17-glucuronides (E2-3G and E2-17G), as well as estriol-3- and 16-glucuronides (E3-3G and E3-16G) are found in human plasma and urine. Unlike E2-17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E1-G, E2-3G, E3-3G, E3-16G and estrone-3-sulfate (E1-S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E1-S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E1-G and E2-3G, were still transported by BCRP at 10-fold higher rates than E1-S. BCRP also transported E3-16G at higher rates than the studied MRPs, while it transported E3-3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E1-G, E2-3G, E3-3G and E3-16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high Km values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at Km values below 20 μM, but lower Vmax values than other transporters. In the case of E3-3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E3-16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans.
Collapse
Affiliation(s)
- Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
15
|
Wen X, Joy MS, Aleksunes LM. In Vitro Transport Activity and Trafficking of MRP2/ABCC2 Polymorphic Variants. Pharm Res 2017; 34:1637-1647. [PMID: 28405913 PMCID: PMC5500460 DOI: 10.1007/s11095-017-2160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/04/2017] [Indexed: 04/21/2023]
Abstract
PURPOSE Multidrug resistance-associated protein 2 (MRP2/ABCC2) is an efflux pump that removes drugs and chemicals from cells. We sought to characterize the expression, trafficking and in vitro activity of seven single nucleotide polymorphisms (SNPs) in the ABCC2 gene. METHODS ABCC2 SNPs were generated using site-directed mutagenesis and stably expressed in Flp-In HEK293 cells, which allows targeted insertion of transgenes within the genome. Total and cell surface expression of MRP2 as well as accumulation of substrates (calcein AM and 5(6)-carboxy-2',7'-dichlorofluorescein diacetate, CDCF) were quantified in cells or inverted membrane vesicles expressing wild-type (WT) or variant forms. RESULTS The cell surface expression of the C-24T-, G1249A-, G3542T-, T3563A-, C3972T- and G4544A-MRP2 variants was similar to WT-MRP2. While expression was similar, transport of calcein AM was enhanced in cells expressing the G3542T-, T3563A-, C3972T-, and G4544A-MRP2 variants. By comparison, cells expressing the C2366T-MRP2 variant had 40-50% lower surface expression, which increased the accumulation of calcein AM up to 3-fold. Accumulation of CDCF in inverted membrane vesicles expressing the C2366T-MRP2 variant was also reduced by 50%. In addition, the G1249A-MRP2 variant had decreased transport of CDCF. CONCLUSIONS Taken together, these data demonstrate that genetic variability in the ABCC2 gene influences the in vitro expression, trafficking, and transport activity of MRP2.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, 80045, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
16
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
17
|
Hanley J, Dhar DK, Mazzacuva F, Fiadeiro R, Burden JJ, Lyne AM, Smith H, Straatman-Iwanowska A, Banushi B, Virasami A, Mills K, Lemaigre FP, Knisely AS, Howe S, Sebire N, Waddington SN, Paulusma CC, Clayton P, Gissen P. Vps33b is crucial for structural and functional hepatocyte polarity. J Hepatol 2017; 66:1001-1011. [PMID: 28082148 PMCID: PMC5387182 DOI: 10.1016/j.jhep.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations. VPS33B is a protein involved in membrane trafficking that interacts with RAB11A at recycling endosomes. To understand the pathways that regulate hepatocyte polarity better, we investigated VPS33B deficiency using a novel mouse model with a liver-specific Vps33b deletion. METHODS To assess functional polarity, plasma and bile samples were collected from Vps33b liver knockout (Vps33bfl/fl-AlfpCre) and control (Vps33bfl/fl) mice; bile components or injected substrates were quantitated by mass spectrometry or fluorometry. For structural analysis, livers underwent light and transmission electron microscopy. Apical membrane and tight junction protein localisation was assessed by immunostaining. Adeno-associated virus vectors were used for in vivo gene rescue experiments. RESULTS Like patients, Vps33bfl/fl-AlfpCre mice showed mislocalisation of ATP-binding cassette proteins that are specifically trafficked to the apical membrane via Rab11a-positive recycling endosomes. This was associated with retention of bile components in blood. Loss of functional tight junction integrity and depletion of apical microvilli were seen in knockout animals. Gene transfer partially rescued these defects. CONCLUSIONS Vps33b has a key role in establishing structural and functional aspects of hepatocyte polarity and may be a target for gene replacement therapy. LAY SUMMARY Hepatocytes are liver cells with tops and bottoms; that is, they are polarised. At their bottoms they absorb substances from blood. They then, at their tops, secrete these substances and their metabolites into bile. When polarity is lost, this directional flow of substances from blood to bile is disrupted and liver disease follows. In this study, using a new mouse model with a liver-specific mutation of Vps33b, the mouse version of a gene that is mutated in most patients with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, we investigated how the Vps33b gene product contributes to establishing hepatocyte polarity. We identified in these mice abnormalities similar to those in children with ARC syndrome. Gene transfer could partly reverse the mouse abnormalities. Our work contributes to the understanding of VPS33B disease and hepatocyte polarity in general, and may point towards gene transfer mediated treatment of ARC liver disease.
