1
|
Experimental factors that impact CaV1.2 channel pharmacology-Effects of recording temperature, charge carrier, and quantification of drug effects on the step and ramp currents elicited by the "step-step-ramp" voltage protocol. PLoS One 2022; 17:e0276995. [PMID: 36417390 PMCID: PMC9683570 DOI: 10.1371/journal.pone.0276995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV1.2 channels contribute to action potential upstroke in pacemaker cells, plateau potential in working myocytes, and initiate excitation-contraction coupling. Understanding drug action on CaV1.2 channels may inform potential impact on cardiac function. However, literature shows large degrees of variability between CaV1.2 pharmacology generated by different laboratories, casting doubt regarding the utility of these data to predict or interpret clinical outcomes. This study examined experimental factors that may impact CaV1.2 pharmacology. EXPERIMENTAL APPROACH Whole cell recordings were made on CaV1.2 overexpression cells. Current was evoked using a "step-step-ramp" waveform that elicited a step and a ramp current. Experimental factors examined were: 1) near physiological vs. room temperature for recording, 2) drug inhibition of the step vs. the ramp current, and 3) Ca2+ vs. Ba2+ as the charge carrier. Eight drugs were studied. KEY RESULTS CaV1.2 current exhibited prominent rundown, exquisite temperature sensitivity, and required a high degree of series resistance compensation to optimize voltage control. Temperature-dependent effects were examined for verapamil and methadone. Verapamil's block potency shifted by up to 4X between room to near physiological temperature. Methadone exhibited facilitatory and inhibitory effects at near physiological temperature, and only inhibitory effect at room temperature. Most drugs inhibited the ramp current more potently than the step current-a preference enhanced when Ba2+ was the charge carrier. The slopes of the concentration-inhibition relationships for many drugs were shallow, temperature-dependent, and differed between the step and the ramp current. CONCLUSIONS AND IMPLICATIONS All experimental factors examined affected CaV1.2 pharmacology. In addition, whole cell CaV1.2 current characteristics-rundown, temperature sensitivity, and impact of series resistance-are also factors that can impact pharmacology. Drug effects on CaV1.2 channels appear more complex than simple pore block mechanism. Normalizing laboratory-specific approaches is key to improve inter-laboratory data reproducibility. Releasing original electrophysiology records is essential to promote transparency and enable the independent evaluation of data quality.
Collapse
|
2
|
Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis 2021; 7:2807-2815. [PMID: 34498840 PMCID: PMC8442615 DOI: 10.1021/acsinfecdis.1c00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/06/2023]
Abstract
COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.
Collapse
Affiliation(s)
- Marco R. Straus
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
- Master of Public Health Program, Cornell
University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| |
Collapse
|
3
|
Devi V, Singh G, Monga V. Recent advances in the synthetic chemistry of 1,5
‐benzothiazepines
: A minireview. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Varsha Devi
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| | - Gurpreet Singh
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| | - Vikramdeep Monga
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| |
Collapse
|
4
|
Li T, Zhang J, Pan J, Wu Z, Hu D, Song B. Design, synthesis, and antiviral activities of 1,5-benzothiazepine derivatives containing pyridine moiety. Eur J Med Chem 2017; 125:657-662. [DOI: 10.1016/j.ejmech.2016.09.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022]
|
5
|
