1
|
Tan J, Zhong M, Hu Y, Pan G, Yao J, Tang Y, Duan H, Jiang Y, Shan W, Lin J, Liu Y, Huang J, Zheng H, Zhou Y, Fu G, Li Z, Xu B, Zha J. Ritanserin suppresses acute myeloid leukemia by inhibiting DGKα to downregulate phospholipase D and the Jak-Stat/MAPK pathway. Discov Oncol 2023; 14:118. [PMID: 37392305 DOI: 10.1007/s12672-023-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.
Collapse
Affiliation(s)
- Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuanfang Tang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Weihang Shan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiaqi Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Yating Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiewen Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361002, Fujian, China
| | - Huijian Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
3
|
Zhou D, Liu T, Rao X, Jie X, Chen Y, Wu Z, Deng H, Zhang D, Wang J, Wu G. Targeting diacylglycerol kinase α impairs lung tumorigenesis by inhibiting cyclin D3. Thorac Cancer 2023; 14:1179-1191. [PMID: 36965165 PMCID: PMC10151139 DOI: 10.1111/1759-7714.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase α (DGKA) is the first member discovered from the diacylglycerol kinase family, and it has been linked to the progression of various types of tumors. However, it is unclear whether DGKA is linked to the development of lung cancer. METHODS We investigated the levels of DGKA in the lung cancer tissues. Cell growth assay, colony formation assay and EdU assay were used to examine the effects of DGKA-targeted siRNAs/shRNAs/drugs on the proliferation of lung cancer cells in vitro. Xenograft mouse model was used to investigate the role of DGKA inhibitor ritanserin on the proliferation of lung cancer cells in vivo. The downstream target of DGKA in lung tumorigenesis was identified by RNA sequencing. RESULTS DGKA is upregulated in the lung cancer cells. Functional assays and xenograft mouse model indicated that the proliferation ability of lung cancer cells was impaired after inhibiting DGKA. And cyclin D3(CCND3) is the downstream target of DGKA promoting lung cancer. CONCLUSIONS Our study demonstrated that DGKA promotes lung tumorigenesis by regulating the CCND3 expression and hence it can be considered as a potential molecular biomarker to evaluate the prognosis of lung cancer patients. What's more, we also demonstrated the efficacy of ritanserin as a promising new medication for treating lung cancer.
Collapse
Affiliation(s)
- Dong Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Granade ME, Manigat LC, Lemke MC, Purow BW, Harris TE. Identification of ritanserin analogs that display DGK isoform specificity. Biochem Pharmacol 2022; 197:114908. [PMID: 34999054 PMCID: PMC8858877 DOI: 10.1016/j.bcp.2022.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 11/15/2022]
Abstract
The diacylglycerol kinase (DGK) family of lipid enzymes catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Both DAG and PA are lipid signaling molecules that are of notable importance in regulating cell processes such as proliferation, apoptosis, and migration. There are ten mammalian DGK enzymes that appear to have distinct biological functions. DGKα has emerged as a promising therapeutic target in numerous cancers including glioblastoma (GBM) and melanoma as treatment with small molecule DGKα inhibitors results in reduced tumor sizes and prolonged survival. Importantly, DGKα has also been identified as an immune checkpoint due to its promotion of T cell anergy, and its inhibition has been shown to improve T cell activation. There are few small molecule DGKα inhibitors currently available, and the application of existing compounds to clinical settings is hindered by species-dependent variability in potency, as well as concerns regarding isotype specificity particularly amongst other type I DGKs. In order to resolve these issues, we have screened a library of compounds structurally analogous to the DGKα inhibitor, ritanserin, in an effort to identify more potent and specific alternatives. We identified two compounds that more potently and selectively inhibit DGKα, one of which (JNJ-3790339) demonstrates similar cytotoxicity in GBM and melanoma cells as ritanserin. Consistent with its inhibitor profile towards DGKα, JNJ-3790339 also demonstrated improved activation of T cells compared with ritanserin. Together our data support efforts to identify DGK isoform-selective inhibitors as a mechanism to produce pharmacologically relevant cancer therapies.
Collapse
Affiliation(s)
- Mitchell E Granade
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States
| | - Laryssa C Manigat
- University of Virginia, School of Medicine, Department of Pathology, Charlottesville, VA, United States
| | - Michael C Lemke
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States
| | - Benjamin W Purow
- University of Virginia, Department of Neurology, Division of Neuro-Oncology, Charlottesville, VA, United States.
| | - Thurl E Harris
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States.
