1
|
Gao M, Wang F, Xu T, Qiu Y, Cao T, Liu S, Wu W, Zhou Y, Liu H, Liu F, Huang J. Age-associated accumulation of RAB9 disrupts oocyte meiosis. Aging Cell 2024:e14449. [PMID: 39676221 DOI: 10.1111/acel.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The critical role of some RAB family members in oocyte meiosis has been extensively studied, but their role in oocyte aging remains poorly understood. Here, we report that the vesicle trafficking regulator, RAB9 GTPase, is essential for oocyte meiosis and aging in humans and mice. RAB9 was mainly located at the meiotic spindle periphery and cortex during oocyte meiosis. In humans and mice, we found that the RAB9 protein level were significantly increased in old oocytes. Age-related accumulation of RAB9 inhibits first polar body extrusion and reduces the developmental potential of oocytes. Further studies showed that increased Rab9 disrupts spindle formation and chromosome alignment. In addition, Rab9 overexpression disrupts the actin cap formation and reduces the cortical actin levels. Mechanically, Rab9-OE increases ROS levels, decreases mitochondrial membrane potential, ATP content and the mtDNA/nDNA ratio. Further studies showed that Rab9-OE activates the PINK1-PARKIN mitophagy pathway. Importantly, we found that reducing RAB9 protein expression in old oocytes could partially improve the rate of old oocyte maturation, ameliorate the accumulation of age-related ROS levels and spindle abnormalities, and partially rescue ATP levels, mtDNA/nDNA ratio, and PINK1 and PARKIN expression. In conclusion, our results suggest that RAB9 is required to maintain the balance between mitochondrial function and meiosis, and that reducing RAB9 expression is a potential strategy to ameliorate age-related deterioration of oocyte quality.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Fang Wang
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tengteng Xu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecology, Clinical Transformation and Application Key Lab for Obstetrics and Gynecology, Pediatrics, and Reproductive Medicine of Jiangmen, Jiangmen Central Hospital, Jiangmen, China
| | - Yanling Qiu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tianqi Cao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Simiao Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenlian Wu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yitong Zhou
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiying Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fenghua Liu
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Martínez-Morales JC, González-Ruiz KD, Romero-Ávila MT, Rincón-Heredia R, Reyes-Cruz G, García-Sáinz JA. Lysophosphatidic acid receptor LPA 1 trafficking and interaction with Rab proteins, as evidenced by Förster resonance energy transfer. Mol Cell Endocrinol 2023; 570:111930. [PMID: 37054840 DOI: 10.1016/j.mce.2023.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
LPA1 internalization to endosomes was studied employing Förster Resonance Energy Transfer (FRET) in cells coexpressing the mCherry-lysophosphatidic acid LPA1 receptors and distinct eGFP-tagged Rab proteins. Lysophosphatidic acid (LPA)-induced internalization was rapid and decreased afterward: phorbol myristate acetate (PMA) action was slower and sustained. LPA stimulated LPA1-Rab5 interaction rapidly but transiently, whereas PMA action was rapid but sustained. Expression of a Rab5 dominant-negative mutant blocked LPA1-Rab5 interaction and receptor internalization. LPA-induced LPA1-Rab9 interaction was only observed at 60 min, and LPA1-Rab7 interaction after 5 min with LPA and after 60 min with PMA. LPA triggered immediate but transient rapid recycling (i.e., LPA1-Rab4 interaction), whereas PMA action was slower but sustained. Agonist-induced slow recycling (LPA1-Rab11 interaction) increased at 15 min and remained at this level, whereas PMA action showed early and late peaks. Our results indicate that LPA1 receptor internalization varies with the stimuli.
