1
|
Wu J, Shi Y, Xing M, Deng M, Cao W, Guo Q, Zou W. CircRalgapa1 facilitates morphine tolerance via miR-873a-5p/A20 axis in mice. Neuropharmacology 2023; 224:109353. [PMID: 36455645 DOI: 10.1016/j.neuropharm.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Morphine tolerance (MT) caused by long-term use of morphine is a major medical problem. The underlying molecular mechanisms of morphine tolerance remain unclear. Here, we establish the morphine tolerance model in mice and verify whether a novel circRNA, circRalgapa1 is involved in morphine tolerance and its specific molecular mechanism. We show that the expression of circRalgapa1 in the spinal cord is significantly down-expressed in the spinal cord of morphine-tolerant mice. CircRalgapa1 is mainly located in the neuronal cytoplasm and co-localizes with miR-873a-5p. Mechanically, circRalgapa1 acts as competing endogenous RNAs (ceRNAs) to regulate the inhibitory of miR-873a-5p on A20 (also known as tumor necrosis factor α-induced protein 3, TNFAIP3). Functionally, overexpression of circRalgapa1 by intrathecal injection of adeno-associated virus (AAV- circRalgapa1) attenuated the formation of morphine tolerance and partially reversed the development of morphine tolerance. Moreover, overexpression of miR-873a-5p blocked the effect of AAV-circRalgapa1 on alleviating morphine tolerance in mice. In conclusion, chronic morphine administration-mediated down-regulation of circRalgapa1 in the spinal cord contributes to morphine tolerance via miR-873a-5p/A20 axis in mice. Overexpression of circRalgapa1 may be a promising RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufei Shi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Cao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Restuadi R, Steyn FJ, Kabashi E, Ngo ST, Cheng FF, Nabais MF, Thompson MJ, Qi T, Wu Y, Henders AK, Wallace L, Bye CR, Turner BJ, Ziser L, Mathers S, McCombe PA, Needham M, Schultz D, Kiernan MC, van Rheenen W, van den Berg LH, Veldink JH, Ophoff R, Gusev A, Zaitlen N, McRae AF, Henderson RD, Wray NR, Giacomotto J, Garton FC. Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Med 2022; 14:7. [PMID: 35042540 PMCID: PMC8767698 DOI: 10.1186/s13073-021-01006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.
Collapse
Affiliation(s)
- Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, 4072, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015, Paris, France
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Fei-Fei Cheng
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Mike J Thompson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting Qi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Chris R Bye
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bradley J Turner
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC, 3195, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA, 6150, Australia
- Notre Dame University, Fremantle, WA, 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, 6150, Australia
| | - David Schultz
- Department of Neurology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, 2006, Australia
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Roel Ophoff
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Noah Zaitlen
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, Wacol, QLD, 4076, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia.
| |
Collapse
|
3
|
Zhang Y, Zhou P, Lu F, Su R, Gong Z. A20-Binding Inhibitor of Nuclear Factor- κB Targets β-Arrestin2 to Attenuate Opioid Tolerance. Mol Pharmacol 2021; 100:170-180. [PMID: 34031190 DOI: 10.1124/molpharm.120.000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Opioids play an important role in pain relief, but repeated exposure results in tolerance and dependence. To make opioids more effective and useful, research in the field has focused on reducing the tolerance and dependence for chronic pain relief. Here, we showed the effect of A20-binding inhibitor of nuclear factor-κB (ABIN-1) in modulating morphine function. We used hot-plate tests and conditioned place preference (CPP) tests to show that overexpression of ABIN-1 in the mouse brain attenuated morphine dependence. These effects of ABIN-1 are most likely mediated through the formation of ABIN-1-β-arrestin2 complexes, which accelerate β-arrestin2 degradation by ubiquitination. With the degradation of β-arrestin2, ABIN-1 overexpression also decreased μ opioid receptor (MOR) phosphorylation and internalization after opioid treatment, affecting the β-arrestin2-dependent signaling pathway to regulate morphine tolerance. Importantly, the effect of ABIN-1 on morphine tolerance was abolished in β-arrestin2-knockout mice. Taken together, these results suggest that the interaction between ABIN-1 and β-arrestin2 inhibits MOR internalization to attenuate morphine tolerance, revealing a novel mechanism for MOR regulation. Hence, ABIN-1 may be a therapeutic target to regulate MOR internalization, thus providing a foundation for a novel treatment strategy for alleviating morphine tolerance and dependence. SIGNIFICANCE STATEMENT: A20-binding inhibitor of nuclear factor-κB (ABIN-1) overexpression in the mouse brain attenuated morphine tolerance and dependence. The likely mechanism for this finding is that ABIN-1-β-arrestin2 complex formation facilitated β-arrestin2 degradation by ubiquitination. ABIN-1 targeted β-arrestin2 to regulate morphine tolerance. Therefore, the enhancement of ABIN-1 is an important strategy to prevent morphine tolerance and dependence.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fengfeng Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zehui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
Zhou P, Li Y, Yong Z, Chen M, Zhang Y, Su R, Gong Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res 2020; 1748:147083. [DOI: 10.1016/j.brainres.2020.147083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
|
5
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
A20 enhances mu-opioid receptor function by inhibiting beta-arrestin2 recruitment. Biochem Biophys Res Commun 2020; 528:127-133. [DOI: 10.1016/j.bbrc.2020.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
|
7
|
