1
|
Jia Y, Tian W, Li Y, Teng Y, Liu X, Li Z, Zhao M. Chloroquine: Rapidly withdrawing from first-line treatment of COVID-19. Heliyon 2024; 10:e37098. [PMID: 39281655 PMCID: PMC11402237 DOI: 10.1016/j.heliyon.2024.e37098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 outbreak has garnered significant global attention due to its impact on human health. Despite its relatively low fatality rate, the virus affects multiple organ systems, resulting in various symptoms such as palpitations, headaches, muscle pain, and hearing loss among COVID-19 patients and those recovering from the disease. These symptoms impose a substantial physical, psychological, and social burden on affected individuals. On February 15, 2020, the Chinese government advised incorporating antimalarial drugs into the guidelines issued by the National Health Commission of China for preventing, diagnosing, and treating COVID-19 pneumonia. We examine the adverse effects of Chloroquine (CQ) in treating COVID-19 complications to understand why it is no longer the primary treatment for the disease.
Collapse
Affiliation(s)
- Yunlong Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Wenjie Tian
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyao Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyan Teng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xiaolin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhengyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Peng-Cheng L, Meng-Na L, Jian-Bin L, Shu-Jiao Y, Wu R. Advancements on the impact of hydroxychloroquine in systemic lupus erythematosus. Heliyon 2024; 10:e30393. [PMID: 38711668 PMCID: PMC11070867 DOI: 10.1016/j.heliyon.2024.e30393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Hydroxychloroquine (HCQ) has gained significant attention as a therapeutic option for systemic lupus erythematosus (SLE) because of its multifaceted mechanism of action. It is a lipophilic, lysosomotropic drug, that easily traverses cell membranes and accumulates in lysosomes. Once accumulated, HCQ alkalizes lysosomes within the cytoplasm, thereby disrupting their function and interfering with processes like antigen presentation. Additionally, HCQ has shown potential in modulating T-cell responses, inhibiting cytokine production, and influencing Toll-like receptor signaling. Its immunomodulatory effects have generated interest in its application for autoimmune disorders. Despite its established efficacy, uncertainties persist regarding the optimal therapeutic concentrations and their correlation with adverse effects such as retinal toxicity. Therefore, standardized dosing and monitoring guidelines are crucial. In this study, we provide a comprehensive review of the mechanisms, efficacy, dosing variations, and retinal toxicity profiles of HCQ, which are essential to optimize SLE treatment protocols and ensure patient safety.
Collapse
Affiliation(s)
- Liu Peng-Cheng
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lv Meng-Na
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Li Jian-Bin
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shu-Jiao
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Saadeh K, Nantha Kumar N, Fazmin IT, Edling CE, Jeevaratnam K. Anti-malarial drugs: Mechanisms underlying their proarrhythmic effects. Br J Pharmacol 2022; 179:5237-5258. [PMID: 36165125 PMCID: PMC9828855 DOI: 10.1111/bph.15959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malaria remains the leading cause of parasitic death in the world. Artemisinin resistance is an emerging threat indicating an imminent need for novel combination therapy. Given the key role of mass drug administration, it is pivotal that the safety of anti-malarial drugs is investigated thoroughly prior to widespread use. Cardiotoxicity, most prominently arrhythmic risk, has been a concern for anti-malarial drugs. We clarify the likely underlying mechanisms by which anti-malarial drugs predispose to arrhythmias. These relate to disruption of (1) action potential upstroke due to effects on the sodium currents, (2) action potential repolarisation due to effects on the potassium currents, (3) cellular calcium homeostasis, (4) mitochondrial function and reactive oxygen species production and (5) cardiac fibrosis. Together, these alterations promote arrhythmic triggers and substrates. Understanding these mechanisms is essential to assess the safety of these drugs, stratify patients based on arrhythmic risk and guide future anti-malarial drug development.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | - Ibrahim Talal Fazmin