Garg P, Gardner A, Garg V, Sanguinetti MC. Structural basis of ion permeation gating in Slo2.1 K+ channels. ACTA ACUST UNITED AC 2014; 142:523-42. [PMID: 24166878 PMCID: PMC3813382 DOI: 10.1085/jgp.201311064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The activation gate of ion channels controls the transmembrane flux of permeant ions. In voltage-gated K+ channels, the aperture formed by the S6 bundle crossing can widen to open or narrow to close the ion permeation pathway, whereas the selectivity filter gates ion flux in cyclic-nucleotide gated (CNG) and Slo1 channels. Here we explore the structural basis of the activation gate for Slo2.1, a weakly voltage-dependent K+ channel that is activated by intracellular Na+ and Cl−. Slo2.1 channels were heterologously expressed in Xenopus laevis oocytes and activated by elevated [NaCl]i or extracellular application of niflumic acid. In contrast to other voltage-gated channels, Slo2.1 was blocked by verapamil in an activation-independent manner, implying that the S6 bundle crossing does not gate the access of verapamil to its central cavity binding site. The structural basis of Slo2.1 activation was probed by Ala scanning mutagenesis of the S6 segment and by mutation of selected residues in the pore helix and S5 segment. Mutation to Ala of three S6 residues caused reduced trafficking of channels to the cell surface and partial (K256A, I263A, Q273A) or complete loss (E275A) of channel function. P271A Slo2.1 channels trafficked normally, but were nonfunctional. Further mutagenesis and intragenic rescue by second site mutations suggest that Pro271 and Glu275 maintain the inner pore in an open configuration by preventing formation of a tight S6 bundle crossing. Mutation of several residues in S6 and S5 predicted by homology modeling to contact residues in the pore helix induced a gain of channel function. Substitution of the pore helix residue Phe240 with polar residues induced constitutive channel activation. Together these findings suggest that (1) the selectivity filter and not the bundle crossing gates ion permeation and (2) dynamic coupling between the pore helix and the S5 and S6 segments mediates Slo2.1 channel activation.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 2 Department of Pharmaceutics and Pharmaceutical Chemistry, and 3 Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | | | | | | |
Collapse
|
6
|
Oliveto A, Mancino M, Sanders N, Cargile C, Benjamin Guise J, Bickel W, Brooks Gentry W. Effects of prototypic calcium channel blockers in methadone-maintained humans responding under a naloxone discrimination procedure. Eur J Pharmacol 2013; 715:424-35. [PMID: 23524089 DOI: 10.1016/j.ejphar.2013.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
Accumulating evidence suggests that L-type calcium channel blockers (CCBs) attenuate the expression of opioid withdrawal and the dihydropyridine L-type CCB isradipine has been shown to block the behavioral effects of naloxone in opioid-maintained humans. This study determined whether two prototypic L-type CCBs with differing chemical structures, the benzothiazepine diltiazem and the phenylalkamine verapamil, attenuate the behavioral effects of naloxone in methadone-maintained humans trained to distinguish between low-dose naloxone (0.15 mg/70 kg, i.m.) and placebo under an instructed novel-response drug discrimination procedure. Once discrimination was acquired, diltiazem (0, 30, 60, 120 mg) and verapamil (0, 30, 60, 120 mg), alone and combined with the training dose of naloxone, were tested. Diltiazem alone produced 33-50% naloxone- and novel-appropriate responding at 30 and 60 mg and essentially placebo-appropriate responding at 120 mg. Verapamil alone produced 20-40% naloxone- and 0% novel-appropriate responding. Diltiazem at 60 mg decreased several ratings associated with positive mood and increased VAS ratings of "Bad Drug Effects" relative to placebo, whereas verapamil increased ratings associated with euphoria. When administered with naloxone, diltiazem produced 94-100% naloxone-appropriate-responding with 6% novel-appropriate responding at 60 mg (n=3). When administered with naloxone, verapamil produced 60-80% naloxone- and 0% novel-appropriate responding (n=5). Diltiazem decreased diastolic blood pressure and heart rate whereas verapamil decreased ratings of arousal relative to placebo. These results suggest that CCBs with different chemical structures can be differentiated behaviorally, and that diltiazem and verapamil do not attenuate the discriminative stimulus effects of naloxone in humans at the doses tested.