Collapse
Affiliation(s)
- Joanna Hanley
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dipok Kumar Dhar
- Organ Transplantation Centre and Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Francesca Mazzacuva
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Rebeca Fiadeiro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Anne-Marie Lyne
- UCL Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex Virasami
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Kevin Mills
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8036 Graz, Austria
| | - Steven Howe
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neil Sebire
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Simon N Waddington
- UCL Institute for Women's Health, University College London, London WC1E 6AU, UK; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2193, South Africa
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, 1105 BK Amsterdam, Netherlands
| | - Peter Clayton
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Inherited Metabolic Disease Unit, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK.
| |
Collapse
|
18
|
Ibbotson K, Yell J, Ronaldson PT. Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress. Fluids Barriers CNS 2017; 14:6. [PMID: 28298215 PMCID: PMC5353788 DOI: 10.1186/s12987-017-0055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Background Strategies to maintain BBB integrity in diseases with a hypoxia/reoxygenation (H/R) component involve preventing glutathione (GSH) loss from endothelial cells. GSH efflux transporters include multidrug resistance proteins (Mrps). Therefore, characterization of Mrp regulation at the BBB during H/R is required to advance these transporters as therapeutic targets. Our goal was to investigate, in vivo, regulation of Abcc1, Abcc2, and Abcc4 mRNA expression (i.e., genes encoding Mrp isoforms that transport GSH) by nuclear factor E2-related factor (Nrf2) using a well-established H/R model. Methods Female Sprague–Dawley rats (200–250 g) were subjected to normoxia (Nx, 21% O2, 60 min), hypoxia (Hx, 6% O2, 60 min) or H/R (6% O2, 60 min followed by 21% O2, 10 min, 30 min, or 1 h) or were treated with the Nrf2 activator sulforaphane (25 mg/kg, i.p.) for 3 h. Abcc mRNA expression in brain microvessels was determined using quantitative real-time PCR. Nrf2 signaling activation was examined using an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) respectively. Data were expressed as mean ± SD and analyzed via ANOVA followed by the post hoc Bonferroni t test. Results We observed increased microvascular expression of Abcc1, Abcc2, and Abcc4 mRNA following H/R treatment with reoxygenation times of 10 min, 30 min, and 1 h and in animals treated with sulforaphane. Using a biotinylated Nrf2 probe, we observed an upward band shift in brain microvessels isolated from H/R animals or animals administered sulforaphane. ChIP studies showed increased Nrf2 binding to antioxidant response elements on Abcc1, Abcc2, and Abcc4 promoters following H/R or sulforaphane treatment, suggesting a role for Nrf2 signaling in Abcc gene regulation. Conclusions Our data show increased Abcc1, Abcc2, and Abcc4 mRNA expression at the BBB in response to H/R stress and that Abcc gene expression is regulated by Nrf2 signaling. Since these Mrp isoforms transport GSH, these results may point to endogenous transporters that can be targeted for BBB protection during H/R stress. Experiments are ongoing to examine functional implications of Nrf2-mediated increases in Abcc transcript expression. Such studies will determine utility of targeting Mrp isoforms for BBB protection in diseases with an H/R component.