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | | |
Collapse
|
4
|
Houtman MJC, Friesacher T, Chen X, Zangerl-Plessl EM, van der Heyden MAG, Stary-Weinzinger A. Development of I KATP Ion Channel Blockers Targeting Sulfonylurea Resistant Mutant K IR6.2 Based Channels for Treating DEND Syndrome. Front Pharmacol 2022; 12:814066. [PMID: 35095528 PMCID: PMC8795863 DOI: 10.3389/fphar.2021.814066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: DEND syndrome is a rare channelopathy characterized by a combination of developmental delay, epilepsy and severe neonatal diabetes. Gain of function mutations in the KCNJ11 gene, encoding the KIR6.2 subunit of the IKATP potassium channel, stand at the basis of most forms of DEND syndrome. In a previous search for existing drugs with the potential of targeting Cantú Syndrome, also resulting from increased IKATP, we found a set of candidate drugs that may also possess the potential to target DEND syndrome. In the current work, we combined Molecular Modelling including Molecular Dynamics simulations, with single cell patch clamp electrophysiology, in order to test the effect of selected drug candidates on the KIR6.2 WT and DEND mutant channels. Methods: Molecular dynamics simulations were performed to investigate potential drug binding sites. To conduct in vitro studies, KIR6.2 Q52R and L164P mutants were constructed. Inside/out patch clamp electrophysiology on transiently transfected HEK293T cells was performed for establishing drug-channel inhibition relationships. Results: Molecular Dynamics simulations provided insight in potential channel interaction and shed light on possible mechanisms of action of the tested drug candidates. Effective IKIR6.2/SUR2a inhibition was obtained with the pore-blocker betaxolol (IC50 values 27-37 μM). Levobetaxolol effectively inhibited WT and L164P (IC50 values 22 μM) and Q52R (IC50 55 μM) channels. Of the SUR binding prostaglandin series, travoprost was found to be the best blocker of WT and L164P channels (IC50 2-3 μM), while Q52R inhibition was 15-20% at 10 μM. Conclusion: Our combination of MD and inside-out electrophysiology provides the rationale for drug mediated IKATP inhibition, and will be the basis for 1) screening of additional existing drugs for repurposing to address DEND syndrome, and 2) rationalized medicinal chemistry to improve IKATP inhibitor efficacy and specificity.
Collapse
Affiliation(s)
- Marien J C Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Xingyu Chen
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Bründl M, Pellikan S, Stary-Weinzinger A. Simulating PIP 2-Induced Gating Transitions in Kir6.2 Channels. Front Mol Biosci 2021; 8:711975. [PMID: 34447786 PMCID: PMC8384051 DOI: 10.3389/fmolb.2021.711975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels consist of an inwardly rectifying K+ channel (Kir6.2) pore, to which four ATP-sensitive sulfonylurea receptor (SUR) domains are attached, thereby coupling K+ permeation directly to the metabolic state of the cell. Dysfunction is linked to neonatal diabetes and other diseases. K+ flux through these channels is controlled by conformational changes in the helix bundle region, which acts as a physical barrier for K+ permeation. In addition, the G-loop, located in the cytoplasmic domain, and the selectivity filter might contribute to gating, as suggested by different disease-causing mutations. Gating of Kir channels is regulated by different ligands, like Gβγ, H+, Na+, adenosine nucleotides, and the signaling lipid phosphatidyl-inositol 4,5-bisphosphate (PIP2), which is an essential activator for all eukaryotic Kir family members. Although molecular determinants of PIP2 activation of KATP channels have been investigated in functional studies, structural information of the binding site is still lacking as PIP2 could not be resolved in Kir6.2 cryo-EM structures. In this study, we used Molecular Dynamics (MD) simulations to examine the dynamics of residues associated with gating in Kir6.2. By combining this structural information with functional data, we investigated the mechanism underlying Kir6.2 channel regulation by PIP2.