Collapse
Affiliation(s)
- Alison Oliveto
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Mor S, Pahal P, Narasimhan B. Synthesis, characterization, biological evaluation and QSAR studies of 11-p-substituted phenyl-12-phenyl-11a,12-dihydro-11H-indeno[2,1-c][1,5]benzothiazepines as potential antimicrobial agents. Eur J Med Chem 2012; 57:196-210. [DOI: 10.1016/j.ejmech.2012.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
8
|
Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK. 1,5-Benzothiazepine, a versatile pharmacophore: A review. Eur J Med Chem 2008; 43:2279-90. [DOI: 10.1016/j.ejmech.2008.05.035] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
9
|
Bruhova I, Tikhonov DB, Zhorov BS. Access and binding of local anesthetics in the closed sodium channel. Mol Pharmacol 2008; 74:1033-45. [PMID: 18653802 DOI: 10.1124/mol.108.049759] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Local anesthetics (LAs) are known to bind Na+ channels in the closed, open, and inactivated states and reach their binding sites via extracellular and intracellular access pathways. Despite intensive studies, no atomic-scale theory is available to explain the diverse experimental data on the LA actions. Here we attempt to contribute to this theory by simulating access and binding of LAs in the KcsA-based homology model of the closed Na+ channel. We used Monte Carlo minimizations to model the channel with representative local anesthetics N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium (QX-314), cocaine, and tetracaine. We found the nucleophilic central cavity to be a common binding region for the ammonium group of LAs, whose aromatic group can extend either along the pore axis (vertical binding mode) or to the III/IV domain interface (horizontal binding mode). The vertical mode was earlier predicted for the open channel, but only the horizontal mode is consistent with mutational data on the closed-channel block. To explore hypothetical access pathways of the permanently charged QX-314, we pulled the ligand via the selectivity filter, the closed activation gate, and the III/IV domain interface. Only the last pathway, which leads to the horizontal binding mode, did not impose steric obstacles. The LA ammonium group mobility within the central cavity was more restricted in the vertical mode than in the horizontal mode. Therefore, occupation of the selectivity-filter DEKA locus by a Na+ ion destabilizes the vertical mode, thus favoring the horizontal mode. LA binding in the closed channel requires the resident Na+ ion to leave the nucleophilic central cavity through the selectivity filter, whereas the LA egress should be coupled with reoccupation of the cavity by Na+. This hypothesis on the coupled movement of Na+ and LA in the closed channel explains seemingly contradictory data on how the outer-pore mutations as well as tetrodotoxin and micro-conotoxin binding affect the ingress and egress of LAs.
Collapse
Affiliation(s)
- Iva Bruhova
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
10
|
Tikhonov DB, Zhorov BS. Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 2008; 283:17594-604. [PMID: 18397890 DOI: 10.1074/jbc.m800141200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
11
|
Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Sprague–Dawley rats. Life Sci 2008; 82:869-75. [DOI: 10.1016/j.lfs.2008.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/26/2008] [Accepted: 02/02/2008] [Indexed: 01/28/2023]
|
12
|
Abstract
The rate and force of contraction of the heart are precisely controlled by compartmentalized regulation of cardiac ion channels which determine electrical activities. It is known that modulation of cardiac ion channels, which is caused by drug administration, sympathetic nervous system stimulation and gender difference, can increase risks of lethal arrhythmias in carriers of inherited disease mutations. These modulations are thought to also be involved in common cardiac arrhythmias. Because many signaling molecules are localized within single cells, an understanding of the molecular basis of compartmentalized regulation of cardiac channels is a key for understanding and treating the lethal arrhythmias. In this review, I will discuss molecular mechanisms of compartmentalized regulation of cardiac ion channels via drugs, cAMP and sex hormones.
Collapse
Affiliation(s)
- Junko Kurokawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
13
|
Tarabova B, Lacinova L, Engel J. Effects of phenylalkylamines and benzothiazepines on Cav1.3-mediated Ca2+ currents in neonatal mouse inner hair cells. Eur J Pharmacol 2007; 573:39-48. [PMID: 17651721 DOI: 10.1016/j.ejphar.2007.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/12/2007] [Accepted: 06/25/2007] [Indexed: 11/23/2022]
Abstract
Calcium currents (I(Ca)) in inner hair cells (IHCs) are carried by the Ca(v)1.3 subtype of L-type calcium channels. They play an important role in synaptic transmission of sound-evoked mechanical stimuli. L-type calcium channels are targets of the organic blocker classes dihydropyridines, phenylalkylamines and benzothiazepines. Previously a low sensitivity of the Ca(v)1.3 subtype towards dihydropyridines has been demonstrated. Therefore, this study evaluates the effect of two phenylalkylamines (verapamil and gallopamil) and the benzothiazepine diltiazem on I(Ca) through Ca(v)1.3 channels in mouse IHCs. Whole-cell I(Ca) was measured using the patch-clamp technique in mouse IHCs aged postnatal day 3-7 with 5 mM calcium as a charge carrier. The phenylalkylamines verapamil and gallopamil and the benzothiazepine diltiazem inhibited I(Ca) in IHCs in a concentration-dependent manner. This block was largely reversible. Dose-response curves revealed IC(50) values of 199+/-19 microM for verapamil, 466+/-151 microM for gallopamil and 326+/-67 microM for diltiazem. The inhibition of peak I(Ca) by phenylalkylamines and benzothiazepines was voltage-independent. Verapamil (300 microM) enhanced current inactivation from -20 to +20 mV while diltiazem (300 microM) did so only at very depolarised potentials (+20 mV). In conclusion, the concentrations of phenylalkylamines and benzothiazepine necessary to inhibit 50% of I(Ca) in IHCs were one order larger compared to concentrations which inhibited I(Ca) through Ca(v)1.2 channels in native cells or expression systems. However, inhibitory concentrations were in the same range as those required for block of I(Ca) in turtle hair cells.
