1
|
Cowley JM, Deering-Rice CE, Lamb JG, Romero EG, Almestica-Roberts M, Serna SN, Sun L, Kelly KE, Whitaker RT, Cheminant J, Venosa A, Reilly CA. Pro-Inflammatory Effects of Inhaled Great Salt Lake Dust Particles. RESEARCH SQUARE 2024:rs.3.rs-4650606. [PMID: 39108472 PMCID: PMC11302694 DOI: 10.21203/rs.3.rs-4650606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful. The objectives of this study were to illustrate windblown dust events, assess the impact of inhaled dust on the lungs, and to identify mechanisms that could contribute to the effects of GSLD in the lungs. Results An animation, hourly particle and meteorological data, and images illustrate the impact of dust events on the Salt Lake Valley/Wasatch front airshed. Great Salt Lake sediment and PM2.5 contained metals, lipopolysaccharides, natural and anthropogenic chemicals, and bacteria. Inhalation and oropharyngeal delivery of PM2.5 triggered neutrophilia and the expression of mRNA for Il6, Cxcl1, Cxcl2, and Muc5ac in mouse lungs, was more potent than coal fly ash (CFA) PM2.5, and more cytotoxic to human airway epithelial cells (HBEC3-KT) in vitro. Induction of IL6 and IL8 was replicated in vitro using HBEC3-KT and THP-1 cells. For HBEC3-KT cells, IL6 induction was variably attenuated by EGTA/ruthenium red, the TLR4 inhibitor TAK-242, and deferoxamine, while IL8 was attenuated by EGTA/ruthenium red. Inhibition of mRNA induction by EGTA/ruthenium red suggested roles for transition metals, calcium, and calcium channels as mediators of the responses. Like CFA, GSLD and a similar dust from the Salton Sea in California, activated human TRPA1, M8, and V1. However, only inhibition of TRPV1, TRPV3, and a combination of both channels impacted cytokine mRNA induction in HBEC3-KT cells. Responses of THP1 cells were partially mediated by TLR4 as opposed to TRP channels and mice expressing a "humanized" form of TRPV1 exhibited greater neutrophilia when exposed to GSLD via inhalation. Conclusions This study suggests that windblown dust from Great Salt Lake and similar lake sediments could pose a risk to humans via mechanisms including the activation of TRPV1/V3, TLR4, and possibly oxidative stress.
Collapse
|
2
|
Kim YS, Otgonsuren MO. Transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) in human odontoblast-like cells participate in lipopolysaccharide-induced immune response. Arch Oral Biol 2023; 155:105800. [PMID: 37683373 DOI: 10.1016/j.archoralbio.2023.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVES To investigate whether transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) have a function in responding to environmental stimuli in human odontoblast-like cells (hOLCs). Additionally, to explore whether activation of TRPA1 and TRPM8 in hOLCs participates in the regulation of the inflammatory process. DESIGN Changes in gene and protein expression levels of TRPA1 and TRPM8 in cultured hOLCs following lipopolysaccharide (LPS) stimulation, which mimics inflammation, were examined using quantitative reverse transcription-polymerase chain reaction and western blot analysis. Furthermore, we compared the expression profiles of 80 cytokines between LPS- and vehicle-treated hOLCs and investigated how the production of highly increased cytokines in LPS-treated hOLCs was affected by the pharmacological inhibition of TRPA1 and TRPM8. RESULTS The expression of TRPA1 and TRPM8 in hOLCs was observed and their mRNAs and proteins were upregulated in hOLCs after LPS treatment. Moreover, cytokine antibody assays revealed that monocyte chemoattractant protein-1 (MCP-1, CCL2), growth-regulated protein α (GROα, CXCL1), interleukin-6 (IL-6), and IL-8 (CXCL8) were significantly upregulated by LPS. The pharmacological inhibition of TRPA1 (HC-030031) during LPS treatment attenuated the expression of CCL2, CXCL1, and IL-8, whereas the pharmacological inhibition of TRPM8 (PF05105679) suppressed the expression of CCL2, CXCL1, and IL-8 as well as IL-6. CONCLUSIONS These results indicate that hOLCs express TRPA1 and TRPM8, which are upregulated during inflammation. In addition to being sensors of potentially harmful stimuli, TRPA1 and TRPM8 in hOLCs play important roles in regulating inflammatory responses.
