1
|
Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022; 65:2225-2237. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.
Collapse
Affiliation(s)
- Yishen Liu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qianqian Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Meijia Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Disheng Lu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yanna Pan
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuqin Liao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qihang Ding
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Wanxia Gong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Dean Shuailin Chen
- Department of Chemistry, Pennsylvania State University, Philadelphia, Pennsylvania 19104, United States
| | - Mengting Guan
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Junzhu Wu
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Zhiquan Tian
- College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, U.K
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuling Xiao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
2
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Ajibade PA, Andrew FP. Synthesis, characterization, and in vitro anticancer studies of chlorido(triphenylphosphine)ruthenium(II) dithiocarbamate complexes. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1925671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Fartisincha P. Andrew
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Davis J, Cetto A, Campbell M, Scoggins S, Stultz L, Hanson P. DMSO reduces the cytotoxicity of anticancer ruthenium complex KP1019 in yeast. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000436. [PMID: 34377963 PMCID: PMC8339913 DOI: 10.17912/micropub.biology.000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Low solubility in aqueous solutions is a significant limitation of the otherwise promising anticancer ruthenium complex KP1019. In laboratory studies, this challenge is often overcome by using DMSO to help drive the drug into solution. Since DMSO was previously shown to alter the bioactivity of platinum-based chemotherapeutics, here we examine DMSO's effects on KP1019. Using Saccharomyces cerevisiae as a model organism, we apply multiple measures of growth inhibition to demonstrate that DMSO reduces the drug's toxicity. This reduction in bioactivity correlates with spectrophotometric changes consistent with DMSO-dependent increases in the stability of the KP1019 pro-drug. The impact of DMSO on the biology and chemistry of KP1019 suggests this solvent should not be used in studies of this and similar anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jonathan Davis
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Anne Cetto
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Mary Campbell
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Seth Scoggins
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Laura Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Pamela Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA,
Correspondence to: Pamela Hanson ()
| |
Collapse
|
6
|
Feng Y, Shu J, Yao L, Lan Y, Ye L, Mei W, Ding Y. Recognizing and stabilizing miR-21 by chiral ruthenium(II) complexes. BMC Chem 2020; 14:26. [PMID: 32266333 PMCID: PMC7119291 DOI: 10.1186/s13065-020-00672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
MiR-21, a non-coding miRNA with 22 nucleotides, plays an important part in the proliferation, invasion, and metastasis of tumor cells. The present study demonstrates that isomers of chiral ruthenium(II) complexes with alkynes (Λ-1 and Δ-1) were synthesized by Songogashira coupling reaction by using microwave-assisted synthetic technology. The isomers can recognize and stabilize miR-21, with the Λ-isomer showing a stronger binding capacity than the Δ-isomer. Further studies showed that both isomers can be uptaken by MDA-MB-231 cells and enriched in the nucleus. Treatment with the Λ-/Δ-isomer downregulated the expression of miR-21. In a word, the development of chiral ruthenium(II) complexes act as potential inhibitors against tumor cells by recognizing, stabilizing, and regulating the expression of miR-21.
