1
|
Sunagawa SW, Scarsi KK. A review of pharmacokinetic data describing long-acting injectable cabotegravir during pregnancy. Expert Opin Pharmacother 2025:1-8. [PMID: 40287979 DOI: 10.1080/14656566.2025.2499151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Eliminating vertical human immunodeficiency virus (HIV) transmission is a global health objective. Significant progress has been accomplished through advancements in antiretroviral therapy (ART) and pre-exposure prophylaxis (PrEP). Long-acting cabotegravir (CAB-LA) is a novel strategy addressing daily oral adherence challenges for both treatment and prevention of HIV. For treatment, CAB-LA is currently approved in combination with long-acting rilpivirine (RPV-LA). Despite its promise, there are limited data surrounding the utilization of CAB-LA in pregnancy. Understanding potential CAB-LA pharmacokinetic (PK) changes during pregnancy is necessary to ensure effectiveness and safety. AREAS COVERED Current PK data for CAB-LA in pregnant individuals, including physiological changes affecting PK, physiologically based PK modeling, and clinical PK data. EXPERT OPINION Long-acting therapies represent the future of HIV treatment and prevention. Available data demonstrate no clinically significant change in CAB PK, supporting CAB-LA for PrEP in pregnant individuals. However, available data for oral RPV and RPV-LA during pregnancy demonstrate lower drug concentrations, which limit CAB-LA utilization for HIV treatment until alternative partner drugs are available. Other long-acting prevention and treatment strategies are in development. Future studies assessing long-acting strategies are necessary during drug development to ensure equitable and timely access to novel therapies for all individuals.
Collapse
Affiliation(s)
- Shawnalyn W Sunagawa
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kimberly K Scarsi
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Zhang H, Yang L, Shen D, Zhu Y, Zhang L. Identification of Bromophenols' glucuronidation and its induction on UDP- glucuronosyltransferases isoforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116281. [PMID: 38581907 DOI: 10.1016/j.ecoenv.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 μM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Zhang
- Department of Pediatric Urology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Alsulami S, Alotaibi SN, Damfu N, Aljefri DM, Altayib HA, Alharbi M. Efficacy and Safety of Bictegravir-Based Regimen in Pregnant Women Living with HIV: A Case Report. J Int Assoc Provid AIDS Care 2022; 21:23259582221146110. [PMID: 36529886 PMCID: PMC9772963 DOI: 10.1177/23259582221146110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bictegravir (BIC) is included in international guidelines as the first line of therapy for patients living with Human Immunodeficiency Virus (HIV), either as initial therapy or as a replacement for patients with prior antiretroviral therapy (ART). Due to limited efficacy and safety data, BIC is currently not recommended during pregnancy. Data on the safety and efficacy of BIC during pregnancy were unavailable at the time of drug approval. In our case, BIC/TAF/FTC was effective in suppressing viral load (VL) in pregnancy, and there were no reported safety issues for the mother or the baby.
Collapse
Affiliation(s)
- Shaimaa Alsulami
- Department of Pharmaceutical Care Services, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia,Shaimaa Alsulami, Department of Pharmaceutical Care Services, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia.