Collapse
Affiliation(s)
- Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, the Republic of Korea.
| | - Munkh-Ochir Otgonsuren
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, the Republic of Korea
| |
Collapse
|
3
|
Rapp E, Lu Z, Sun L, Serna SN, Almestica-Roberts M, Burrell KL, Nguyen ND, Deering-Rice CE, Reilly CA. Mechanisms and Consequences of Variable TRPA1 Expression by Airway Epithelial Cells: Effects of TRPV1 Genotype and Environmental Agonists on Cellular Responses to Pollutants in Vitro and Asthma. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27009. [PMID: 36847817 PMCID: PMC9969990 DOI: 10.1289/ehp11076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Transient receptor potential ankyrin-1 [transient receptor potential cation channel subfamily A member 1 (TRPA1)] and vanilloid-1 [transient receptor potential cation channel subfamily V member 1 (TRPV1)] detect inhaled irritants, including air pollutants and have roles in the development and exacerbation of asthma. OBJECTIVES This study tested the hypothesis that increased expression of TRPA1, stemming from expression of the loss-of-function TRPV1 (I585V; rs8065080) polymorphic variant by airway epithelial cells may explain prior observations of worse asthma symptom control among children with the TRPV1 I585I/V genotype, by virtue of sensitizing epithelial cells to particulate materials and other TRPA1 agonists. METHODS TRP agonists, antagonists, small interfering RNA (siRNA), a nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway inhibitor, and kinase activators and inhibitors were used to modulate TRPA1 and TRPV1 expression and function. Treatment of genotyped airway epithelial cells with particulate materials and analysis of asthma control data were used to assess consequences of TRPV1 genotype and variable TRPA1 expression on cellular responses in vitro and asthma symptom control among children as a function of voluntarily reported tobacco smoke exposure. RESULTS A relationship between higher TRPA1 expression and function and lower TRPV1 expression and function was revealed. Findings of this study pointed to a mechanism whereby NF-κB promoted TRPA1 expression, whereas NF-κB-regulated nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 2 (NLRP2) limited expression. Roles for protein kinase C and p38 mitogen activated protein kinase were also demonstrated. Finally, the TRPV1 I585I/V genotype was associated with increased TRPA1 expression by primary airway epithelial cells and amplified responses to selected air pollution particles in vitro. However, the TRPV1 I585I/V genotype was not associated with worse asthma symptom control among children exposed to tobacco smoke, whereas other TRPA1 and TRPV1 variants were. DISCUSSION This study provides insights on how airway epithelial cells regulate TRPA1 expression, how TRPV1 genetics can affect TRPA1 expression, and that TRPA1 and TRPV1 polymorphisms differentially affect asthma symptom control. https://doi.org/10.1289/EHP11076.
Collapse
Affiliation(s)
- Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Samantha N. Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Katherine L. Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Nam D. Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
5
|
Paguigan ND, Tun JO, Leavitt LS, Lin Z, Chase K, Dowell C, Deering-Rice CE, Lim AL, Karthikeyan M, Hughen RW, Zhang J, Peterson RT, Reilly CA, Light AR, Raghuraman S, McIntosh JM, Olivera BM, Schmidt EW. Nicotinic Acetylcholine Receptor Partial Antagonist Polyamides from Tunicates and Their Predatory Sea Slugs. ACS Chem Neurosci 2021; 12:2693-2704. [PMID: 34213884 DOI: 10.1021/acschemneuro.1c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3β4 (mouse) and α6/α3β4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 μM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.