Collapse
Affiliation(s)
| | | | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Wong SK. Repurposing New Use for Old Drug Chloroquine against Metabolic Syndrome: A Review on Animal and Human Evidence. Int J Med Sci 2021; 18:2673-2688. [PMID: 34104100 PMCID: PMC8176183 DOI: 10.7150/ijms.58147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are traditional anti-malarial drugs that have been repurposed for new therapeutic uses in many diseases due to their simple usage and cost-effectiveness. The pleiotropic effects of CQ and HCQ in regulating blood pressure, glucose homeostasis, lipid, and carbohydrate metabolism have been previously described in vivo and in humans, thus suggesting their role in metabolic syndrome (MetS) prevention. The anti-hyperglycaemic, anti-hyperlipidaemic, cardioprotective, anti-hypertensive, and anti-obesity effects of CQ and HCQ might be elicited through reduction of inflammatory response and oxidative stress, improvement of endothelial function, activation of insulin signalling pathway, inhibition of lipogenesis and autophagy, as well as regulation of adipokines and apoptosis. In conclusion, the current state of knowledge supported the repurposing of CQ and HCQ usage in the management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol Sin 2020; 41:1377-1386. [PMID: 32968208 PMCID: PMC7509225 DOI: 10.1038/s41401-020-00519-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.
Collapse
|
9
|
Penman SL, Kiy RT, Jensen RL, Beoku‐Betts C, Alfirevic A, Back D, Khoo SH, Owen A, Pirmohamed M, Park BK, Meng X, Goldring CE, Chadwick AE. Safety perspectives on presently considered drugs for the treatment of COVID-19. Br J Pharmacol 2020; 177:4353-4374. [PMID: 32681537 PMCID: PMC7404855 DOI: 10.1111/bph.15204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID-19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm-benefit ratios that may be encountered when treating COVID-19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life-threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID-19.
Collapse
Affiliation(s)
- Sophie L. Penman
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Robyn T. Kiy
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Rebecca L. Jensen
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | | | - Ana Alfirevic
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - David Back
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Saye H. Khoo
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Amy E. Chadwick
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
10
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
11
|
Inanobe A, Itamochi H, Kurachi Y. Kir Channel Blockages by Proflavine Derivatives via Multiple Modes of Interaction. Mol Pharmacol 2018; 93:592-600. [PMID: 29650538 DOI: 10.1124/mol.117.111377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
Abstract
Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K+ (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors.
Collapse
Affiliation(s)
- Atsushi Inanobe
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Hideaki Itamochi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Novel members of quinoline compound family enhance insulin secretion in RIN-5AH beta cells and in rat pancreatic islet microtissue. Sci Rep 2017; 7:44073. [PMID: 28272433 PMCID: PMC5341024 DOI: 10.1038/srep44073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/31/2017] [Indexed: 11/08/2022] Open
Abstract
According to clinical data, some tyrosine kinase inhibitors (TKIs) possess antidiabetic effects. Several proposed mechanisms were assigned to them, however their mode of action is not clear. Our hypothesis was that they directly stimulate insulin release in beta cells. In our screening approach we demonstrated that some commercially available TKIs and many novel synthesized analogues were able to induce insulin secretion in RIN-5AH beta cells. Our aim was to find efficient, more selective and less toxic compounds. Out of several hits, we chose members from a compound family with quinoline core structure for further investigation. Here we present the studies done with these novel compounds and reveal structure activity relationships and mechanism of action. One of the most potent compounds (compound 9) lost its affinity to kinases, but efficiently increased calcium influx. In the presence of calcium channel inhibitors, the insulinotropic effect was attenuated or completely abrogated. While the quinoline TKI, bosutinib substantially inhibited tyrosine phosphorylation, compound 9 had no such effect. Molecular docking studies further supported our data. We confirmed that some TKIs possess antidiabetic effects, moreover, we present a novel compound family developed from the TKI, bosutinib and optimized for the modulation of insulin secretion.
