1
|
Pierce SR, Germann AL, Covey DF, Evers AS, Steinbach JH, Akk G. Inhibitory Actions of Potentiating Neuroactive Steroids in the Human α1β3γ2L γ-Aminobutyric Acid Type A Receptor. Mol Pharmacol 2024; 106:264-277. [PMID: 39214710 PMCID: PMC11493365 DOI: 10.1124/molpharm.124.000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The γ-aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β3γ2L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ∼13 μM and maximal inhibitory effects of 70-90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN. SIGNIFICANCE STATEMENT: The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β3γ2L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions.
Collapse
Affiliation(s)
- Spencer R Pierce
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Allison L Germann
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Douglas F Covey
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Alex S Evers
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Joe Henry Steinbach
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Gustav Akk
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
2
|
Fan C, Cowgill J, Howard RJ, Lindahl E. Divergent mechanisms of steroid inhibition in the human ρ1 GABA A receptor. Nat Commun 2024; 15:7795. [PMID: 39242530 PMCID: PMC11379708 DOI: 10.1038/s41467-024-51904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
ρ-type γ-aminobutyric acid-A (GABAA) receptors are widely distributed in the retina and brain, and are potential drug targets for the treatment of visual, sleep and cognitive disorders. Endogenous neuroactive steroids including β-estradiol and pregnenolone sulfate negatively modulate the function of ρ1 GABAA receptors, but their inhibitory mechanisms are not clear. By combining five cryo-EM structures with electrophysiology and molecular dynamics simulations, we characterize binding sites and negative modulation mechanisms of β-estradiol and pregnenolone sulfate at the human ρ1 GABAA receptor. β-estradiol binds in a pocket at the interface between extracellular and transmembrane domains, apparently specific to the ρ subfamily, and disturbs allosteric conformational transitions linking GABA binding to pore opening. In contrast, pregnenolone sulfate binds inside the pore to block ion permeation, with a preference for activated structures. These results illuminate contrasting mechanisms of ρ1 inhibition by two different neuroactive steroids, with potential implications for subtype-specific gating and pharmacological design.
Collapse
Affiliation(s)
- Chen Fan
- Dept. of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - John Cowgill
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Dept. of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - Erik Lindahl
- Dept. of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| |
Collapse
|
3
|
Mortensen M, Bright DP, Fagotti J, Dorovykh V, Cerna B, Smart TG. Forty Years Searching for Neurosteroid Binding Sites on GABA A Receptors. Neuroscience 2024:S0306-4522(24)00257-4. [PMID: 38852898 DOI: 10.1016/j.neuroscience.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Brain inhibition is a vital process for controlling and sculpting the excitability of the central nervous system in healthy individuals. This level of control is provided over several timescales and involves the neurotransmitter GABA acting at inhibitory synapses to: rapidly inhibit neurons by activating the GABAA receptor; over a slower timescale, to tonically activate extrasynaptic GABAA receptors to provide a low level of background inhibition; and finally, to activate G-protein coupled GABAB receptors to control transmitter release by inhibiting presynaptic Ca2+ channels whilst providing postsynaptic inhibition via K+ channel activation. From this plethora of roles for GABA and its receptors, the GABAA receptor isoform is of major interest due to its dynamic functional plasticity, which in part, is due to being targeted by modulatory brain neurosteroids derived from sex and stress hormones. This family of neurosteroids can, depending on their structure, potentiate, activate and also inhibit the activity of GABAA receptors to affect brain inhibition. This review tracks the methods that have been deployed in probing GABAA receptors, and charts the sterling efforts made by several groups to locate the key neurosteroid binding sites that affect these important receptors. Increasing our knowledge of these binding sites will greatly facilitate our understanding of the physiological roles of neurosteroids and will help to advance their use as novel therapeutics to combat debilitating brain diseases.
Collapse
Affiliation(s)
- Martin Mortensen
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Damian P Bright
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Juliane Fagotti
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Valentina Dorovykh
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Barbora Cerna
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Pierce SR, Germann AL, Steinbach JH, Akk G. The Sulfated Steroids Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate Inhibit the α1 β3 γ2L GABA A Receptor by Stabilizing a Novel Nonconducting State. Mol Pharmacol 2022; 101:68-77. [PMID: 34853153 PMCID: PMC8969134 DOI: 10.1124/molpharm.121.000385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023] Open
Abstract
The GABAA receptor is inhibited by the endogenous sulfated steroids pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). It has been proposed in previous work that these steroids act by enhancing desensitization of the receptor. Here, we have investigated the modulatory effects of the steroids on the human α1β3γ2L GABAA receptor. Using electrophysiology and quantitative model-based data analysis, we show that exposure to the steroid promotes occupancy of a nonconducting state that retains high affinity to the transmitter but whose properties differ from those of the classic, transmitter-induced desensitized state. From the analysis of the inhibitory actions of two combined steroids, we infer that PS and DHEAS act through shared or overlapping binding sites. SIGNIFICANCE STATEMENT: Previous work has proposed that sulfated neurosteroids inhibit the GABAA receptor by enhancing the rate of entry into the desensitized state. This study shows that the inhibitory steroids pregnenolone sulfate and dehydroepiandrosterone sulfate act through a common interaction site by stabilizing a distinct nonconducting state.
Collapse
Affiliation(s)
- Spencer R Pierce
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Germann AL, Pierce SR, Evers AS, Steinbach JH, Akk G. Perspective on the relationship between GABAA receptor activity and the apparent potency of an inhibitor. Curr Neuropharmacol 2021; 20:90-93. [PMID: 34784870 PMCID: PMC9199547 DOI: 10.2174/1570159x19666211104142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Background: In electrophysiological experiments, inhibition of a receptor-channel, such as the GABAA receptor, is measured by co-applying an agonist producing a predefined control response with an inhibitor to calculate the fraction of the control response remaining in the presence of the inhibitor. The properties of the inhibitor are determined by fitting the inhibition concentration-response relationship to the Hill equation to estimate the midpoint (IC50) of the inhibition curve. Objective: We sought to estimate sensitivity of the fitted IC50 to the level of activity of the control response. Methods: The inhibition concentration-response relationships were calculated for models with distinct mechanisms of inhibition. In Model I, the inhibitor acts allosterically to stabilize the resting state of the receptor. In Model II, the inhibitor competes with the agonist for a shared binding site. In Model III, the inhibitor stabilizes the desensitized state. Results: The simulations indicate that the fitted IC50 of the inhibition curve is sensitive to the degree of activity of the control response. In Models I and II, the IC50 of inhibition was increased as the probability of being in the active state (PA) of the control response increased. In Model III, the IC50 of inhibition was reduced at higher PA. Conclusion: We infer that the apparent potency of an inhibitor depends on the PA of the control response. While the calculations were carried out using the activation and inhibition properties that are representative of the GABAA receptor, the principles and conclusions apply to a wide variety of receptor-channels.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Spencer R Pierce
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Alex S Evers
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Joe Henry Steinbach
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Gustav Akk
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| |
Collapse
|