Collapse
Affiliation(s)
- Yin Feng
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
| | - Jing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
| | - Liangzhong Yao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
| | - Yutao Lan
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006 China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model System, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model System, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Ying Ding
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
| |
Collapse
|
7
|
Yousuf I, Bashir M. Synthesis, structural investigations, and cytotoxic evaluation of a half‐sandwich Ru(II)‐arene complex. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Imtiyaz Yousuf
- Department of Chemistry Aligarh Muslim University Aligarh Uttar Pradesh India
| | - Masrat Bashir
- Department of Chemistry Aligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
8
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
9
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
10
|
Mahmoud WH, Mahmoud NF, Mohamed GG. Physicochemical characterization of nanobidentate ferrocene‐based Schiff base ligand and its coordination complexes: Antimicrobial, anticancer, density functional theory, and molecular operating environment studies. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Walaa H. Mahmoud
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
| | | | - Gehad G. Mohamed
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
- Egypt Nanotechnology CenterCairo University Giza Egypt
| |
Collapse
|
11
|
Liang J, Levina A, Jia J, Kappen P, Glover C, Johannessen B, Lay PA. Reactivity and Transformation of Antimetastatic and Cytotoxic Rhodium(III)–Dimethyl Sulfoxide Complexes in Biological Fluids: An XAS Speciation Study. Inorg Chem 2019; 58:4880-4893. [DOI: 10.1021/acs.inorgchem.8b03477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun Liang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junteng Jia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Chris Glover
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Bai M, Pan T, Yu G, Xie Q, Zeng Z, Zhang Y, Zhu D, Mu L, Qian J, Chang B, Mei WJ, Guan S. Chiral ruthenium(II) complex Δ-[Ru(bpy) 2(o-FMPIP)] (bpy = bipyridine, o-FMPIP = 2-(2'-trifluoromethyphenyl) imidazo[4,5-f][1,10]phenanthroline) as potential apoptosis inducer via DNA damage. Eur J Pharmacol 2019; 853:49-55. [PMID: 30880177 DOI: 10.1016/j.ejphar.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Chiral ruthenium(II) complexes have long been considered as potential anticancer agents. Herein, in vivo inhibitory activity of a chiral ruthenium(II) complex coordinated by ligand 2-(2'-trifluoromethyphenyl) imidazo [4,5-f][1,10]phenanthroline, Δ-[Ru(bpy)2(o-FMPIP)] (D0402) on Kunming(KM) mice bearing tumor (H22 hepatic cancer) has been evaluated, and the results showed that the tumor weight of mice treated with 0.22 mg/(kg·day) D0402 via i.v. administration for 7 days decreased about 31.79% compared to the control group, while the body weight, as well as the thymus, spleen, liver, lung, and kidney indices of mice treated with D0402 observed almost no loss compared to the control group. Furthermore, the mechanism studies on anti-angiogenic showed that D0402 could inhibit the formation of angiogenesis in the transgenic Tg(fli1a: EGFP) zebrafish. After treated with D0402, the sub-intestinal vessels(SIVs) of the zebrafish became disordered and chaotic, and was dosage dependent. Moreover, the TUNEL analysis and comet assays revealed that D0402 can induce apoptosis of HepG2 cell through DNA damage, and this was further demonstrated by immunofluorescence analysis with the number of γ-H2AX increased following the increasing amount of D0402. Besides, in vivo toxicity of D0402 has also been investigated on the development of zebrafish embryo, and the results showed that there were no death or development delay occurred for zebrafish embryo treated with D0402 up to concentration of 60 μM. All in together, this study suggested that D0402 can be developed as a potential inhibitor against liver cancer through co-junction of anti-angiogenesis and apoptosis-inducing via DNA damage in the near future.
Collapse
Affiliation(s)
- Mingjun Bai
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gengnan Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiang Xie
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhaolin Zeng
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanyang Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Duo Zhu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Luwen Mu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiesheng Qian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Boyang Chang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou 510006, China.
| | - Shouhai Guan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, Mei W. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem 2019; 164:282-291. [DOI: 10.1016/j.ejmech.2018.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
|
14
|