Collapse
Affiliation(s)
- Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, P.O. Box 210202, Tucson, 85721, AZ, USA
| | - Joshua Yell
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA.
| |
Collapse
|
19
|
Dai F, Yoo WG, Lee JY, Lu Y, Pak JH, Sohn WM, Hong SJ. Molecular and structural characteristics of multidrug resistance-associated protein 7 in Chinese liver fluke Clonorchis sinensis. Parasitol Res 2017; 116:953-962. [PMID: 28058535 DOI: 10.1007/s00436-016-5371-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022]
Abstract
Multidrug resistance-associated protein 7 (MRP7, ABCC10) is a C subfamily member of the ATP-binding cassette (ABC) superfamily. MRP7 is a lipophilic anion transporter that pumps endogenous and xenobiotic substrates from the cytoplasm to the extracellular milieu. Here, we cloned and characterized CsMRP7 as a novel ABC transporter from the Chinese liver fluke, Clonorchis sinensis. Full-length cDNA of CsMRP7 was 5174 nt, encoded 1636 amino acids (aa), and harbored a 147-bp 5'-untranslated region (5'-UTR) and 116-bp 3'-UTR. Phylogenetic analysis confirmed that CsMRP7 was closer to the ABCC subfamily than the ABCB subfamily. Tertiary structures of the N-terminal region (1-322 aa) and core region (323-1621 aa) of CsMRP7 were generated by homology modeling using glucagon receptor (PDB ID: 5ee7_A) and P-glycoprotein (PDB ID: 4f4c_A) as templates, respectively. CsMRP7 nucleotide-binding domain 2 (NBD2) was conserved more than NBD1, which was the sites of ATP binding and hydrolysis. Like typical long MRPs, CsMRP7 has an additional membrane-spanning domain 0 (MSD0) and cytoplasmic loop, along with a common structural fold consisting of MSD1-NBD1-MSD2-NBD2 as a single polypeptide assembly. MSD0, MSD1, and MSD2 consisted of TM1-7, TM8-13, and TM14-19, respectively. The CsMRP7 transcript was more abundant in the metacercariae than in the adult worms. Truncated NBD1 (39 kDa) and NBD2 (44 kDa) were produced in bacteria and mouse immune sera were raised. CsMRP7 was localized in the apical side of the intestinal epithelium, sperm in the testes and seminal receptacle, receptacle membrane, and mesenchymal tissue around intestine in the adult worm. These results provide molecular information and insights into structural and functional characteristics of CsMRP7 and homologs of flukes.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52828, South Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea.
| |
Collapse
|
20
|
Zollmann T, Bock C, Graab P, Abele R. Team work at its best – TAPL and its two domains. Biol Chem 2015; 396:967-74. [DOI: 10.1515/hsz-2014-0319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022]
Abstract
Abstract
The transporter associated with antigen processing (TAPL, ABCB9) is a homodimeric ABC transporter, shuttling cytosolic polypeptides into the lumen of lysosomes energized by ATP hydrolysis. Here we give a short overview of the superfamily of ABC transporters and summarize the current state of knowledge on TAPL in detail. The architecture of TAPL and its substrate specificity are described and we discuss the function of an extra N-terminal transmembrane domain, called TMD0, in respect of subcellular targeting and interaction with proteins, contributing to long-term stability. As TAPL shows – besides a ubiquitous basal expression – an elevated expression in antigen presenting cells, we present models of TAPL function in adaptive immunity.
