1
|
de Souza IIA, da Silva Barenco T, Pavarino MEMF, Couto MT, de Resende GO, de Oliveira DF, Ponte CG, Nascimento JHM, Maciel L. A potent and selective activator of large-conductance Ca 2+-activated K + channels induces preservation of mitochondrial function after hypoxia and reoxygenation by handling of calcium and transmembrane potential. Acta Physiol (Oxf) 2024; 240:e14151. [PMID: 38676357 DOI: 10.1111/apha.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
AIMS Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.
Collapse
Affiliation(s)
- Itanna Isis Araujo de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Thais da Silva Barenco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Marcos Tadeu Couto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | - José Hamilton Matheus Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Federal do Rio de Janeiro, Duque de Caxias, Brasil
| |
Collapse
|
2
|
Slayden AV, Dyer CL, Ma D, Li W, Bukiya AN, Parrill AL, Dopico AM. Discovery of agonist-antagonist pairs for the modulation of Ca [2]+ and voltage-gated K + channels of large conductance that contain beta1 subunits. Bioorg Med Chem 2022; 68:116876. [PMID: 35716586 PMCID: PMC10464842 DOI: 10.1016/j.bmc.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Large conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm. Compounds activating BK via beta1 have been identified, yet they exhibit low potency and off-target effects while antagonists that limit agonist activity via beta 1 remain unexplored. Beta1-dependent BK ligand-based pharmacophore modeling and ZINC database searches identified 15 commercially available hits. Concentration-response curves on BK alpha + beta1 subunit-mediated currents were obtained in CHO cells. One potent (EC50 = 20 nM) and highly efficacious activator (maximal activation = ×10.3 of control) was identified along with a potent antagonist (KB = 3.02 nM), both of which were dependent on beta1. Our study provides the first proof-of-principle that an agonist/antagonist pair can be used to control beta1-containing BK activity.
Collapse
Affiliation(s)
- Alexandria V Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Christy L Dyer
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA.
| |
Collapse
|
3
|
Discovery and characterization of a potent activator of the BK Ca channel that relives overactive bladder syndrome in rats. Eur J Pharmacol 2022; 927:175055. [PMID: 35644420 DOI: 10.1016/j.ejphar.2022.175055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The large-conductance Ca2+-activated K+ channel (BKCa channel) is involved in repolarizing the membrane potential and has a variety of cellular functions. The BKCa channel is highly expressed in bladder smooth muscle and mediates muscle relaxation. Compounds that activate the BKCa channel have therapeutic potential against pathological symptoms associated with the overactivity of bladder smooth muscle. In this regard, we screened a chemical library of 9938 compounds to identify novel BKCa channel activators. A cell-based fluorescence assay identified a structural family of compounds containing a common tricyclic quinazoline ring that activated the BKCa channel. The most potent compound TTQC-1 (7-bromo-N-(3-methylphenyl)-5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazoline-3-carboxamide) directly and reversibly activated the macroscopic current of BKCa channels expressed in Xenopus oocytes from both sides of the cellular membrane. TTQC-1 increased the maximum conductance and shifted the half activation voltage to the left. The apparent half-maximal effective concentration and dissociation constant were 2.8 μM and 7.95 μM, respectively. TTQC-1 delayed the kinetics of channel deactivation without affecting channel activation. The activation effects were observed over a wide range of intracellular Ca2+ concentrations and dependent on the co-expression of β1 and β4 auxiliary subunits, which are highly expressed in urinary bladder. In the isolated smooth muscle cells of rat urinary bladder, TTQC-1 increased the K+ currents which can be blocked by iberiotoxin. Finally, oral administration of TTQC-1 to hypertensive rats decreased the urination frequency. Therefore, TTQC-1 is a BKCa channel activator with a novel structure that is a potential therapeutic candidate for BKCa channel-related diseases, such as overactive bladder syndrome.