Le Gall T, Lemercier G, Chevreux S, Tücking KS, Ravel J, Thétiot F, Jonas U, Schönherr H, Montier T. Ruthenium(II) Polypyridyl Complexes as Photosensitizers for Antibacterial Photodynamic Therapy: A Structure-Activity Study on Clinical Bacterial Strains. ChemMedChem 2018; 13:2229-2239. [DOI: 10.1002/cmdc.201800392] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/28/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Tony Le Gall
- Gene Transfer and Gene Therapy Team, UMR INSERM 1078, (Génétique, Génomique Fonctionnelle et Biotechnologies); Université de Brest (UBO); CHRU de Brest, CS 93837 29238 Brest France
| | - Gilles Lemercier
- Coordination Chemistry Team, UMR CNRS 7312 (Institut de Chimie Moléculaire de Reims, ICMR); Université de Reims Champagne-Ardenne, BP 1039; 51687 Reims Cedex 2 France
| | - Sylviane Chevreux
- Coordination Chemistry Team, UMR CNRS 7312 (Institut de Chimie Moléculaire de Reims, ICMR); Université de Reims Champagne-Ardenne, BP 1039; 51687 Reims Cedex 2 France
| | - Katrin-Stephanie Tücking
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Strasse 2 57076 Siegen Germany
| | - Julian Ravel
- Gene Transfer and Gene Therapy Team, UMR INSERM 1078, (Génétique, Génomique Fonctionnelle et Biotechnologies); Université de Brest (UBO); CHRU de Brest, CS 93837 29238 Brest France
| | - Franck Thétiot
- UMR CNRS 6521; Université de Brest (UBO), CS 93837; 29238 Brest France
| | - Ulrich Jonas
- Macromolecular Chemistry; Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Strasse 2 57076 Siegen Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Strasse 2 57076 Siegen Germany
| | - Tristan Montier
- Gene Transfer and Gene Therapy Team, UMR INSERM 1078, (Génétique, Génomique Fonctionnelle et Biotechnologies); Université de Brest (UBO); CHRU de Brest, CS 93837 29238 Brest France
| |
Collapse
|
15
|
Golla U, Swagatika S, Chauhan S, Tomar RS. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget 2017; 8:98426-98454. [PMID: 29228701 PMCID: PMC5716741 DOI: 10.18632/oncotarget.21416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019. We also demonstrated that KP1019 modulates the effects of TOR (target of rapamycin) signaling pathway and induces accumulation of neutral lipids (lipid droplets) in both yeast and HeLa cells. Interestingly, KP1019-mediated effects were found augmented with metal ions (Al3+/Ca2+/Cd2+/Cu2+/Mn2+/Na+/Zn2+), and neutralized by Fe2+, antioxidants, osmotic stabilizer, and ethanolamine. Additionally, our comprehensive screening of yeast histone H3/H4 mutant library revealed several histone residues that could significantly modulate the KP1019-induced toxicity. Altogether, our findings in both the yeast and HeLa cells provide molecular insights into mechanisms of action of KP1019 and various factors (chemical/genetic/epigenetic) that can alter the therapeutic efficiency of this clinically important anticancer drug.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| |
Collapse
|
16
|
Mahmoud W, Mahmoud N, Mohamed GG. Synthesis, physicochemical characterization, geometric structure and molecular docking of new biologically active ferrocene based Schiff base ligand with transition metal ions. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- W.H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - N.F. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|
17
|
|
18
|
Binding interaction, conformational change, and molecular docking study of N-(pyridin-2-ylmethylene)aniline derivatives and carbazole Ru(II) complexes with human serum albumins. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Chen L, Zhang YH, Huang T, Cai YD. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. Mol Genet Genomics 2016; 291:913-34. [PMID: 26728152 DOI: 10.1007/s00438-015-1157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 01/18/2023]
Abstract
Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China. .,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
20
|
The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway. PLoS One 2015; 10:e0137991. [PMID: 26405812 PMCID: PMC4583253 DOI: 10.1371/journal.pone.0137991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/24/2015] [Indexed: 01/04/2023] Open
Abstract
The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the productions of ROS after exposure for 24 hrs. Results from western blotting suggest that Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that problem created by emergence of resistance towards standard anticancer compounds can be alleviated.
Collapse
|
21
|
DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae. PLoS One 2015; 10:e0138085. [PMID: 26375390 PMCID: PMC4572706 DOI: 10.1371/journal.pone.0138085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.
Collapse
|
22
|
Gamberi T, Fiaschi T, Modesti A, Massai L, Messori L, Balzi M, Magherini F. Evidence that the antiproliferative effects of auranofin in Saccharomyces cerevisiae arise from inhibition of mitochondrial respiration. Int J Biochem Cell Biol 2015; 65:61-71. [DOI: 10.1016/j.biocel.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 02/04/2023]
|
23
|
