1
|
Kroone C, Tieken C, Kocatürk B, Paauwe M, Blok EJ, Ünlü B, van den Berg YW, Stanganello E, Kapteijn MY, Swier N, Zhang X, Duits DEM, Lin Y, Oostenbrink LVE, van den Akker RFP, Mosnier LO, Hawinkels LJ, van Vlijmen BJM, Ruf W, Kuppen PJ, Cannegieter SC, Buijs JT, Versteeg HH. Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer. Blood Adv 2023; 7:2388-2400. [PMID: 36920782 PMCID: PMC10238845 DOI: 10.1182/bloodadvances.2022008455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.
Collapse
Affiliation(s)
- Chantal Kroone
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tieken
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Madelon Paauwe
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J. Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yascha W. van den Berg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Stanganello
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Y. Kapteijn
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathalie Swier
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Xi Zhang
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E. M. Duits
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yazhi Lin
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa V. E. Oostenbrink
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F. P. van den Akker
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
3
|
González-Titos A, Hernández-Camarero P, Barungi S, Marchal JA, Kenyon J, Perán M. Trypsinogen and chymotrypsinogen: potent anti-tumor agents. Expert Opin Biol Ther 2021; 21:1609-1621. [PMID: 33896307 DOI: 10.1080/14712598.2021.1922666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Trypsinogen and chymotrypsinogen have been used clinically in tissue repair due to their ability to resolve inflammatory symptoms. Recently, novel evidence has supported the anti-tumourigenic potential of a mixture of trypsinogen and chymotrypsinogen.Areas covered: First, we analyze the structure of these proteases and the effects of pancreatic proteinases on tissue repair, inflammation and the immune system. Second, we summarize studies that provided evidence of the effects of pancreatic (pro)enzymes on tumor cells both in vitro and in vivo and some successful clinical applications of pancreatic (pro)enzymes. Finally, we study pancreatic (pro)enzymes potential molecular targets, such as the proteinase-activated receptors (PARs).Expert opinion: This novel therapy has been shown to have effective antitumor effects. Treatment with these (pro) enzymes sensitizes Cancer Stem Cells (CSCs) which may allow chemotherapy and radiotherapy to be more effective, which could positively affect the recovery of cancer patients.
Collapse
Affiliation(s)
| | | | - Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (Ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| | - Julian Kenyon
- The Dove Clinic for Integrated Medicine, Twyford, UK
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| |
Collapse
|
4
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 11:629726. [PMID: 33763056 PMCID: PMC7982406 DOI: 10.3389/fimmu.2020.629726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3’-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Fatima Abji
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Rasti
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Carla Muytjens
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Majid Motahhari
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Rajiv Gandhi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Orthopaedic Surgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
5
|
Ungefroren H, Wellner UF, Keck T, Lehnert H, Marquardt JU. The Small GTPase RAC1B: A Potent Negative Regulator of-and Useful Tool to Study-TGFβ Signaling. Cancers (Basel) 2020; 12:E3475. [PMID: 33266416 PMCID: PMC7700615 DOI: 10.3390/cancers12113475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
RAC1 and its alternatively spliced isoform, RAC1B, are members of the Rho family of GTPases. Both isoforms are involved in the regulation of actin cytoskeleton remodeling, cell motility, cell proliferation, and epithelial-mesenchymal transition (EMT). Compared to RAC1, RAC1B exhibits a number of distinctive features with respect to tissue distribution, downstream signaling and a role in disease conditions like inflammation and cancer. The subcellular locations and interaction partners of RAC1 and RAC1B vary depending on their activation state, which makes RAC1 and RAC1B ideal candidates to establish cross-talk with cancer-associated signaling pathways-for instance, interactions with signaling by transforming growth factor β (TGFβ), a known tumor promoter. Although RAC1 has been found to promote TGFβ-driven tumor progression, recent observations in pancreatic carcinoma cells surprisingly revealed that RAC1B confers anti-oncogenic properties, i.e., through inhibiting TGFβ-induced EMT. Since then, an unexpected array of mechanisms through which RAC1B cross-talks with TGFβ signaling has been demonstrated. However, rather than being uniformly inhibitory, RAC1B interacts with TGFβ signaling in a way that results in the selective blockade of tumor-promoting pathways, while concomitantly allowing tumor-suppressive pathways to proceed. In this review article, we are going to discuss the specific interactions between RAC1B and TGFβ signaling, which occur at multiple levels and include various components such as ligands, receptors, cytosolic mediators, transcription factors, and extracellular inhibitors of TGFβ ligands.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, Campus Kiel, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | - Tobias Keck
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
| |
Collapse
|
6
|
Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. J Neurosci 2020; 41:193-210. [PMID: 33172978 DOI: 10.1523/jneurosci.1211-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not β-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.