Zhang Y, Zhou P, Wang Z, Chen M, Fu F, Su R. Hsp90β positively regulates μ-opioid receptor function. Life Sci 2020; 252:117676. [PMID: 32304763 DOI: 10.1016/j.lfs.2020.117676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
AIMS Many μ-opioid receptor (MOR)-associated proteins can regulate the MOR signaling pathway. Using a bacterial two-hybrid screen, we found that the C-terminal of the MOR associated with heat shock protein 90 isoform β (Hsp90β). Here, we explored the effect of Hsp90β on MOR signaling transduction and function. MAIN METHODS The interaction of Hsp90β with MOR was detected by co-immunoprecipitation and immunofluorescence. The effects of Hsp90β on MOR signaling induced by opioids were studied in vitro and in vivo. The effects of the Hsp90β inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on morphine tolerance and dependence were studied via a hot plate test and CPP test. KEY FINDINGS Hsp90β, instead of Hsp90α, interacted with the MOR in HEK293 cells and SH-SY5Y cells, and the interaction was augmented after morphine pretreatment. The interaction of Hsp90β and MOR increased the inhibition of cAMP and decreased PKA activity under opioid treatment. The functional Hsp90β-MOR complex also promoted the phosphorylation and internalization of the MOR induced by DAMGO in MOR-CHO cells. 17-AAG blocked Hsp90β-MOR interactions and decreased the effect of Hsp90β on the MOR signal transduction. In C57BL/6 mice, 17-AAG decreased morphine-induced acute anti-nociception in the hot plate test, with an increase in phosphorylated PKA and phosphorylated JNK and a decrease in phosphorylated CREB and phosphorylated ERK in murine brains. Chronic morphine treatment induced tolerance, and dependence was inhibited by 17-AAG co-administration. SIGNIFICANCE Hsp90β is a positive co-regulator of the MOR via the activation of a G-protein-dependent and β-arrestin-dependent pathway. Hsp90β has the potential to improve the pharmacologic profile of existing opiates. It is conceivable that in future clinical treatments, the Hsp90β inhibitor, 17-AAG, could decrease the tolerance and dependence in cancer patients induced by opioids.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
8
|
Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019; 49:357-370. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the years, the potential toxicity of anesthetics has raised serious concerns about its safe use during pregnancy. As evidence emerged from research in animal models, showing that some anesthetic drugs are potential teratogenic, the determination of the risk of exposures to anesthetic drugs at early life stages became mandatory. However, due to inaccessibility and ethical constrains related to experimental conditions, the use of early life stages in mammalian models is limited. In this regard, some animal and nonanimal models have been suggested to surpass mammalian use in experimentation. Among them, the zebrafish embryo test has been recognized as a promising alternative in toxicology research, as well as an inexpensive and practical test. Substantial information collected from developmental research following compounds exposure, has contributed to the application of zebrafish assays in research, although only a few studies have focused on the use of early life stages of zebrafish to evaluate the developmental effects of anesthetics. Based on the recent advances of science and technology, there is a clear potential for zebrafish early life stages to provide new insights into anesthetics teratogenicity. This review provides an overview of recent anesthesia research using zebrafish embryos, demonstrating its usefulness to the anesthesia field, discussing the recent findings on various aspects related to the effects of anesthetics during early life development and the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Luís Félix
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Valentim
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Luís Antunes
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| |
Collapse
|
9
|
Huang J, Liang X, Wang J, Kong Y, Zhang Z, Ding Z, Song Z, Guo Q, Zou W. miR-873a-5p Targets A20 to Facilitate Morphine Tolerance in Mice. Front Neurosci 2019; 13:347. [PMID: 31024249 PMCID: PMC6465796 DOI: 10.3389/fnins.2019.00347] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term morphine administration leads to tolerance and a gradual reduction in analgesic potency. Noncoding microRNAs (miRNAs) modulate gene expression in a posttranscriptional manner, and their dysregulation causes various diseases. Emerging evidence suggests that miRNAs play a regulatory role in the development of morphine tolerance. In the present study, we hypothesized that miR-873a-5p is a key functional small RNA that participates in the development and maintenance of morphine tolerance through the regulation of A20 (tumor necrosis factor α-induced protein 3, TNFAIP3) in mice. We measured the percentage of maximum possible effect (MPE %) to evaluate the analgesic effect of morphine. The expression of miR-873a-5p and its target gene A20 were determined after the morphine-tolerant model was successfully established. Intrathecal injection with lentivirus to intervene in the expression of A20 and the miR-873a-5p antagomir was used to explore the role of miR-873a-5p in the development of morphine tolerance. Chronic morphine administration significantly increased the expression of miR-873a-5p, which was inversely correlated with decreased A20 expression in the spinal cord of morphine-tolerant mice. Downregulation of miR-873a-5p in the spinal cord attenuated and partly reversed the development of morphine tolerance accompanied by overexpression of A20. Similarly, A20 was upregulated by a recombinant lentivirus vector, which attenuated and reversed the pathology of morphine tolerance by inhibiting the activation of nuclear factor (NF)-κB. Collectively, our results indicated that miR-873a-5p targets A20 in the spinal cord to facilitate the development of morphine tolerance in mice. Downregulating the expression of miR-873a-5p may be a potential strategy to ameliorate morphine tolerance.
Collapse
Affiliation(s)
- Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|