| | - Sultan N. Alotaibi
- Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Nader Damfu
- Department of Infection Prevention and Control, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Doaa M. Aljefri
- Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | | | - Maher Alharbi
- Department of Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia,Department of Infection Prevention and Control, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia,King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
van der Galiën R, Ter Heine R, Greupink R, Schalkwijk SJ, van Herwaarden AE, Colbers A, Burger DM. Pharmacokinetics of HIV-Integrase Inhibitors During Pregnancy: Mechanisms, Clinical Implications and Knowledge Gaps. Clin Pharmacokinet 2020; 58:309-323. [PMID: 29915921 PMCID: PMC6373543 DOI: 10.1007/s40262-018-0684-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prevention of mother-to-child transmission of HIV and optimal maternal treatment are the most important goals of antiretroviral therapy in pregnant women with HIV. These goals may be at risk due to possible reduced exposure during pregnancy caused by physiological changes. Limited information is available on the impact of these physiological changes. This is especially true for HIV-integrase inhibitors, a relatively new class of drugs, recommended first-line agents and hence used by a large proportion of HIV-infected patients. Therefore, the objective of this review is to provide a detailed overview of the pharmacokinetics of HIV-integrase inhibitors in pregnancy. Second, this review defines potential causes for the change in pharmacokinetics of HIV-integrase inhibitors during pregnancy. Despite increased clearance, for raltegravir 400 mg twice daily and dolutegravir 50 mg once daily, exposure during pregnancy seems adequate; however, for elvitegravir, the proposed minimal effective concentration is not reached during pregnancy. Lower exposure to these drugs may be caused by increased hormone levels and, subsequently, enhanced drug metabolism during pregnancy. The pharmacokinetics of bictegravir and cabotegravir, which are under development, have not yet been evaluated in pregnant women. New studies need to prospectively assess whether adequate exposure is reached in pregnant women using these new HIV-integrase inhibitors. To further optimize antiretroviral treatment in pregnant women, studies need to unravel the underlying mechanisms behind the changes in the pharmacokinetics of HIV-integrase inhibitors during pregnancy. More knowledge on altered pharmacokinetics during pregnancy and the underlying mechanisms contribute to the development of effective and safe antiretroviral therapy for HIV-infected pregnant women.
Collapse
Affiliation(s)
- Ruben van der Galiën
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stein J Schalkwijk
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Alemany-Navarro M, Cruz R, Real E, Segalàs C, Bertolín S, Rabionet R, Carracedo Á, Menchón JM, Alonso P. Looking into the genetic bases of OCD dimensions: a pilot genome-wide association study. Transl Psychiatry 2020; 10:151. [PMID: 32424139 PMCID: PMC7235014 DOI: 10.1038/s41398-020-0804-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
The multidimensional nature of obsessive-compulsive disorder (OCD) has been consistently reported. Clinical and biological characteristics have been associated with OCD dimensions in different ways. Studies suggest the existence of specific genetic bases for the different OCD dimensions. In this study, we analyze the genomic markers, genes, gene ontology and biological pathways associated with the presence of aggressive/checking, symmetry/order, contamination/cleaning, hoarding, and sexual/religious symptoms, as assessed via the Dimensional Yale-Brown Obsessive Compulsive Scale (DY-BOCS) in 399 probands. Logistic regression analyses were performed at the single-nucleotide polymorphism (SNP) level. Gene-based and enrichment analyses were carried out for common (SNPs) and rare variants. No SNP was associated with any dimension at a genome-wide level (p < 5 × 10-8). Gene-based analyses showed one gene to be associated with hoarding (SETD3, p = 1.89 × 10-08); a gene highly expressed in the brain and which plays a role in apoptotic processes and transcriptomic changes, and another gene associated with aggressive symptoms (CPE; p = 4.42 × 10-6), which is involved in neurotrophic functions and the synthesis of peptide hormones and neurotransmitters. Different pathways or biological processes were represented by genes associated with aggressive (zinc ion response and lipid metabolism), order (lipid metabolism), sexual/religious (G protein-mediated processes) and hoarding (metabolic processes and anion transport) symptoms after FDR correction; while no pathway was associated with contamination. Specific genomic bases were found for each dimension assessed, especially in the enrichment analyses. Further research with larger samples and different techniques, such as next-generation sequencing, are needed to better understand the differential genetics of OCD dimensions.