| |
Collapse
|
5
|
Oved K, Zennaro L, Dorot O, Zerbib J, Frank E, Roux LN, Bremond-Gignac D, Pichinuk E, Aberdam D. Ritanserin, a potent serotonin 2A receptor antagonist, represses MEK/ERK signalling pathway to restore PAX6 production and function in aniridia-like cellular model. Biochem Biophys Res Commun 2021; 582:100-104. [PMID: 34700241 DOI: 10.1016/j.bbrc.2021.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Aniridia is a panocular inherited rare eye disease linked to heterozygous mutations on the PAX6 gene, which fail to properly produce sufficient protein essential for normal eye development and function. Most of the patients suffer from aniridia-related keratopathy, a progressive opacification of the cornea. There is no effective treatment for this blinding disease. Here we screen for small compounds and identified Ritanserin, a serotonin 2A receptor antagonist, that can rescue PAX6 haploinsufficiency of mutant limbal cells, defective cell migration and PAX6-target gene expression. We further demonstrated that Ritanserin activates PAX6 production through the selective inactivation of the MEK/ERK signaling pathway. Our data strongly suggest that repurposing this therapeutic molecule could be effective in preventing or treating existing blindness by restoring corneal transparency.
Collapse
Affiliation(s)
- Keren Oved
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Léa Zennaro
- INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Centre de Recherche des Cordeliers, Paris, France; Université de Paris, France
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Johanna Zerbib
- Université de Paris, France; INSERM U976, Hôpital St-Louis, Paris, France
| | - Elie Frank
- Université de Paris, France; INSERM U976, Hôpital St-Louis, Paris, France
| | - Lauriane N Roux
- Université de Paris, France; INSERM U976, Hôpital St-Louis, Paris, France
| | - Dominique Bremond-Gignac
- INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Centre de Recherche des Cordeliers, Paris, France; INSERM U976, Hôpital St-Louis, Paris, France; Ophthalmology Department, University Hospital Necker-Enfants malades, AP-HP, Paris, France
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Daniel Aberdam
- INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Centre de Recherche des Cordeliers, Paris, France; Université de Paris, France; INSERM U976, Hôpital St-Louis, Paris, France.
| |
Collapse
|
6
|
Ware TB, Hsu KL. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Curr Opin Chem Biol 2021; 65:101-108. [PMID: 34311404 PMCID: PMC8671151 DOI: 10.1016/j.cbpa.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Advancements in chemical proteomics and mass spectrometry lipidomics are providing new opportunities to understand lipid kinase activity, specificity, and regulation on a global cellular scale. Here, we describe recent developments in chemical biology of lipid kinases with a focus on those members that phosphorylate diacylglycerols. We further discuss future implications of how these mass spectrometry-based approaches can be adapted for studies of additional lipid kinase members with the aim of bridging the gap between protein and lipid kinase-focused investigations.
Collapse
Affiliation(s)
- Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Kovalenko A, Sanin A, Kosmas K, Zhang L, Wang J, Akl EW, Giannikou K, Probst CK, Hougard TR, Rue RW, Krymskaya VP, Asara JM, Lam HC, Kwiatkowski DJ, Henske EP, Filippakis H. Therapeutic Targeting of DGKA-Mediated Macropinocytosis Leads to Phospholipid Reprogramming in Tuberous Sclerosis Complex. Cancer Res 2021; 81:2086-2100. [PMID: 33593821 DOI: 10.1158/0008-5472.can-20-2218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.
Collapse
Affiliation(s)
- Andrii Kovalenko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andres Sanin
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kosmas Kosmas
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Long Zhang
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ji Wang
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elie W Akl
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krinio Giannikou
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas R Hougard
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryan W Rue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vera P Krymskaya
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Huang T, Hosseinibarkooie S, Borne AL, Granade ME, Brulet JW, Harris TE, Ferris HA, Hsu KL. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem Sci 2021; 12:3295-3307. [PMID: 34164099 PMCID: PMC8179411 DOI: 10.1039/d0sc06623k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Sulfonyl-triazoles are a new class of electrophiles that mediate covalent reaction with tyrosine residues on proteins through sulfur-triazole exchange (SuTEx) chemistry. Recent studies demonstrate the broad utility and tunability of SuTEx chemistry for chemical proteomics and protein ligand discovery. Here, we present a strategy for mapping protein interaction networks of structurally complex binding elements using functionalized SuTEx probes. We show that the triazole leaving group (LG) can serve as a releasable linker for embedding hydrophobic fragments to direct molecular recognition while permitting efficient proteome-wide identification of binding sites in live cells. We synthesized a series of SuTEx probes functionalized with a lipid kinase fragment binder for discovery of ligandable tyrosines residing in catalytic and regulatory domains of protein and metabolic kinases in live cells. We performed competition studies with kinase inhibitors and substrates to demonstrate that probe binding is occurring in an activity-dependent manner. Our functional studies led to discovery of probe-modified sites within the C2 domain that were important for downregulation of protein kinase C-alpha in response to phorbol ester activation. Our proof of concept studies highlight the triazole LG of SuTEx probes as a traceless linker for locating protein binding sites targeted by complex recognition elements in live cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | | | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Heather A Ferris