Collapse
|
21
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
22
|
Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Davit-Spraul A, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014; 60:301-10. [PMID: 24375397 DOI: 10.1002/hep.26974] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Microvillous inclusion disease (MVID) is a congenital disorder of the enterocyte related to mutations in the MYO5B gene, leading to intractable diarrhea often necessitating intestinal transplantation (ITx). Among our cohort of 28 MVID patients, 8 developed a cholestatic liver disease akin to progressive familial intrahepatic cholestasis (PFIC). Our aim was to investigate the mechanisms by which MYO5B mutations affect hepatic biliary function and lead to cholestasis in MVID patients. Clinical and biological features and outcome were reviewed. Pretransplant liver biopsies were analyzed by immunostaining and electron microscopy. Cholestasis occurred before (n = 5) or after (n = 3) ITx and was characterized by intermittent jaundice, intractable pruritus, increased serum bile acid (BA) levels, and normal gamma-glutamyl transpeptidase activity. Liver histology showed canalicular cholestasis, mild-to-moderate fibrosis, and ultrastructural abnormalities of bile canaliculi. Portal fibrosis progressed in 5 patients. No mutation in ABCB11/BSEP or ATP8B1/FIC1 genes were identified. Immunohistochemical studies demonstrated abnormal cytoplasmic distribution of MYO5B, RAB11A, and BSEP in hepatocytes. Interruption of enterohepatic BA cycling after partial external biliary diversion or graft removal proved the most effective to ensure long-term remission. CONCLUSION MVID patients are at risk of developing a PFIC-like liver disease that may hamper outcome after ITx. Our results suggest that cholestasis in MVID patients results from (1) impairment of the MYO5B/RAB11A apical recycling endosome pathway in hepatocytes, (2) altered targeting of BSEP to the canalicular membrane, and (3) increased ileal BA absorption. Because cholestasis worsens after ITx, indication of a combined liver ITx should be discussed in MVID patients with severe cholestasis. Future studies will need to address more specifically the effect of MYO5B dysfunction in BA homeostasis.
Collapse
Affiliation(s)
- Muriel Girard
- Department of Pediatric Gastroenterology and Hepatology, Necker Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes-Sorbonne Cité, Paris, France; INSERM, UMR 781, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
GUIZANI TAISSIREL, GUIBERT CLOTILDE, TRIKI SAÏDA, ST-PIERRE BENOIT, DUCOS ERIC. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature. J Genet 2014; 93:21-33. [DOI: 10.1007/s12041-014-0327-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
|
25
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
26
|
Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:141-154. [PMID: 24013930 DOI: 10.1007/s10858-013-9774-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His10-tag and containing a codon optimized AT-rich sequence.
Collapse
Affiliation(s)
- Franz Tumulka
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012; 18:3624-44. [PMID: 22574987 DOI: 10.2174/138161212802002625] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of brain homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this "barrier," brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a "neurovascular unit." Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB. Targeting these pathways present a novel opportunity for optimization of CNS delivery of therapeutics in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
28
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 2012; 69:3317-27. [PMID: 22638925 PMCID: PMC3437018 DOI: 10.1007/s00018-012-1005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Collapse
|
29
|
Emi Y, Yasuda Y, Sakaguchi M. A cis-acting five-amino-acid motif controls targeting of ABCC2 to the apical plasma membrane domain. J Cell Sci 2012; 125:3133-43. [PMID: 22454528 DOI: 10.1242/jcs.099549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette transporter isoform C2 (ABCC2) is exclusively targeted to the apical plasma membrane of polarized cells. Although apical localization of ABCC2 in hepatocytes is crucial for the biliary excretion of a variety of metabolites, the mechanism regulating its apical targeting is poorly understood. In the present study, an apical targeting signal was identified in the first cytoplasmic loop domain (CLD1) of ABCC2 in HepG2 cells. Overexpression of CLD1 significantly disturbed the apical targeting of FLAG-ABCC2 in a competitive manner, suggesting the presence of a saturable sorting machinery in HepG2 cells. Next, deletion analysis identified a potential targeting sequence within a 20-amino-acid long peptide (aa 272-291) of CLD1. Alanine scanning mutagenesis of this region in full-length ABCC2 further narrowed down the apical targeting determinant to five amino acids, S(283)QDAL(287). Of these, S(283) and L(287) were found to be conserved among vertebrate ABCC2 orthologs. Site-directed mutagenesis showed that both S(283) and L(287) were crucial for the targeting specificity of ABCC2. Introducing this apical targeting sequence into the corresponding region of ABCC1, an exclusively basolateral protein, caused the hybrid ABCC1 to partially localize in the apical membrane. Thus, the CLD1 of ABCC2 contains a novel apical sorting determinant, and a saturable sorting machinery is present in polarized HepG2 cells.