Synthesis and characterization of water-soluble, heteronuclear ruthenium(III)/ferrocene complexes and their interactions with biomolecules. J Inorg Biochem 2015; 145:41-50. [DOI: 10.1016/j.jinorgbio.2014.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
24
|
Yuan J, Lei Z, Wang X, Zhu F, Chen D. Ruthenium complex Λ-WH0402 induces hepatocellular carcinoma LM6 (HCCLM6) cell death by triggering the Beclin-1-dependent autophagy pathway. Metallomics 2015; 7:896-907. [PMID: 25811406 DOI: 10.1039/c5mt00010f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To evaluate the anticancer mechanism of the new ruthenium complex-Λ-WH0402 at the cellular level, the in vitro cytotoxicity of Λ-WH0402 was investigated on 10 human tumor cell lines. Λ-WH0402 was found to have higher anticancer activity than cisplatin toward human liver cancer HCCLM6 cells that have high tumor metastatic characteristics. Meanwhile, Λ-WH0402 showed an antimetastatic effect on HCCLM6 cells in vitro, mostly through its effect on cell adhesion, invasion and migration. In addition, Λ-WH0402 significantly reduced tumor metastasis to the lungs in orthotopic mouse hepatocellular cancer (HCC) models induced by HCCLM6 cells. Furthermore, Λ-WH0402 exerted an inhibitory effect on tumor cell growth and proliferation and induced dose-dependent cell cycle arrest in the S phase in HCCLM6 cells. Immunoblotting analysis showed that Λ-WH0402 not only decreased the expression of antiapoptotic protein Bcl-2 and nutrient-deprivation autophagy factor-1 (NAF-1), but also significantly increased the expression of Beclin-1 in HCCLM6 cells. More importantly, we identified that Λ-WH0402 treatment reduced the interaction between Bcl-2 and Beclin-1, and increased the expression of autophagic activation marker LC3B-II in HCCLM6 cells. On the whole, our results suggested that the anitcancer activity of Λ-WH0402 is mediated through promoting the Beclin-1-dependent autophagy pathway in HCCLM6 cells.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Pathology and Guangdong Key Laboratory for Bioactive Drugs Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae. Eur J Pharmacol 2014; 736:77-85. [DOI: 10.1016/j.ejphar.2014.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/29/2023]
|
26
|
Zhang Z, Wu Q, Wu XH, Sun FY, Chen LM, Chen JC, Yang SL, Mei WJ. Ruthenium(II) complexes as apoptosis inducers by stabilizing c-myc G-quadruplex DNA. Eur J Med Chem 2014; 80:316-24. [PMID: 24793882 DOI: 10.1016/j.ejmech.2014.04.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
Two ruthenium(II) complexes, [Ru(L)2(p-tFMPIP)](ClO4)2 (L = bpy, 1; phen, 2; p-tFMPIP = 2-(4-(trifluoromethyphenyl)-1H-imidazo[4,5f][1,10] phenanthroline)), were prepared by microwave-assisted synthesis technology. The inhibitory activity evaluated by MTT assay shown that 2 can inhibit the growth of MDA-MB-231 cells with inhibitory activity (IC50) of 16.3 μM, which was related to the induction of apoptosis. Besides, 2 exhibit low toxicity against normal HAcat cells. The inhibitory growth activity of both complexes related to the induction of apoptosis was also confirmed. Furthermore, the studies on the interaction of both complexes with c-myc G4 DNA shown that 1 and 2 can stabilize the conformation of c-myc G4 DNA in groove binding mode, which has been rational explained by using DFT theoretical calculation methods. In a word, this type of ruthenium(II) complexes can act as potential apoptosis inducers with low toxicity in clinic by stabilizing c-myc G4 DNA.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Xiao-Hui Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Fen-Yong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, PR China.
| | - Lan-Mei Chen
- School of Pharmacy, Guangdong Medical College, Zhanjiang 524023, PR China
| | - Jin-Chan Chen
- School of Pharmacy, Guangdong Medical College, Zhanjiang 524023, PR China
| | - Shu-Ling Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
27
|
Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 2014. [DOI: 10.1039/c3sc53243g] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
28
|
Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response inSaccharomyces cerevisiae. FEBS Lett 2014; 588:1044-52. [DOI: 10.1016/j.febslet.2014.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
|
29
|
Scrase TG, Page SM, Barker PD, Boss SR. Folates are potential ligands for ruthenium compounds in vivo. Dalton Trans 2014; 43:8158-61. [DOI: 10.1039/c4dt00081a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A labile ruthenium(ii) complex has been observed to chelate to folates under physiologically relevant conditions. The diastereomeric complexes formed would interfere with the one-carbon carrying role of folate in vivo. This highlights the importance of considering small molecules alongside macromolecules when determining the chemical origins of cytotoxicity of metallodrug candidates.
Collapse
Affiliation(s)
- Tom G. Scrase
- The University of Cambridge Chemical Laboratory
- Cambridge, UK
| | - Simon M. Page
- The University of Cambridge Chemical Laboratory
- Cambridge, UK
| | - Paul D. Barker
- The University of Cambridge Chemical Laboratory
- Cambridge, UK
| | - Sally R. Boss
- The University of Cambridge Chemical Laboratory
- Cambridge, UK
| |
Collapse
|