Collapse
|
4
|
Ferraz AP, Seara FAC, Baptista EF, Barenco TS, Sottani TBB, Souza NSC, Domingos AE, Barbosa RAQ, Takiya CM, Couto MT, Resende GO, Campos de Carvalho AC, Ponte CG, Nascimento JHM. BK Ca Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovasc Drugs Ther 2021; 35:719-732. [PMID: 33245463 DOI: 10.1007/s10557-020-07115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated. METHODS PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and β myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed. RESULTS Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload. CONCLUSION The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.
Collapse
Affiliation(s)
- Ana Paula Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Emanuelle F Baptista
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais S Barenco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais B B Sottani
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S C Souza
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos T Couto
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel O Resende
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cristiano G Ponte
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose Hamilton M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Bradley E, Large RJ, Bihun VV, Mullins ND, Hollywood MA, Sergeant GP, Thornbury KD. Inhibitory effects of openers of large-conductance Ca 2+-activated K + channels on agonist-induced phasic contractions in rabbit and mouse bronchial smooth muscle. Am J Physiol Cell Physiol 2018; 315:C818-C829. [PMID: 30257105 DOI: 10.1152/ajpcell.00068.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Airway smooth muscle expresses abundant BKCa channels, but their role in regulating contractions remains controversial. This study examines the effects of two potent BKCa channel openers on agonist-induced phasic contractions in rabbit and mouse bronchi. First, we demonstrated the ability of 10 μM GoSlo-SR5-130 to activate BKCa channels in inside-out patches from rabbit bronchial myocytes, where it shifted the activation V1/2 by -88 ± 11 mV (100 nM Ca2+, n = 7). In mouse airway smooth muscle cells, GoSlo-SR5-130 dose dependently shifted V1/2 by 12-83 mV over a concentration range of 1-30 μM. Compound X, a racemic mixture of two enantiomers, reported to be potent BKCa channel openers, shifted V1/2 by 20-79 mV over a concentration range of 0.3-3 μM. In rabbit bronchial rings, exposure to histamine (1 μM) induced phasic contractions after a delay of ~35 min. These were abolished by GoSlo-SR5-130 (30 μM). Nifedipine (100 nM) and CaCCinhA01 (10 μM), a TMEM16A blocker, also abolished histamine-induced phasic contractions. In mouse bronchi, similar phasic contractions were evoked by exposure to U46619 (100 nM) and carbachol (100 nM). In each case, these were inhibited by concentrations of GoSlo-SR5-130 and compound X that shifted the activation V1/2 of BKCa channels in the order of -80 mV. In conclusion, membrane potential-dependent regulation of L-type Ca2+ channels appears to be important for histamine-, U46619-, and carbachol-induced phasic contractions in airway smooth muscle. Contractions can be abolished by BKCa channel openers, suggesting that these channels are potential targets for treating some causes of airway obstruction.
Collapse
Affiliation(s)
- Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | | | - Nicolas D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
6
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
7
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Giacoppo JDOS, Carregal JB, Junior MC, Cunha EFFD, Ramalho TC. Towards the understanding of tetrahydroquinolines action in Aedes aegypti: larvicide or adulticide? MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1239823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juliano B. Carregal
- Department of Chemistry, Federal University of São João del Rey, Divinópolis, Brazil
| | - Moacyr C. Junior
- Department of Chemistry, Federal University of São João del Rey, Divinópolis, Brazil
| | | | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Center for Basic and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. Proc Natl Acad Sci U S A 2016; 113:5748-53. [PMID: 27091997 DOI: 10.1073/pnas.1602815113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
K(+) channels, a superfamily of ∼80 members, control cell excitability, ion homeostasis, and many forms of cell signaling. Their malfunctions cause numerous diseases including neuronal disorders, cardiac arrhythmia, diabetes, and asthma. Here we present a novel liposome flux assay (LFA) that is applicable to most K(+) channels. It is robust, low cost, and high throughput. Using LFA, we performed small molecule screens on three different K(+) channels and identified new activators and inhibitors for biological research on channel function and for medicinal development. We further engineered a hERG (human ether-à-go-go-related gene) channel, which, when used in LFA, provides a highly sensitive (zero false negatives on 50 hERG-sensitive drugs) and highly specific (zero false positives on 50 hERG-insensitive drugs), low-cost hERG safety assay.