Collapse
Affiliation(s)
| | - Karla D González-Ruiz
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | |
Collapse
|
3
|
Martínez-Morales JC, Solís KH, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Cell Trafficking and Function of G Protein-coupled Receptors. Arch Med Res 2022; 53:451-460. [PMID: 35835604 DOI: 10.1016/j.arcmed.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
The G protein-coupled receptors (GPCRs) are plasma membrane proteins that function as sensors of changes in the internal and external milieux and play essential roles in health and disease. They are targets of hormones, neurotransmitters, local hormones (autacoids), and a large proportion of the drugs currently used as therapeutics and for "recreational" purposes. Understanding how these receptors signal and are regulated is fundamental for progress in areas such as physiology and pharmacology. This review will focus on what is currently known about their structure, the molecular events that trigger their signaling, and their trafficking to endosomal compartments. GPCR phosphorylation and its role in desensitization (signaling switching) are also discussed. It should be mentioned that the volume of information available is enormous given the large number and variety of GPCRs. However, knowledge is fragmentary even for the most studied receptors, such as the adrenergic receptors. Therefore, we attempt to present a panoramic view of the field, conscious of the risks and limitations (such as oversimplifications and incorrect generalizations). We hope this will provoke further research in the area. It is currently accepted that GPCR internalization plays a role signaling events. Therefore, the processes that allow them to internalize and recycle back to the plasma membrane are briefly reviewed. The functions of cytoskeletal elements (mainly actin filaments and microtubules), the molecular motors implicated in receptor trafficking (myosin, kinesin, and dynein), and the GTPases involved in GPCR internalization (dynamin) and endosomal sorting (Rab proteins), are discussed. The critical role phosphoinositide metabolism plays in regulating these events is also depicted.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
4
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of receptor phosphorylation and Rab proteins in G protein-coupled receptor function and trafficking. Mol Pharmacol 2021; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G Protein-Coupled Receptors form the most abundant family of membrane proteins and are crucial physiological players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: a) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and b) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. Significance Statement G protein-coupled receptor phosphorylation is an early event in desensitization/ signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/ degradation) with important pharmacological/ therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
|
5
|
Renkhold L, Kollmann R, Inderwiedenstraße L, Kienitz MC. PKC-isoform specific regulation of receptor desensitization and KCNQ1/KCNE1 K + channel activity by mutant α 1B-adrenergic receptors. Cell Signal 2021; 91:110228. [PMID: 34958868 DOI: 10.1016/j.cellsig.2021.110228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
Activation of a specific protein kinase C (PKC) isoform during stimulation of Gq protein-coupled receptors (GqPCRs) is determined by homologous receptor desensitization that controls the spatiotemporal formation of downstream Gq signalling molecules. Furthermore, GqPCR-activated PKC isoforms specifically regulate receptor activity via a negative feedback mechanism. In the present study, we investigated the contribution of several phosphorylation sites in the α1B-adrenergic receptor (α1B-AR) for PKC and G protein coupled receptor kinase 2 (GRK2) to homologous receptor desensitization and effector modulation. We analyzed signalling events downstream to human wildtype α1B-ARs and α1B-ARs lacking PKC or GRK2 phosphorylation sites (Δ391-401, α1B-ΔPKC-AR and Δ402-520, α1B-ΔGRK-AR) by means of FRET-based biosensors in HEK293 that served as online-assays of receptor activity. K+ currents through KCNQ1/KCNE1 channels (IKs), which are regulated by both phosphatidylinositol 4,5-bisphosphate (PIP2)-depletion and/or phosphorylation by PKC, were measured as a functional readout of wildtype and mutant α1B-AR receptor activity. As a novel finding, we provide evidence that deletion of PKC and GRK2 phosphorylation sites in α1B-ARs abrogates the contribution of PKCα to homologous receptor desensitization. Instead, the time course of mutant receptor activity was specifically modulated by PKCβ. Mutant α1B-ARs displayed pronounced homologous receptor desensitization that was abolished by PKCβ-specific pharmacological inhibitors. IKs modulation during stimulation of wildtype and mutant α1B-ARs displayed transient inhibition and current facilitation after agonist withdrawal with reduced capability of mutant α1B-ARs to induce IKs inhibition. Pharmacological inhibition of the PKCβ isoform did not augment IKs reduction by mutant α1B-ARs, but shifted IKs modulation towards current facilitation. Coexpression of an inactive (dominant-negative) PKCδ isoform (DN-PKCδ) abolished IKs facilitation in α1B-ΔGRK-AR-expressing cells, but not in α1B-ΔPKC-AR-expressing cells. The data indicate that the differential modulation of IKs activity by α1B-ΔGRK- and α1B-ΔPKC-receptors is attributed to the activation of entirely distinct novel PKC isoforms. To summarize, specific phosphorylation sites within the wildtype and mutant α1B-adrenergic receptors are targeted by different PKC isoforms, resulting in differential regulation of receptor desensitization and effector function.