Collapse
Affiliation(s)
- Yoshikazu Emi
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, Japan.
| | | | | |
Collapse
|
30
|
Abstract
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.
Collapse
|
31
|
Green BR, Bain LJ. Mrp2 is involved in the efflux and disposition of fosinopril. J Appl Toxicol 2011; 33:458-65. [DOI: 10.1002/jat.1767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/13/2011] [Accepted: 10/04/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin R. Green
- Environmental Toxicology Graduate Program; Clemson University; 132 Long Hall; Clemson; SC; 29634; USA
| | | |
Collapse
|
32
|
Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet Genomics 2011; 21:506-15. [PMID: 21691255 DOI: 10.1097/fpc.0b013e328348c786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multidrug resistance-associated protein 2 (MRP2; ABCC2) mediates the biliary excretion of glutathione, glucuronide, and sulfate conjugates of endobiotics and xenobiotics. Single nucleotide polymorphisms (SNPs) of MRP2 contribute to interindividual variability in drug disposition and ultimately in drug response. OBJECTIVES To characterize the transport function of human wild-type (WT) MRP2 and four SNP variants, S789F, A1450T, V417I, and T1477M. METHODS The four SNP variants were expressed in Sf9 cells using recombinant baculovirus infection. The kinetic parameters [Km, (μmol/l); V(max), (pmol/mg/min); the Hill coefficient] of ATP-dependent transport of leukotriene C(4) (LTC(4)), estradiol-3-glucuronide (E(2)3G), estradiol-17β-glucuronide (E(2)17G), and tauroursodeoxycholic acid (TUDC) were determined in Sf9-derived plasma membrane vesicles. Transport activity was normalized for expression level. RESULTS The V(max) for transport activity was decreased for all substrates for S789F, and for all substrates except E(2)17G for A1450T. V417I showed decreased apparent affinity for LTC(4), E(2)3G, and E(2)17G, whereas transport was similar between wild-type (WT) and T1477M, except for a modest increase in TUDC transport. Examination of substrate-stimulated MRP2-dependent ATPase activity of S789F and A1450T, SNPs located in MRP2 nucleotide-binding domains (NBDs), demonstrated significantly decreased ATPase activity and only modestly decreased affinity for ATP compared with WT. CONCLUSION SNPs in the NBDs (S789F in the D-loop of NBD1, or A1450T near the ABC signature motif of NBD2) variably decreased the transport of all substrates. V417I in membrane spanning domain 1 selectively decreased the apparent affinity for the glutathione and glucuronide conjugated substrates, whereas the T1477M SNP in the carboxyl terminus altered only TUDC transport.
Collapse
|
33
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|
34
|
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278:3226-45. [PMID: 21740521 DOI: 10.1111/j.1742-4658.2011.08235.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
35
|
Long Y, Li Q, Zhong S, Wang Y, Cui Z. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:381-91. [PMID: 21266201 DOI: 10.1016/j.cbpc.2011.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/09/2011] [Accepted: 01/18/2011] [Indexed: 11/23/2022]
Abstract
Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Biological Transport
- Cell Line
- Dose-Response Relationship, Drug
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter
- Larva/drug effects
- Larva/growth & development
- Larva/metabolism
- Male
- Metals, Heavy/administration & dosage
- Metals, Heavy/pharmacokinetics
- Metals, Heavy/toxicity
- Molecular Sequence Data
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Phylogeny
- RNA, Messenger/metabolism
- Random Allocation
- Sequence Alignment
- Water Pollutants, Chemical/administration & dosage
- Water Pollutants, Chemical/pharmacokinetics
- Water Pollutants, Chemical/toxicity
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Yong Long
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd., Wuhan, Hubei 430072, PR China
| | | | | | | | | |
Collapse
|
36
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Demirel O, Bangert I, Tampé R, Abele R. Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 2010; 11:383-93. [PMID: 20377823 DOI: 10.1111/j.1600-0854.2009.01021.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric ATP-binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing-like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N-terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core-TAPL complex, composed of six predicted transmembrane helices and a nucleotide-binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full-length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non-covalently linked complex with the core translocation machinery and guides core-TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.