- Department of Medicine, University of Virginia School of Medicine Charlottesville Virginia 22903 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
| |
Collapse
|
9
|
Fusi F, Trezza A, Sgaragli G, Spiga O, Saponara S, Bova S. Ritanserin blocks Ca V1.2 channels in rat artery smooth muscles: electrophysiological, functional, and computational studies. Acta Pharmacol Sin 2020; 41:1158-1166. [PMID: 32132658 PMCID: PMC7608335 DOI: 10.1038/s41401-020-0370-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
CaV1.2 channel blockers or 5-HT2 receptor antagonists constitute effective therapy for Raynaud’s syndrome. A functional link between the inhibition of 5-HT2 receptors and CaV1.2 channel blockade in arterial smooth muscles has been hypothesized. Therefore, the effects of ritanserin, a nonselective 5-HT2 receptor antagonist, on vascular CaV1.2 channels were investigated through electrophysiological, functional, and computational studies. Ritanserin blocked CaV1.2 channel currents (ICa1.2) in a concentration-dependent manner (Kr = 3.61 µM); ICa1.2 inhibition was antagonized by Bay K 8644 and partially reverted upon washout. Conversely, the ritanserin analog ketanserin (100 µM) inhibited ICa1.2 by ~50%. Ritanserin concentration-dependently shifted the voltage dependence of the steady-state inactivation curve to more negative potentials (Ki = 1.58 µM) without affecting the slope of inactivation and the activation curve, and decreased ICa1.2 progressively during repetitive (1 Hz) step depolarizations (use-dependent block). The addition of ritanserin caused the contraction of single myocytes not yet dialyzed with the conventional method. Furthermore, in depolarized rings, ritanserin, and to a lesser extent, ketanserin, caused a concentration-dependent relaxation, which was antagonized by Bay K 8644. Ritanserin and ketanserin were docked at a region of the CaV1.2 α1C subunit nearby that of Bay K 8644; however, only ritanserin and Bay K 8644 formed a hydrogen bond with key residue Tyr-1489. In conclusion, ritanserin caused in vitro vasodilation, accomplished through the blockade of CaV1.2 channels, which was achieved preferentially in the inactivated and/or resting state of the channel. This novel activity encourages the development of ritanserin derivatives for their potential use in the treatment of Raynaud’s syndrome.
Collapse
|
10
|
Franks CE, Hsu KL. Activity-Based Kinome Profiling Using Chemical Proteomics and ATP Acyl Phosphates. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2019; 11:e72. [PMID: 31483100 PMCID: PMC8632518 DOI: 10.1002/cpch.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human kinases are a large family of proteins (500+) that catalyze ATP-dependent phosphorylation of protein and metabolite substrates to regulate diverse facets of cell biology. Dysregulation and mutations of protein kinases are linked to human disease, providing opportunities for developing pharmacological agents as potential therapy. Assessing the selectivity of pharmacological compounds targeting this enzyme class is critical given that off-target activity of kinase inhibitor drugs may result in toxicity. This set of protocols outlines use of ATP acyl phosphate activity-based probes to evaluate the potency and selectivity of kinase inhibitors via fluorescent gel- and mass spectrometry-based detection methods. These competitive chemical proteomic assays can evaluate engagement of >200 native kinase targets directly in complex proteomes. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Caroline E Franks
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
Xu D, He H, Jiang X, Yang L, Liu D, Yang L, Geng G, Cheng J, Chen H, Hua R, Duan J, Li X, Wu L, Li Y, Li Q. Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis in bovine ovarian granulosa cells. Reprod Domest Anim 2019; 54:741-749. [PMID: 30785650 DOI: 10.1111/rda.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022]
Abstract
Steroid hormones are required for normal reproductive function of female. The aim of this study was to investigate the role of Raf-ERK1/2 on steroid hormone synthesis in bovine ovarian granulosa cells. Immunohistochemistry assay showed that both B-Raf and C-Raf were expressed in granulosa cells, theca cells and Sertoli cells. The protein expression of Raf or ERK1/2 was clearly decreased by Raf inhibitor GSK2118436 or ERK1/2 inhibitor SCH772984, respectively (p < 0.05). In addition, western blotting was performed for investigating the crosstalk between Raf and ERK1/2, the data showed that Raf positively regulated ERK1/2, whereas ERK1/2 had a negative feedback effect on Raf. The biosynthesis of oestradiol or testosterone was significantly decreased by treatment with GSK2118436 or SCH772984 (p < 0.05). Conversely, the progesterone biosynthesis was clearly increased by treatment with those inhibitors (p < 0.05). Furthermore, the mRNA expression of STAR, aromatase and CYP17 was blocked by Raf-ERK1/2 signalling inhibition, which oppositely induced the mRNA expression of CYP11. Together, these findings suggested that Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis via affecting the expression of steroidogenic enzymes.
Collapse
Affiliation(s)
- Dejun Xu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huanshan He
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lulu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dinbang Liu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Li Yang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huali Chen
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Rongmao Hua
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jiaxin Duan
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lin Wu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuan Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|