Collapse
|
7
|
Otterbein H, Mihara K, Hollenberg MD, Lehnert H, Witte D, Ungefroren H. RAC1B Suppresses TGF-β-Dependent Chemokinesis and Growth Inhibition through an Autoregulatory Feed-Forward Loop Involving PAR2 and ALK5. Cancers (Basel) 2019; 11:cancers11081211. [PMID: 31434318 PMCID: PMC6721813 DOI: 10.3390/cancers11081211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
The small GTPase RAC1B functions as a powerful inhibitor of transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition, cell motility, and growth arrest in pancreatic epithelial cells. Previous work has shown that RAC1B downregulates the TGF-β type I receptor ALK5, but the molecular details of this process have remained unclear. Here, we hypothesized that RAC1B-mediated suppression of activin receptor-like kinase 5 (ALK5) involves proteinase-activated receptor 2 (PAR2), a G protein-coupled receptor encoded by F2RL1 that is crucial for sustaining ALK5 expression. We found in pancreatic carcinoma Panc1 cells that PAR2 is upregulated by TGF-β1 in an ALK5-dependent manner and that siRNA-mediated knockdown of RAC1B increased both basal and TGF-β1-induced expression of PAR2. Further, the simultaneous knockdown of PAR2 and RAC1B rescued Panc1 cells from a RAC1B knockdown-induced increase in ALK5 abundance and the ALK5-mediated increase in TGF-β1-induced migratory activity. Conversely, Panc1 cells with stable ectopic expression of RAC1B displayed reduced ALK5 expression, an impaired upregulation of PAR2, and a reduced migratory responsiveness to TGF-β1 stimulation. However, these effects could be reversed by ectopic overexpression of PAR2. Moreover, the knockdown of PAR2 alone in Panc1 cells and HaCaT keratinocytes phenocopied RAC1B's ability to suppress ALK5 abundance and TGF-β1-induced chemokinesis and growth inhibition. Lastly, we found that the RAC1B knockdown-induced increase in TGF-β1-induced PAR2 mRNA expression was sensitive to pharmacological inhibition of MEK-ERK signaling. Our data show that in pancreatic and skin epithelial cells, downregulation of ALK5 activity by RAC1B is secondary to suppression of F2RL1/PAR2 expression. Since F2RL1 itself is a TGF-β target gene and its upregulation by TGF-β1 is mediated by ALK5 and MEK-ERK signaling, we suggest the existence of a feed-forward signaling loop involving ALK5 and PAR2 that is efficiently suppressed by RAC1B to restrict TGF-β-driven cell motility and growth inhibition.
Collapse
Affiliation(s)
- Hannah Otterbein
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Koichiro Mihara
- Departments of Physiology and Pharmacology and Medicine, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Morley D Hollenberg
- Departments of Physiology and Pharmacology and Medicine, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
8
|
RAC1B Suppresses TGF-β1-Dependent Cell Migration in Pancreatic Carcinoma Cells through Inhibition of the TGF-β Type I Receptor ALK5. Cancers (Basel) 2019; 11:cancers11050691. [PMID: 31108998 PMCID: PMC6562819 DOI: 10.3390/cancers11050691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
The small GTPase Ras-related C3 botulinum toxin substrate 1B (RAC1B) has been shown previously by RNA interference-mediated knockdown (KD) to function as a powerful inhibitor of transforming growth factor (TGF)-β1-induced cell migration and epithelial-mesenchymal transition in epithelial cells, but the underlying mechanism has remained enigmatic. Using pancreatic carcinoma cells, we show that both KD and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated knockout (KO) of RAC1B increased the expression of the TGF-β type I receptor ALK5 (activin receptor-like kinase 5), but this effect was more pronounced in CRISPR-KO cells. Of note, in KO, but not KD cells, ALK5 upregulation was associated with resensitization of TGFBR1 to induction by TGF-β1 stimulation. RAC1B KO also increased TGF-β1-induced C-terminal SMAD3 phosphorylation, SMAD3 transcriptional activity, growth inhibition, and cell migration. The KD of ALK5 expression by RNA interference or inactivation of the ALK5 kinase activity by dominant-negative interference or ATP-competitive inhibition rescued the cells from the RAC1B KD/KO-mediated increase in TGF-β1-induced cell migration, whereas the ectopic expression of kinase-active ALK5 mimicked this RAC1B KD/KO effect. We conclude that RAC1B downregulates the abundance of ALK5 and SMAD3 signaling, thereby attenuating TGF-β/SMAD3-driven cellular responses, such as growth inhibition and cell motility.
Collapse
|
9
|
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19061568. [PMID: 29795022 PMCID: PMC6032192 DOI: 10.3390/ijms19061568] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand–receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand–ligand, ligand–receptor, and receptor–receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.
Collapse
|
10
|
Ungefroren H, Witte D, Fiedler C, Gädeken T, Kaufmann R, Lehnert H, Gieseler F, Rauch BH. The Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility. Int J Mol Sci 2017; 18:ijms18122776. [PMID: 29261154 PMCID: PMC5751374 DOI: 10.3390/ijms18122776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF-β1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was moderate and delayed in response to TGF-β1. Basal and TGF-β1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF-β1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF-β1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–AP- and TGF-β1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF-β1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-β1 involves a physical interaction between PAR2 and ALK5.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany.
| | - David Witte
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Christian Fiedler
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Thomas Gädeken
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
11
|
Ungefroren H, Witte D, Rauch BH, Settmacher U, Lehnert H, Gieseler F, Kaufmann R. Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling. Int J Mol Sci 2017; 18:E2494. [PMID: 29165389 PMCID: PMC5713460 DOI: 10.3390/ijms18112494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022] Open
Abstract
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| |
Collapse
|