Collapse
MESH Headings
- Algorithms
- Animals
- Animals, Newborn
- Benzazepines/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/physiology
- Calcium Signaling/drug effects
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Gallopamil/pharmacology
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred Strains
- Phenethylamines/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Bohumila Tarabova
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Vlárska 5, 833 34 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
14
|
Kawada T, Yamazaki T, Akiyama T, Uemura K, Kamiya A, Shishido T, Mori H, Sugimachi M. Effects of Ca2+ channel antagonists on nerve stimulation-induced and ischemia-induced myocardial interstitial acetylcholine release in cats. Am J Physiol Heart Circ Physiol 2006; 291:H2187-91. [PMID: 16766645 DOI: 10.1152/ajpheart.00175.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although an axoplasmic Ca2+ increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca2+ channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca2+ channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca2+ channel antagonist ω-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca2+ channel antagonist ω-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca2+ channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca2+ channel antagonists, by inhibition of Na+/Ca2+ exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins( 1 , 4 , 5 )P3] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca2+ channels (with a dominance of P/Q-type) but probably not on the L-type Ca2+ channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca2+ channels, Na+/Ca2+ exchange, or Ins( 1 , 4 , 5 )P3 receptor-mediated pathway.
Collapse
Affiliation(s)
- Toru Kawada
- Dept. of Cardiovascular Dynamics, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Thu LT, Ahn JR, Woo SH. Inhibition of L-type Ca2+ channel by mitochondrial Na+-Ca2+ exchange inhibitor CGP-37157 in rat atrial myocytes. Eur J Pharmacol 2006; 552:15-9. [PMID: 17054940 DOI: 10.1016/j.ejphar.2006.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/16/2022]
Abstract
7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepine-2(3H)-one (CGP-37157) inhibits mitochondrial Na(+)-Ca(2+) exchange. It is often used as an experimental tool for studying the role of the mitochondrial Na(+)-Ca(2+) exchanger in Ca(2+) signaling. Because the selectivity of CGP-37157 in adult cardiomyocytes has not been confirmed, we tested whether CGP-37157 affects the L-type Ca(2+) channel using a whole-cell patch-clamp in adult rat atrial myocytes. We found that CGP-37157 suppressed L-type Ca(2+) current (I(Ca)) with IC(50) of approximately 0.27 microM, without altering the voltage dependence of the current-voltage relationships. CGP-37157 inhibited the Ba(2+) current (I(Ba)) through the Ca(2+) channel with a similar dose-response. The inhibitory effects of CGP-37157 on I(Ca) or I(Ba) were resistant to the intracellular Ca(2+) buffering. Intracellular application of CGP-37157 did not significantly alter I(Ca). The combination of CGP-37157 with known Ca(2+) channel inhibitor diltiazem yielded antagonism consistent with additivity of response. Our data suggest that CGP-37157 directly suppresses the L-type Ca(2+) channel in intact adult cardiomyocytes.
Collapse
Affiliation(s)
- Le Thi Thu
- College of Pharmacy, Chungnam National University, 220 Gungdong, Yuseong-Gu, Daejeon, 305-764, South Korea.