Collapse
|
13
|
Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur J Pharmacol 2017; 800:40-47. [PMID: 28216048 DOI: 10.1016/j.ejphar.2017.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC50 ≈0.5μM at +50mV) and faster onset of block when compared to whole-cell configuration (IC50 ≈7μM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.
Collapse
|
14
|
Isolation of proflavine as a blocker of G protein-gated inward rectifier potassium channels by a cell growth-based screening system. Neuropharmacology 2016; 109:18-28. [PMID: 27236080 DOI: 10.1016/j.neuropharm.2016.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/29/2023]
Abstract
The overexpression of Kir3.2, a subunit of the G protein-gated inwardly rectifying K(+) channel, is implicated in some of the neurological phenotypes of Down syndrome (DS). Chemical compounds that block Kir3.2 are expected to improve the symptoms of DS. The purpose of this study is to develop a cell-based screening system to identify Kir3.2 blockers and then investigate the mode of action of the blocker. Chemical screening was carried out using a K(+) transporter-deficient yeast strain that expressed a constitutively active Kir3.2 mutant. The mode of action of an effective blocker was electrophysiologically analyzed using Kir channels expressed in Xenopus oocytes. Proflavine was identified to inhibit the growth of Kir3.2-transformant cells and Kir3.2 activity in a concentration-dependent manner. The current inhibition was strong when membrane potentials (Vm) was above equilibrium potential of K(+) (EK). When Vm was below EK, the blockage apparently depended on the difference between Vm and [K(+)]. Furthermore, the inhibition became stronger by lowering extracellular [K(+)]. These results indicated that the yeast strain serves as a screening system to isolate Kir3.2 blockers and proflavine is a prototype of a pore blocker of Kir3.2.
Collapse
|
15
|
Rodríguez-Menchaca AA, Aréchiga-Figueroa IA, Sánchez-Chapula JA. The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K + channels. Pharmacol Rep 2016; 68:383-9. [DOI: 10.1016/j.pharep.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
16
|
Liu ZW, Niu XL, Chen KL, Xing YJ, Wang X, Qiu C, Gao DF. Selenium attenuates adriamycin-induced cardiac dysfunction via restoring expression of ATP-sensitive potassium channels in rats. Biol Trace Elem Res 2013; 153:220-8. [PMID: 23475371 DOI: 10.1007/s12011-013-9641-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
The possible mechanism of adriamycin (ADR) and/or selenium (Se) deficiency-induced cardiac dysfunction, and cardioprotective effects of Se against ADR-induced cardiac toxicity were investigated in this study. Cardiac function was evaluated by plasma brain natriuretic peptide level and echocardiographic and hemodynamic parameters. Cardiac glutathione peroxidase (GPx) activity was assessed spectrophotometrically. Expression of ATP-sensitive potassium channels (KATP) subunits-SUR2A and Kir6.2-were examined by real-time PCR and Western blotting. The results showed that cardiac function and cardiac GPx activity decreased remarkably after administration of ADR or Se deficiency; more dramatic impairment of cardiac function and cardiac GPx activity were observed after co-administration of ADR and Se deficiency. Mechanically, it is novel for us to find down-regulation of KATP subunits gene expression in cardiac tissue after administration of ADR or Se deficiency, and more significant inhibition of cardiac KATP gene expression was identified after co-administration of ADR and Se deficiency. Furthermore, cardiac toxicity of ADR was found alleviated by Se supplementation, accompanied by restoring of cardiac GPx activity and cardiac KATP gene expression. These results indicate that decreased expression of cardiac KATP is involved in adriamycin and/or Se deficiency-induced cardiac dysfunction; Se deficiency exacerbates adriamycin-induced cardiac dysfunction by future inhibition of KATP expression; Se supplementation seems to protect against adriamycin-induced cardiac dysfunction via restoring KATP expression, showing potential clinical application in cancer chemotherapy.
Collapse
Affiliation(s)
- Zhong-Wei Liu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an 710004, China
| | | | | | | | | | | | | |
Collapse
|