Collapse
|
11
|
Kaczorowski G, Garcia M. Developing Molecular Pharmacology of BK Channels for Therapeutic Benefit. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:439-75. [DOI: 10.1016/bs.irn.2016.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
McMillan JE, Bukiya AN, Terrell CL, Patil SA, Miller DD, Dopico AM, Parrill AL. Multi-generational pharmacophore modeling for ligands to the cholane steroid-recognition site in the β₁ modulatory subunit of the BKCa channel. J Mol Graph Model 2014; 54:174-83. [PMID: 25459769 PMCID: PMC4268273 DOI: 10.1016/j.jmgm.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/04/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Large conductance, voltage- and Ca(2+)-gated K(+) (BKCa) channels play a critical role in smooth muscle contractility and thus represent an emerging therapeutic target for drug development to treat vascular disease, gastrointestinal, bladder and uterine disorders. Several compounds are known to target the ubiquitously expressed BKCa channel-forming α subunit. In contrast, just a few are known to target the BKCa modulatory β1 subunit, which is highly expressed in smooth muscle and scarce in most other tissues. Lack of available high-resolution structural data makes structure-based pharmacophore modeling of β1 subunit-dependent BKCa channel activators a major challenge. Following recent discoveries of novel BKCa channel activators that act via β1 subunit recognition, we performed ligand-based pharmacophore modeling that led to the successful creation and fine-tuning of a pharmacophore over several generations. Initial models were developed using physiologically active cholane steroids (bile acids) as template. However, as more compounds that act on BKCa β1 have been discovered, our model has been refined to improve accuracy. Database searching with our best-performing model has uncovered several novel compounds as candidate BKCa β1 subunit ligands. Eight of the identified compounds were experimentally screened and two proved to be activators of recombinant BKCa β1 complexes. One of these activators, sobetirome, differs substantially in structure from any previously reported activator.
Collapse
Affiliation(s)
- Jacob E McMillan
- Department of Chemistry and Computational Research on Materials Institute (CROMIUM), The University of Memphis, Memphis, TN 38152, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Camisha L Terrell
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA andDepartment of Chemistry, Christian Brothers University, Memphis, TN 38104, USA.
| | - Shivaputra A Patil
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Abby L Parrill
- Department of Chemistry and Computational Research on Materials Institute (CROMIUM), The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
13
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
14
|
Nausch B, Rode F, Jørgensen S, Nardi A, Korsgaard MPG, Hougaard C, Bonev AD, Brown WD, Dyhring T, Strøbæk D, Olesen SP, Christophersen P, Grunnet M, Nelson MT, Rønn LCB. NS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions. J Pharmacol Exp Ther 2014; 350:520-30. [PMID: 24951278 DOI: 10.1124/jpet.113.212662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding.
Collapse
Affiliation(s)
- Bernhard Nausch
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Frederik Rode
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Susanne Jørgensen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Antonio Nardi
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mads P G Korsgaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Charlotte Hougaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Adrian D Bonev
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - William D Brown
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Tino Dyhring
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Dorte Strøbæk
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Søren-Peter Olesen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Palle Christophersen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Morten Grunnet
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mark T Nelson
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Lars C B Rønn
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| |
Collapse
|
15
|
Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM. Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel β1-subunit by a novel nonsteroidal agent. Mol Pharmacol 2013; 83:1030-44. [PMID: 23455312 PMCID: PMC3629834 DOI: 10.1124/mol.112.083519] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/01/2013] [Indexed: 12/26/2022] Open
Abstract
The Ca(2+)/voltage-gated K(+) large conductance (BK) channel β1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK β1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK β1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate β1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 + β1) channels cloned from rat cerebral artery myocytes with a potency (EC₅₀ = 53 μM) similar to and an efficacy (×2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv1 + β2, β3, β4, or β1T169A, indicating that this drug selectively targets β1-containing BK channels via the BK β1 steroid-sensing site. HENA (3-45 μM) dilated the rat and C57BL/6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK β1's role in HENA action. Finally, carotid artery-infusion of HENA (45 μM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates β1-containing BK channels by targeting the steroid-sensing site in BK β1, rendering vasodilation.