| | | | | |
Collapse
|
16
|
Ozawa Y, Hayashi K, Kobori H. New Generation Calcium Channel Blockers in Hypertensive Treatment. Curr Hypertens Rev 2006; 2:103-111. [PMID: 19823601 DOI: 10.2174/157340206776877370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During a couple of decades, a number of antihypertensive drugs have been developed, and the choice of hypertension treatment has been expanded. Among antihypertensive drugs, calcium channel blockers, which inhibit L-type voltage-gated calcium channels, are potent vasodilators, and have been used as a first- or second-line drug. Dihydropyridine-class calcium channel blockers are categorized into three generations according to the length of activity, and long-acting calcium channel blockers cause less activation of sympathetic nervous system, and are reported to offer beneficial action compared with short-action agents. Furthermore, novel types of calcium channel blockers have been developed that possess the blocking action on other calcium channel subtypes (T- and N-type), and exert agent-specific action apart from their class effects, such as the effects on heart rate and renin/aldosterone release. These additional benefits conferred by T/N-type calcium channel blockade are anticipated to provide organ protective actions in the treatment of hypertension, in addition to the blood pressure-lowering effect of L-type calcium channel blockade. In conclusion, novel calcium channel blockers with sustained activity and T/N-type calcium channel blocking action could provide more beneficial effects than classical blockers, and may expand the clinical utility of these agents.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
17
|
Abstract
Voltage-gated calcium channels are key sources of calcium entry into the cytosol of many excitable tissues. A number of different types of calcium channels have been identified and shown to mediate specialized cellular functions. Because of their fundamental nature, they are important targets for therapeutic intervention in disorders such as hypertension, pain, stroke, and epilepsy. Calcium channel antagonists fall into one of the following three groups: small inorganic ions, large peptide blockers, and small organic molecules. Inorganic ions nonselectively inhibit calcium entry by physical pore occlusion and are of little therapeutic value. Calcium-channel-blocking peptides isolated from various predatory animals such as spiders and cone snails are often highly selective blockers of individual types of calcium channels, either by preventing calcium flux through the pore or by antagonizing channel activation. There are many structure-activity-relation classes of small organic molecules that interact with various sites on the calcium channel protein, with actions ranging from selective high affinity block to relatively nondiscriminatory action on multiple calcium channel isoforms. Detailed interactions with the calcium channel protein are well understood for the dihydropyridine and phenylalkylamine drug classes, whereas we are only beginning to understand the molecular actions of some of the more recently discovered calcium channel blockers. Here, we provide a comprehensive review of pharmacology of high voltage-activated calcium channels.
Collapse
Affiliation(s)
- Clinton J Doering
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary, Canada T2N 4N1
| | | |
Collapse
|
18
|
Adachi-Akahane S. [Molecular and pharmacological bases for the gating regulation of L-type voltage-dependent Ca2+ channels]. Nihon Yakurigaku Zasshi 2004; 123:197-209. [PMID: 14993732 DOI: 10.1254/fpj.123.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The voltage-dependent L-type Ca(2+) channel plays a key role in the spacial and temporal regulation of Ca(2+). In cardiac excitation-contraction coupling, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), triggered by Ca(2+) entry through the nearby L-type Ca(2+) channel, induces the Ca(2+)-dependent inactivation (CDI) of the Ca(2+) channel. We demonstrated that the CICR-dependent CDI of L-type Ca(2+) channels, under control of the privileged cross-signaling between L-type Ca(2+) channels and RyRs, plays important roles for monitoring and tuning the SR Ca(2+) content via changes of AP waveform and the amount of Ca(2+)-influx during AP in ventricular myocytes. L-type Ca(2+) channels are modulated by the binding of Ca(2+) channel antagonists and agonists to the pore-forming alpha(1C) subunit. We identified Phe(1112) and Ser(1115) in the pore-forming IIIS5-S6 linker region of the alpha(1C) subunit as critical determinants of the binding of dihydropyridines (DHP). Interestingly, double mutant Ca(2+) channel (F1112A/S1115A) failed to discriminate between a DHP Ca(2+) channel agonist and antagonist stereoisomers. We proposed that Phe(1112) and Ser(1115) in the pore-forming IIIS5-S6 linker region is required for the stabilization of the Ca(2+) channel in the open state by Ca(2+) channel agonists and further proposed a novel model for the DHP-binding pocket of the alpha(1C) subunit. These integrative studies on the gating regulation of cardiac L-type Ca(2+) channels will provide the molecular basis for the pharmacology of Ca(2+) channel modulators.