Collapse
Affiliation(s)
- Ozlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
38
|
Li M, Wang W, Soroka CJ, Mennone A, Harry K, Weinman EJ, Boyer JL. NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J Biol Chem 2010; 285:19299-307. [PMID: 20404332 DOI: 10.1074/jbc.m109.096081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2, Abcc2) is an ATP-binding cassette transporter localized at the canalicular membrane of hepatocytes that plays an important role in bile formation and detoxification. Prior in vitro studies suggest that Mrp2 can bind to Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), a PDZ protein that cross-links membrane proteins to actin filaments. However the role of NHERF-1 in the expression and functional regulation of Mrp2 remains largely unknown. Here we examine the interaction of Mrp2 and NHERF-1 and its physiological significance in HEK293 cells and NHERF-1 knock-out mice. Mrp2 co-precipitated with NHERF-1 in co-transfected HEK293 cells, an interaction that required the PDZ-binding motif of Mrp2. In NHERF-1(-/-) mouse liver, Mrp2 mRNA was unchanged but Mrp2 protein was reduced in whole cell lysates and membrane-enriched fractions to approximately 50% (p < 1 x 10(-6)) and approximately 70% (p < 0.05), respectively, compared with wild-type mice, suggesting that the down-regulation of Mrp2 expression was caused by post-transcriptional events. Mrp2 remained localized at the apical/canalicular membrane of NHERF-1(-/-) mouse hepatocytes, although its immunofluorescent labeling was noticeably weaker. Bile flow in NHERF-1(-/-) mice was reduced to approximately 70% (p < 0.001) in association with a 50% reduction in glutathione excretion (p < 0.05) and a 60% reduction in glutathione-methylfluorescein (GS-MF) excretion in isolated mouse hepatocyte (p < 0.01). Bile acid and bilirubin excretion remained unchanged compared with wild-type mice. These findings strongly suggest that NHERF-1 binds to Mrp2, and plays a critical role in the canalicular expression of Mrp2 and its function as a determinant of glutathione-dependent, bile acid-independent bile flow.
Collapse
Affiliation(s)
- Man Li
- Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Biological profile of erucin: a new promising anticancer agent from cruciferous vegetables. Toxins (Basel) 2010; 2:593-612. [PMID: 22069601 PMCID: PMC3153205 DOI: 10.3390/toxins2040593] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 02/05/2023] Open
Abstract
Consumption of cruciferous vegetables has been associated with a reduced risk in the development of various types of cancer. This has been attributed to the bioactive hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin is one such product derived from rocket salads, which is structurally related to sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present current knowledge on mechanisms of action of erucin in chemoprevention obtained from cell and animal models and relate it to other isothiocyanates. These mechanisms include modulation of phase I, II and III detoxification, regulation of cell growth by induction of apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen receptor pathways.
Collapse
|
40
|
Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G, Rahman F, Gürakan F, Utine E, Ozkan TB, Denecke J, Vukovic J, Di Rocco M, Mandel H, Cangul H, Matthews RP, Thomas SG, Rappoport JZ, Arias IM, Wolburg H, Knisely AS, Kelly DA, Müller F, Maher ER, Gissen P. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 2010; 42:303-12. [PMID: 20190753 PMCID: PMC5308204 DOI: 10.1038/ng.538] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/25/2010] [Indexed: 02/06/2023]
Abstract
Arthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects. We show that VIPAR forms a functional complex with VPS33B that interacts with RAB11A. Knockdown of vipar in zebrafish resulted in biliary excretion and E-cadherin defects similar to those in individuals with ARC. Vipar- and Vps33b-deficient mouse inner medullary collecting duct (mIMDC-3) cells expressed membrane proteins abnormally and had structural and functional tight junction defects. Abnormal Ceacam5 expression was due to mis-sorting toward lysosomal degradation, but reduced E-cadherin levels were associated with transcriptional downregulation. The VPS33B-VIPAR complex thus has diverse functions in the pathways regulating apical-basolateral polarity in the liver and kidney.
Collapse
Affiliation(s)
- Andrew R Cullinane
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 2010; 73:577-93. [PMID: 19946134 DOI: 10.1128/mmbr.00020-09] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome.
Collapse
|
42
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|