Collapse
Affiliation(s)
- Lina Renkhold
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Von-Esmarch-Str. 58, D-48149 Münster, Deutschland, Germany
| | - Rike Kollmann
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Leonie Inderwiedenstraße
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Marie-Cecile Kienitz
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany.
| |
Collapse
|
6
|
Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview. Methods Mol Biol 2021. [PMID: 34453706 DOI: 10.1007/978-1-0716-1346-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The conserved Ypt/Rab GTPases regulate all major intracellular protein traffic pathways, including secretion, endocytosis and autophagy. These GTPases undergo distinct changes in conformation between their GTP- and GDP-bound forms and cycle between the cytoplasm and membranes with the aid of their upstream regulators. When activated on the membrane in the GTP-bound form, they recruit their downstream effectors, which include components of vesicular transport. Progress in the past 5 years regarding mechanisms of Rab action, functions, and the effects of disruption of these functions on the well-being of cells and organisms has been propelled by advances in methodologies in molecular and cellular biology. Here, we highlight methods used recently to analyze regulation, localization, interactions, and function of Rab GTPases and their roles in human disease. We discuss contributions of these methods to new insights into Rabs, as well as their future use in addressing open questions in the field of Rab biology.
Collapse
|
7
|
Flores-Espinoza E, Meizoso-Huesca A, Villegas-Comonfort S, Reyes-Cruz G, García-Sáinz JA. Effect of docosahexaenoic acid, phorbol myristate acetate, and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins. Eur J Pharmacol 2020; 889:173595. [PMID: 32986985 DOI: 10.1016/j.ejphar.2020.173595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aldo Meizoso-Huesca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
8
|
de-Los-Santos-Cocotle G, Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Effects of agonists and phorbol esters on α 1A-adrenergic receptor-Rab protein interactions. Eur J Pharmacol 2020; 885:173423. [PMID: 32750368 DOI: 10.1016/j.ejphar.2020.173423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
In a cell line, stably expressing α1A-adrenoceptors fused to the mCherry red fluorescent protein, noradrenaline, methoxamine, and oxymetazoline induced concentration-dependent increases in intracellular calcium. All of these agents increase α1A-adrenoceptor phosphorylation and internalization. Transient co-expression of these receptors with Rab proteins tagged with the enhanced Green Fluorescent Protein was employed to estimate α1A-adrenoceptor-Rab interaction using Förster Resonance Energy Transfer. Noradrenaline and methoxamine increased α1A-adrenoceptor interaction with Rab5 and Rab7 but did not modify it with Rab9. Oxymetazoline induced adrenoceptor interaction with Rab5 and Rab9 and only an insignificant increase in Rab7 signal. Phorbol myristate acetate increased α1A-adrenoceptor interaction with Rab5 and Rab9 but did not modify it with Rab7. The agonists and the active phorbol ester, all of which induce receptor phosphorylation and internalization, favor receptor interaction with Rab5, i.e., association with early endosomes. Cell stimulation with phorbol myristate acetate induced the α1A-adrenoceptors to interact with the late endosomal marker, Rab9, suggesting that the receptors are directed to slow recycling endosomes once they have transited to the Trans-Golgi network to be retrieved to the plasma membrane. The agonists noradrenaline and methoxamine likely induce a faster recycling and might direct some of the adrenoceptors toward degradation and/or very slow recycling to the plasma membrane. Oxymetazoline produced a mixed pattern of interaction with the Rab proteins. These data indicate that α1A-adrenoceptor agonists can trigger different vesicular traffic and receptor fates within the cells.