Collapse
Affiliation(s)
- Satomi Adachi-Akahane
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| |
Collapse
|
19
|
Hirota K, Hashiba E, Yoshioka H, Kabara S, Matsuki A. Effects of three different L-type Ca2+ entry blockers on airway constriction induced by muscarinic receptor stimulation. Br J Anaesth 2003; 90:671-5. [PMID: 12697597 DOI: 10.1093/bja/aeg118] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The crucial role of L-type Ca(2+) channels in airway smooth muscle contraction suggests that these channels could be an important therapeutic target. There are three separate drug binding sites on this channel: those for dihydropyridines, benzothiazepines and phenyl alkylamines. In this study, we examined the effects of the dihydropyridines nifedipine and nicardipine, the benzothiazepine diltiazem, and the phenylalkylamine verapamil on airway constriction. METHODS Tension of guinea-pig tracheal strips was measured isometrically in vitro with a force displacement transducer. Strips were precontracted with carbachol 10(-7) M with or without 4-aminopyridine 10(-3) M, a voltage-sensitive K(+ )channel blocker. Then, nifedipine 10(-8)-10(-4) M, diltiazem 10(-8)-3 x 10(-4) M or verapamil 10(-8)-3 x 10(-4) M was added cumulatively to the organ bath (n=6 each). The bronchial cross-sectional area of pentobarbital-anaesthetized dogs was assessed using a bronchoscopy method. Bronchoconstriction was elicited with methacholine 0.5 micro g kg(-1) plus 5 micro g kg(-1) min(-1), and then nicardipine 0-1000 micro g kg(-1), diltiazem 0-3000 micro g kg(-1) or verapamil 0-3000 micro g kg(-1) were given i.v. (n=7 each). RESULTS In the in vitro experiments, nifedipine and diltiazem fully reversed carbachol-mediated tracheal contraction with logIC(50) values of 4.76 (SEM 0.22) (mean 17.5 micro M) and 4.60 (0.33) (mean 24.8 micro M), respectively. Although verapamil 10(-6)-10(-4) M reversed the contraction by 87.2%, strip tension re-increased by 18.1% following maximal relaxation with verapamil 3 x 10(-4 )M. This re-increase was almost fully abolished by pretreatment with 4-aminopyridine. In the in vivo experiments, nicardipine and diltiazem dose-dependently reversed methacholine-induced bronchoconstriction, with logID(50) values of 3.22 (0.05) (mean 0.60 mg kg(-1)) and 1.85 (0.32) (mean 14.0 mg kg(-1)), respectively. Verapamil worsened methacholine-induced bronchoconstriction. CONCLUSIONS Although supraclinical doses of dihydropyridines and benzothiazepines can produce airway relaxant effects, these agents are unlikely to be used in the treatment of bronchoconstriction. In addition, verapamil may aggravate airway constriction.
Collapse
Affiliation(s)
- K Hirota
- Department of Anesthesiology, University of Hirosaki, School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hagiwara M, Adachi-Akahane S, Nagao T. High-affinity binding of [3H]DTZ323 to the diltiazem-binding site of L-type Ca2+ channels. Eur J Pharmacol 2003; 466:63-71. [PMID: 12679142 DOI: 10.1016/s0014-2999(03)01547-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
D-cis-[N-Methyl-3H]-3-(acetyloxy)-5-[2-[[2-(3,4-dimethoxyphenyl)ethyl]-methylamino]ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-1,5-benzothiazepine-4(5H)-one ([3H]DTZ323), a novel 1,5-benzothiazepine radioligand, was characterized in a ligand-receptor binding study. Specific binding of [3H]DTZ323 to rabbit skeletal muscle T-tubule membranes was saturable and reversible. Scatchard analysis indicated a single binding site with a K(d) value of 1.4 and 1.8 nM at 25 and 37 degrees C, respectively. DTZ323 and diltiazem derivatives inhibited specific [3H]DTZ323 binding with a rank order of DTZ323>DTZ417 (quaternary ammonium derivative of DTZ323)>diltiazem>L-cis-DTZ323. The affinity of DTZ323 was 51 times higher than that of diltiazem. [3H]DTZ323 binding was also completely inhibited by verapamil and tetrandrine, thus revealing the unique nature of the diltiazem-binding site. Specific [3H]DTZ323 binding to crude guinea pig ventricular membranes was inhibited by diltiazem, DTZ323 and its derivatives with IC(50) values close to those previously reported for the blockade of L-type Ca(2+) channel currents. These results indicate that [3H]DTZ323 is a potent and selective radioligand for the diltiazem-binding site of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Masafumi Hagiwara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Bunkyo, Japan
| | | | | |
Collapse
|
21
|
Hofmann F, Lacinová L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 1999; 139:33-87. [PMID: 10453692 DOI: 10.1007/bfb0033648] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | | | | |
Collapse
|
22
|
O'Connor SE, Grosset A, Janiak P. The pharmacological basis and pathophysiological significance of the heart rate-lowering property of diltiazem. Fundam Clin Pharmacol 1999; 13:145-53. [PMID: 10226758 DOI: 10.1111/j.1472-8206.1999.tb00333.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The calcium channel blocker diltiazem lowers heart rate in man and this property probably contributes to its clinical effectiveness in ischaemic heart disease and hypertension. This review examines the pharmacological basis of diltiazem's heart rate-lowering activity and considers its pathophysiological significance. The points discussed include the potent direct inhibitory effect of diltiazem on the sinus node and the frequency-dependence of this action. In addition, the well-balanced tissue selectivity profile of diltiazem and its ability to modulate cardiac reflex responsiveness contribute by counteracting the potential for reflex tachycardia.