Collapse
Affiliation(s)
- María Alemany-Navarro
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain. .,Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain.
| | - Raquel Cruz
- grid.11794.3a0000000109410645Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Real
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Cinto Segalàs
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Bertolín
- grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBERER, and Dept. Genetics, Microbiology & Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ángel Carracedo
- grid.11794.3a0000000109410645Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain ,Fundación Pública Galega de Medicina Xenómica, SERGAS, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jose M. Menchón
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Pino Alonso
- grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
van der Galiën R, Ter Heine R, Greupink R, Schalkwijk SJ, van Herwaarden AE, Colbers A, Burger DM. Pharmacokinetics of HIV-Integrase Inhibitors During Pregnancy: Mechanisms, Clinical Implications and Knowledge Gaps. Clin Pharmacokinet 2019. [PMID: 29915921 DOI: 10.1007/s40262-018-0684-z/tables/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Prevention of mother-to-child transmission of HIV and optimal maternal treatment are the most important goals of antiretroviral therapy in pregnant women with HIV. These goals may be at risk due to possible reduced exposure during pregnancy caused by physiological changes. Limited information is available on the impact of these physiological changes. This is especially true for HIV-integrase inhibitors, a relatively new class of drugs, recommended first-line agents and hence used by a large proportion of HIV-infected patients. Therefore, the objective of this review is to provide a detailed overview of the pharmacokinetics of HIV-integrase inhibitors in pregnancy. Second, this review defines potential causes for the change in pharmacokinetics of HIV-integrase inhibitors during pregnancy. Despite increased clearance, for raltegravir 400 mg twice daily and dolutegravir 50 mg once daily, exposure during pregnancy seems adequate; however, for elvitegravir, the proposed minimal effective concentration is not reached during pregnancy. Lower exposure to these drugs may be caused by increased hormone levels and, subsequently, enhanced drug metabolism during pregnancy. The pharmacokinetics of bictegravir and cabotegravir, which are under development, have not yet been evaluated in pregnant women. New studies need to prospectively assess whether adequate exposure is reached in pregnant women using these new HIV-integrase inhibitors. To further optimize antiretroviral treatment in pregnant women, studies need to unravel the underlying mechanisms behind the changes in the pharmacokinetics of HIV-integrase inhibitors during pregnancy. More knowledge on altered pharmacokinetics during pregnancy and the underlying mechanisms contribute to the development of effective and safe antiretroviral therapy for HIV-infected pregnant women.
Collapse
Affiliation(s)
- Ruben van der Galiën
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stein J Schalkwijk
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Fujiwara R, Yoda E, Tukey RH. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 2017; 33:9-16. [PMID: 29079228 DOI: 10.1016/j.dmpk.2017.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Fujiwara R, Mitsugi R, Uemura A, Itoh T, Tukey RH. Severe Neonatal Hyperbilirubinemia in Crigler-Najjar Syndrome Model Mice Can Be Reversed With Zinc Protoporphyrin. Hepatol Commun 2017; 1:792-802. [PMID: 29399656 PMCID: PMC5678921 DOI: 10.1002/hep4.1082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotoxic bilirubin is solely conjugated by UDP-glucuronosyltransferase (UGT) 1A1. Due to an inadequate function of UGT1A1, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage called kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does the most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk-induced neonatal hyperbilirubinemia might bring certain benefits to the body. One of the barriers to answering the above question is the lack of animal models that display mild to severe neonatal hyperbilirubinemia. A mouse model that develops neonatal hyperbilirubinemia was previously developed by a knockout of the Ugt1 locus. Deletion of Ugt1a1 results in neonatal lethality from bilirubin neurotoxicity. Bilirubin is the end product of heme catabolism in which heme oxygenase-I is largely involved. When zinc protoporphyrin, an inhibitor of heme oxygenase I, was administered to newborn Ugt1-/- mice, serum bilirubin levels dropped dramatically, rescuing the mice from bilirubin-induced neonatal lethality. Zinc protoporphyrin-treated Ugt1-/- mice developed normally as adults capable of reproducing, but their newborns showed even more severe hyperbilirubinemia. Microarray analysis of the hyperbilirubinemic livers indicated that a number of genes associated with nucleotide, transport, and immune response were significantly down-regulated in a serum bilirubin level-dependent manner. Conclusion: Our study provides an opportunity to advance the development of effective therapeutics to effectively and rapidly prevent bilirubin-induced toxicity. Neonatal hyperbilirubinemia has various impacts on the body that could be driven by the antioxidant property of bilirubin.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Biochemistry and Pharmacy, University of Tubingen, Tubingen, Germany.,Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Asuka Uemura