Collapse
Affiliation(s)
- Gustavo de-Los-Santos-Cocotle
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional 2508; Col, San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
9
|
Roles of the G protein-coupled receptor kinase 2 and Rab5 in α 1B-adrenergic receptor function and internalization. Eur J Pharmacol 2020; 867:172846. [PMID: 31811856 DOI: 10.1016/j.ejphar.2019.172846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Cells expressing eGFP-tagged Rab5 (wild-type or the GDP-Rab5 mutant) and the DsRed-tagged α1B-adrenergic receptors were employed and the roles of GRK2 were studied utilizing paroxetine and the dominant-negative mutant of GRK2 (DN-GRK2). The following parameters were studied: a) FRET (as an index of α1B-adrenergic receptor-Rab5 interaction): b) intracellular accumulation of DsRed fluorescence (receptor internalization); c) α1B-adrenergic receptor phosphorylation, and d) noradrenaline-induced increase in intracellular calcium concentration. Noradrenaline increased α1B-adrenergic receptor-Rab5 interaction, which was blocked by paroxetine and by expression of the dominant-negative GRK2 mutant. Similarly, paroxetine and expression of the DN-GRK2 or the GDP-Rab5 mutants markedly decreased receptor internalization, α1B-adrenergic receptor phosphorylation, and attenuated the ability of the adrenergic agonist to induce homologous desensitization (calcium signaling). The S406, 410,412A α1B-adrenergic receptor mutant did not reproduce the actions of GRK2 inhibition. The data indicate that GRK2 and Rab5 play key roles in α1B-adrenergic receptor phosphorylation, internalization, and desensitization. The possibility that Rab5 might form part of a signaling complex is suggested, as well as that GDP-Rab5 might interfere with the ability of GRK2 to catalyze α1B-adrenergic receptor phosphorylation.
Collapse
|
10
|
Acosta-Montaño P, Rodríguez-Velázquez E, Ibarra-López E, Frayde-Gómez H, Mas-Oliva J, Delgado-Coello B, Rivero IA, Alatorre-Meda M, Aguilera J, Guevara-Olaya L, García-González V. Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion. Cells 2019; 8:cells8080884. [PMID: 31412623 PMCID: PMC6721695 DOI: 10.3390/cells8080884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic overload by saturated fatty acids (SFA), which comprises β-cell function, and impaired glucose-stimulated insulin secretion are frequently observed in patients suffering from obesity and type 2 diabetes mellitus. The increase of intracellular Ca2+ triggers insulin granule release, therefore several mechanisms regulate Ca2+ efflux within the β-cells, among others, the plasma membrane Ca2+-ATPase (PMCA). In this work, we describe that lipotoxicity mediated mainly by the saturated palmitic acid (PA) (16C) is associated with loss of protein homeostasis (proteostasis) and potentially cell viability, a phenomenon that was induced to a lesser extent by stearic (18C), myristic (14C) and lauric (12C) acids. PA was localized on endoplasmic reticulum, activating arms of the unfolded protein response (UPR), as also promoted by lipopolysaccharides (LPS)-endotoxins. In particular, our findings demonstrate an alteration in PMCA1/4 expression caused by PA and LPS which trigger the UPR, affecting not only insulin release and contributing to β-cell mass reduction, but also increasing reactive nitrogen species. Nonetheless, stearic acid (SA) did not show these effects. Remarkably, the proteolytic degradation of PMCA1/4 prompted by PA and LPS was avoided by the action of monounsaturated fatty acids such as oleic and palmitoleic acid. Oleic acid recovered cell viability after treatment with PA/LPS and, more interestingly, relieved endoplasmic reticulum (ER) stress. While palmitoleic acid improved the insulin release, this fatty acid seems to have more relevant effects upon the expression of regulatory pumps of intracellular Ca2+. Therefore, chain length and unsaturation of fatty acids are determinant cues in proteostasis of β-cells and, consequently, on the regulation of calcium and insulin secretion.