Collapse
Affiliation(s)
- Noemi D. Paguigan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jortan O. Tun
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lee S. Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cheryl Dowell
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Manju Karthikeyan
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - J. Michael McIntosh
- Department of Psychiatry, and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- George E Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Milici A, Talavera K. TRP Channels as Cellular Targets of Particulate Matter. Int J Mol Sci 2021; 22:2783. [PMID: 33803491 PMCID: PMC7967245 DOI: 10.3390/ijms22052783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
| |
Collapse
|
7
|
Kim JH, Jang YS, Kim HI, Park JY, Park SH, Hwang YI, Jang SH, Jung KS, Park HS, Park CS. Activation of Transient Receptor Potential Melastatin Family Member 8 (TRPM8) Receptors Induces Proinflammatory Cytokine Expressions in Bronchial Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:684-700. [PMID: 32400133 PMCID: PMC7224991 DOI: 10.4168/aair.2020.12.4.684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Purpose Cold air is a major environmental factor that exacerbates asthma. Transient receptor potential melastatin family member 8 (TRPM8) is a cold-sensing channel expressed in the airway epithelium. However, its role in airway inflammation remains unknown. We investigated the role of TRPM8 in innate immune responses in bronchial epithelial cells and asthmatic subjects. Methods The TRPM8 mRNA and protein expression on BEAS2B human bronchial epithelial cells was examined by real-time polymerase chain reaction (PCR), immunofluorescence staining and western blotting. Additionally, interleukin (IL)-4, IL-6, IL-8, IL-13, IL-25 and thymic stromal lymphopoietin (TSLP) levels before and after menthol, dexamethasone and N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) treatments were measured via real-time PCR. TRPM8 protein levels in the supernatants of induced sputum from asthmatic subjects and normal control subjects were measured using enzyme-linked immunosorbent assay, and mRNA levels in sputum cell lysates were measured using real-time PCR. Results Treatment with up to 2 mM menthol dose-dependently increased TRPM8 mRNA and protein in BEAS2B cells compared to untreated cells (P < 0.001) and concomitantly increased IL-25 and TSLP mRNA (P < 0.05), but not IL-33 mRNA. BCTC (10 μM) significantly abolished menthol-induced up-regulation of TRPM8 mRNA and protein and IL-25 and TSLP mRNA (P < 0.01). TRPM8 protein levels were higher in the supernatants of induced sputum from asthmatic subjects (n = 107) than in those from healthy controls (n = 19) (P < 0.001), and IL-25, TSLP and IL-33 mRNA levels were concomitantly increased (P < 0.001). Additionally, TRPM8 mRNA levels correlated strongly with those of IL-25 and TSLP (P < 0.001), and TRPM8 protein levels were significantly higher in bronchodilator-responsive asthmatic subjects than in nonresponders. Conclusions TRPM8 may be involved in the airway epithelial cell innate immune response and a molecular target for the treatment of asthma.
Collapse
Affiliation(s)
- Joo Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea.
| | - Young Sook Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hwan Il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ji Young Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Sung Hoon Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Disease, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
8
|
Kaur K, Mohammadpour R, Jaramillo IC, Ghandehari H, Reilly C, Paine R, Kelly KE. Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions. JOURNAL OF AEROSOL SCIENCE 2019; 137:105445. [PMID: 32863423 PMCID: PMC7448758 DOI: 10.1016/j.jaerosci.2019.105445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Collapse
Affiliation(s)
| | | | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Department of Pulmonary Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
9
|
Memon T, Yarishkin O, Reilly CA, Križaj D, Olivera BM, Teichert RW. trans-Anethole of Fennel Oil is a Selective and Nonelectrophilic Agonist of the TRPA1 Ion Channel. Mol Pharmacol 2019; 95:433-441. [PMID: 30679204 DOI: 10.1124/mol.118.114561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1, a member of TRP channel family, is specifically activated by natural products such as allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrated that TRPA1 is also a target of trans-anethole in fennel oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1 channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the amino acids S873 and T874 binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione, a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the ST binding site. Finally, it was found that trans-anethole was capable of desensitizing TRPA1, and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, nonelectrophilic, and seemingly less-irritating agonist of TRPA1.
Collapse
Affiliation(s)
- Tosifa Memon
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| | - Oleg Yarishkin
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| | - David Križaj
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| | - Baldomero M Olivera
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| | - Russell W Teichert
- Departments of Biology (T.M., B.M.O., R.W.T.), Pharmacology and Toxicology (T.M., C.A.R.), and Ophthalmology and Visual Sciences (O.Y., D.K.), University of Utah, Salt Lake City, Utah
| |
Collapse
|