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tomoo Itoh
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA
| |
Collapse
|
9
|
Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3- O -glucuronidation by polyphenols and triterpenoids. Drug Metab Pharmacokinet 2017; 32:218-223. [DOI: 10.1016/j.dmpk.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022]
|
10
|
Fujiwara R, Yokoi T, Nakajima M. Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases. Front Pharmacol 2016; 7:388. [PMID: 27822186 PMCID: PMC5075577 DOI: 10.3389/fphar.2016.00388] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Mammalian UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to various xenobiotics and endobiotics. Since UGTs comprise rate-limiting enzymes for metabolism of various compounds, co-administration of UGT-inhibiting drugs and genetic deficiency of UGT genes can cause an increased blood concentration of these compounds. During the last few decades, extensive efforts have been made to advance the understanding of gene structure, function, substrate specificity, and inhibition/induction properties of UGTs. However, molecular mechanisms and physiological importance of the oligomerization and protein–protein interactions of UGTs are still largely unknown. While three-dimensional structures of human UGTs can be useful to reveal the details of oligomerization and protein–protein interactions of UGTs, little is known about the protein structures of human UGTs due to the difficulty in solving crystal structures of membrane-bound proteins. Meanwhile, soluble forms of plant and bacterial UGTs as well as a partial domain of human UGT2B7 have been crystallized and enabled us to predict three-dimensional structures of human UGTs using a homology-modeling technique. The homology-modeled structures of human UGTs do not only provide the detailed information about substrate binding or substrate specificity in human UGTs, but also contribute with unique knowledge on oligomerization and protein–protein interactions of UGTs. Furthermore, various in vitro approaches indicate that UGT-mediated glucuronidation is involved in cell death, apoptosis, and oxidative stress as well. In the present review article, recent understandings of UGT protein structures as well as physiological importance of the oligomerization and protein–protein interactions of human UGTs are discussed.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University Tokyo, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kanazawa, Japan
| |
Collapse
|
11
|
Role of neurodevelopment involved genes in psychiatric comorbidities and modulation of inflammatory processes in Alzheimer's disease. J Neurol Sci 2016; 370:162-166. [PMID: 27772752 DOI: 10.1016/j.jns.2016.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/12/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION With the increase of the population's average age, Alzheimer's disease (AD) is becoming one of the most disabling diseases worldwide. Recently, neurodevelopment processes have been involved in the AD etiopathogenesis. Genetic studies in this field could contribute to our knowledge and suggest new molecular targets for possible treatments. METHODS Our primary aim was to investigate the associations among single nucleotide polymorphisms (SNPs) within neurodevelopment related genes (BDNF, ST8SIA2, C15orf32, NCAPG2, ESYT2, WDR60, LOC154822, VIPR2, GSK3B, NR1I2, ZNF804A, SP4) and AD. A number of exploratory analyses was also performed to evaluate the associations with the presence of behavioral and psychiatric symptoms of dementia (BPSD), as well as with variations in hematological parameters. Two independent samples were investigated, one of 228 Greek subjects and one sample of 229 Italian subjects, including 156Alzheimer's Disease patients CE patients and 301 healthy controls. All patients were affected by late onset AD (LOAD). RESULTS None of the analyzed SNPs was associated with AD in our samples. In the exploratory analyses, several genetic variants were associated with inflammation parameters in the Greek sample and in the merged one, suggesting a relationship among these genes and the modulation of inflammation and the immune response. Other exploratory analyses showed associations among several SNPs and psychiatric symptomatology in the Greek sample, suggesting a possible modulation of these variants on psychiatric comorbidities in AD. CONCLUSIONS Although we failed to find a direct relationship between AD and the genetic variants investigated, possible connections with inflammation and psychiatric symptoms were suggested.
Collapse
|