Collapse
Affiliation(s)
- Paloma Acosta-Montaño
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, 22390 Tijuana, Mexico
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, 22510 Tijuana, Mexico
| | - Esmeralda Ibarra-López
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Héctor Frayde-Gómez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
- Hospital General de Zona No. 30, Instituto Mexicano del Seguro Social, 21100 Mexicali, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Ignacio A Rivero
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química, 22000 Tijuana, Mexico
| | - Manuel Alatorre-Meda
- Cátedras CONACyT- Tecnológico Nacional de México/I.T. Tijuana. Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, 22000 Tijuana, Mexico
| | - Jorge Aguilera
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química, 22000 Tijuana, Mexico
| | - Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico.
| |
Collapse
|
11
|
Akinaga J, García‐Sáinz JA, S. Pupo A. Updates in the function and regulation of α 1 -adrenoceptors. Br J Pharmacol 2019; 176:2343-2357. [PMID: 30740663 PMCID: PMC6592863 DOI: 10.1111/bph.14617] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
α1 -Adrenoceptors are seven transmembrane domain GPCRs involved in numerous physiological functions controlled by the endogenous catecholamines, noradrenaline and adrenaline, and targeted by drugs useful in therapeutics. Three separate genes, whose products are named α1A -, α1B -, and α1D - adrenoceptors, encode these receptors. Although the existence of multiple α1 -adrenoceptors has been acknowledged for almost 25 years, the specific functions regulated by each subtype are still largely unknown. Despite the limited comprehension, the identification of a single class of subtype-selective ligands for the α1A - adrenoceptors, the so-called α-blockers for prostate dysfunction, has led to major improvement in therapeutics, demonstrating the need for continued efforts in the field. This review article surveys the tissue distribution of the three α1 -adrenoceptor subtypes in the cardiovascular system, genitourinary system, and CNS, highlighting the functions already identified as mediated by the predominant activation of specific subtypes. In addition, this review covers the recent advances in the understanding of the molecular mechanisms involved in the regulation of each of the α1 -adrenoceptor subtypes by phosphorylation and interaction with proteins involved in their desensitization and internalization. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Juliana Akinaga
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| | - J. Adolfo García‐Sáinz
- Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - André S. Pupo
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| |
Collapse
|
12
|
S1P 1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Biosci Rep 2018; 38:BSR20181612. [PMID: 30366961 PMCID: PMC6294635 DOI: 10.1042/bsr20181612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor–Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor–Rab5 interaction, although with different time courses. S1P1 receptor–Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor–Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.
Collapse
|
13
|
Meizoso‐Huesca A, Villegas‐Comonfort S, Romero‐Ávila MT, García‐Sáinz JA. Free fatty acid receptor 4 agonists induce lysophosphatidic acid receptor 1 (
LPA
1
) desensitization independent of
LPA
1
internalization and heterodimerization. FEBS Lett 2018; 592:2612-2623. [DOI: 10.1002/1873-3468.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/09/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Aldo Meizoso‐Huesca
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - Sócrates Villegas‐Comonfort
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - M. Teresa Romero‐Ávila
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - J. Adolfo García‐Sáinz
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
14
|
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 2017; 293:876-892. [PMID: 29146594 DOI: 10.1074/jbc.m117.813139] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
Collapse
Affiliation(s)
- András D Tóth
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Susanne Prokop
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Pál Gyombolai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary, .,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Gábor Turu
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| |
Collapse
|