Collapse
Affiliation(s)
- Anna N Bukiya
- Departments of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bukiya AN, Patil S, Li W, Miller D, Dopico AM. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain. ChemMedChem 2012; 7:1784-92. [PMID: 22945504 PMCID: PMC4193543 DOI: 10.1002/cmdc.201200290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 02/07/2023]
Abstract
Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. We performed a structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the accessory BK β1 subunit. The latter protein is highly abundant in smooth muscle but scarce in most other tissues. Modifications to the LCA lateral chain length and functional group yielded two novel smooth muscle BK channel activators in which the substituent at C24 has a small volume and a net negative charge. Our data provide detailed structural information that will be useful to advance a pharmacophore in search of β1 subunit-selective BK channel activators. These compounds are expected to evoke smooth muscle relaxation, which would be beneficial in the pharmacotherapy of prevalent human disorders associated with increased smooth muscle contraction, such as systemic hypertension, cerebral or coronary vasospasm, bronchial asthma, bladder hyperactivity, and erectile dysfunction.
Collapse
Affiliation(s)
- Anna N. Bukiya
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| | - Shivaputra Patil
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Wei Li
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Duane Miller
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Alex M. Dopico
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| |
Collapse
|
17
|
Xin W, Soder RP, Cheng Q, Rovner ES, Petkov GV. Selective inhibition of phosphodiesterase 1 relaxes urinary bladder smooth muscle: role for ryanodine receptor-mediated BK channel activation. Am J Physiol Cell Physiol 2012; 303:C1079-89. [PMID: 22992675 DOI: 10.1152/ajpcell.00162.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) excitability and contractility. Recently, we showed that nonselective phosphodiesterase (PDE) inhibition reduces guinea pig DSM excitability and contractility by increasing BK channel activity. Here, we investigated how DSM excitability and contractility changes upon selective inhibition of PDE type 1 (PDE1) and the underlying cellular mechanism involving ryanodine receptors (RyRs) and BK channels. PDE1 inhibition with 8-methoxymethyl-3-isobutyl-1-methylxanthine (8MM-IBMX; 10 μM) increased the cAMP levels in guinea pig DSM cells. Patch-clamp experiments on freshly isolated DSM cells showed that 8MM-IBMX increased transient BK currents and the spontaneous transient hyperpolarization (STH) frequency by ∼2.5- and ∼1.8-fold, respectively. 8MM-IBMX hyperpolarized guinea pig and human DSM cell membrane potential and significantly decreased the intracellular Ca(2+) levels in guinea pig DSM cells. Blocking BK channels with 1 μM paxilline or inhibiting RyRs with 30 μM ryanodine abolished the STHs and the 8MM-IBMX inhibitory effects on the DSM cell membrane potential. Isometric DSM tension recordings showed that 8MM-IBMX significantly reduced the spontaneous phasic contraction amplitude, muscle force integral, duration, frequency, and tone of DSM isolated strips. The electrical field stimulation-induced DSM contraction amplitude, muscle force integral, and duration were also attenuated by 10 μM 8MM-IBMX. Blocking BK channels with paxilline abolished the 8MM-IBMX effects on DSM contractions. Our data provide evidence that PDE1 inhibition relaxes DSM by raising cellular cAMP levels and subsequently stimulates RyRs, which leads to BK channel activation, membrane potential hyperpolarization, and decrease in intracellular Ca(2+) levels.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Bldg., Rm. 609D, 715 Sumter St, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|