Collapse
Affiliation(s)
- S E O'Connor
- Department of Cardiovascular Research, Synthélabo Recherche, Chilly-Mazarin, France
| | | | | |
Collapse
|
23
|
Hachida M, Kihara S, Nonoyama M, Koyanagi H. Protective effect of JTV519, a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. J Card Surg 1999; 14:187-93. [PMID: 10789707 DOI: 10.1111/j.1540-8191.1999.tb00977.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND JTV519 is know to protect cardiomyocytes from calcium overloading-induced damage. The aim of this study was to investigate the potential protective effect of JTV519 on myocardium subjected to prolonged ischemia and the underlying mechanism of such protection. The effect of JTV519 was also compared with that of diltiazem, a 1,5-benzothiazepine derivative. METHODS Isolated rat hearts were randomly divided into three groups. Control hearts were arrested with histidine-tryptophan-ketoglutarat (HTK) cardioplegic solution alone. In the JTV519 group of hearts, cardiac arrest was achieved with JTV519 (10(-3) mmol/L) in the HTK solution. Hearts in the diltiazem group were arrested with diltiazem (0.5 mmol/L) in the HTK solution. All the hearts were then subjected to 6-hour storage in HTK solution at 4 degrees C. RESULTS After a 30-minute reperfusion, the left ventricular developed pressure in the JTV519 and diltiazem groups were improved significantly compared with the control group. There was a significantly lower left ventricular end-diastolic pressure level and higher recovery of coronary flow in the JTV519 group than in the control group. The postischemic intracellular calcium concentration was attenuated by adding JTV519 or diltiazem to HTK cardioplegia. CONCLUSION As an adjunct to cardioplegia, JTV519 showed a significant protective effect on myocardium undergoing 6 hours of ischemia. The beneficial protective effects of JTV519 are correlated with its ability to inhibit the postischemic rise in intracellular calcium.
Collapse
Affiliation(s)
- M Hachida
- Department of Cardiovascular Surgery, The Heart Institute of Japan, Tokyo Women's Medical College, Shinjuku.
| | | | | | | |
Collapse
|
24
|
Hachida M, Lu H, Kaneko N, Nonoyama M, Koyanagi H. Protective effect of JTV519 on prolonged myocardial preservation. Transplant Proc 1999; 31:1094. [PMID: 10083488 DOI: 10.1016/s0041-1345(98)02104-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M Hachida
- Department of Cardiovascular Surgery, Heart Institute of Japan, Tokyo Women's Medical College, Japan
| | | | | | | | | |
Collapse
|
25
|
Hachida M, Lu H, Kaneko N, Horikawa Y, Ohkado A, Gu H, Zhang XL, Hoshi H, Nonoyama M, Nakanishi T, Koyanagi H. Protective effect of JTV519 (K201), a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. Transplant Proc 1999; 31:996-1000. [PMID: 10083444 DOI: 10.1016/s0041-1345(98)01875-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M Hachida
- Department of Cardiovascular Surgery, Heart Institute of Japan, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hachida M, Kihara S, Nonoyama M, Koyanagi H. Protective Effect of JTV519, A New 1,4-Benzothiazepine Derivative, on Prolonged Myocardial Preservation. Echocardiography 1985. [DOI: 10.1111/j.1540-8175.1985.tb01274.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|