1
|
Zhou P, Deng H, Zeng J, Ran H, Yu C. Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network. Front Med (Lausanne) 2024; 11:1447951. [PMID: 39359920 PMCID: PMC11445052 DOI: 10.3389/fmed.2024.1447951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5-6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haosong Ran
- College of Artificial Intelligent, Chongqing University of Technology, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
2
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
3
|
Abdulzahir A, Klein S, Lor C, Perkins MG, Frelka A, Pearce RA. Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABA A Receptor Point Mutations. Int J Mol Sci 2023; 24:5637. [PMID: 36982709 PMCID: PMC10053577 DOI: 10.3390/ijms24065637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert A. Pearce
- Department of Anesthesiology, University Wisconsin, Madison, WI 53705, USA; (A.A.)
| |
Collapse
|
4
|
Ward-Flanagan R, Lo AS, Clement EA, Dickson CT. A Comparison of Brain-State Dynamics across Common Anesthetic Agents in Male Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23073608. [PMID: 35408973 PMCID: PMC8998244 DOI: 10.3390/ijms23073608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anesthesia is a powerful tool in neuroscientific research, especially in sleep research where it has the experimental advantage of allowing surgical interventions that are ethically problematic in natural sleep. Yet, while it is well documented that different anesthetic agents produce a variety of brain states, and consequently have differential effects on a multitude of neurophysiological factors, these outcomes vary based on dosages, the animal species used, and the pharmacological mechanisms specific to each anesthetic agent. Thus, our aim was to conduct a controlled comparison of spontaneous electrophysiological dynamics at a surgical plane of anesthesia under six common research anesthetics using a ubiquitous animal model, the Sprague-Dawley rat. From this direct comparison, we also evaluated which anesthetic agents may serve as pharmacological proxies for the electrophysiological features and dynamics of unconscious states such as sleep and coma. We found that at a surgical plane, pentobarbital, isoflurane and propofol all produced a continuous pattern of burst-suppression activity, which is a neurophysiological state characteristically observed during coma. In contrast, ketamine-xylazine produced synchronized, slow-oscillatory activity, similar to that observed during slow-wave sleep. Notably, both urethane and chloral hydrate produced the spontaneous, cyclical alternations between forebrain activation (REM-like) and deactivation (non-REM-like) that are similar to those observed during natural sleep. Thus, choice of anesthesia, in conjunction with continuous brain state monitoring, are critical considerations in order to avoid brain-state confounds when conducting neurophysiological experiments.
Collapse
Affiliation(s)
- Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Alto S. Lo
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Elizabeth A. Clement
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-492-7860
| |
Collapse
|
5
|
Chung W, Wang DS, Khodaei S, Pinguelo A, Orser BA. GABA A Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Front Aging Neurosci 2022; 13:802582. [PMID: 35087395 PMCID: PMC8787299 DOI: 10.3389/fnagi.2021.802582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs stimulates the release of soluble factors that increase the cell-surface expression and function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs; however, the receptor targets in astrocytes for anesthetic drugs have not been identified. GABAA receptors, which are the major targets of general anesthetic drugs in neurons, are also expressed in astrocytes, raising the possibility that these drugs act on GABAA receptors in astrocytes to trigger the release of soluble factors. To date, no study has directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic drugs that are frequently used in clinical practice. Thus, the goal of this study was to determine whether the function of GABAA receptors in astrocytes was modulated by the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane. Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male mice. Astrocytes were identified by their morphologic and electrophysiologic properties. Focal puff application of GABA (300 μM) was applied with a Picospritzer system to evoke GABA responses. Currents were studied before and during the application of the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100 μM) or sevoflurane (532 μM). Results: GABA consistently evoked inward currents that were inhibited by picrotoxin. Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7, P < 0.05), respectively. Conclusion: The function of astrocytic GABAA receptors in the hippocampus was increased by etomidate and sevoflurane. Future studies will determine whether these general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of soluble factors that may contribute to PNDs.
Collapse
Affiliation(s)
- Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, Chungnam National University, Daejeon, South Korea
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arsene Pinguelo
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
6
|
Anesthesia-Induced Oxidative Stress: Are There Differences between Intravenous and Inhaled Anesthetics? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8782387. [PMID: 34873432 PMCID: PMC8643269 DOI: 10.1155/2021/8782387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/11/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Agents used for the induction of anesthesia have been shown to either promote or mitigate oxidative stress. A fine balance between the presence of reactive oxygen species (ROS) and antioxidants is crucial for the proper normal functioning of the cell. A basal concentration of ROS is essential for the manifestation of cellular functions, whereas disproportionate levels of ROS cause damage to cellular macromolecules such as DNA, lipids, and proteins, eventually leading to necrosis and apoptosis. Increased ROS has been linked with numerous illnesses, such as cardiovascular, immune system, liver, and kidney, and has been shown to promote cancer and accelerate aging. Knowledge of the various pharmacologic agents that increase or reduce oxidative stress may promote a safer way of inducing anesthesia. Furthermore, surgery itself leads to increased ROS production and ischemia/reperfusion injury. Indeed, increased perioperative oxidative stress has been correlated with increased postoperative complications and prolonged recovery. Anesthesiologists care for patients during the whole spectrum of perioperative care and thus are in a unique position to deliver countermeasures to oxidative stress. Using preferentially an induction agent which reduces oxidative stress might lead to better clinical outcomes and fewer postoperative complications. Propofol has been shown in several studies to reduce oxidative stress, which reduces postoperative complications and leads to a faster recovery, and thus might represent the preferred induction agent in the right clinical setting.
Collapse
|
7
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
8
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
9
|
Fantasia RJ, Nourmahnad A, Halpin E, Forman SA. Substituted Cysteine Modification and Protection with n-Alkyl- Methanethiosulfonate Reagents Yields a Precise Estimate of the Distance between Etomidate and a Residue in Activated GABA Type A Receptors. Mol Pharmacol 2021; 99:426-434. [PMID: 33766924 DOI: 10.1124/molpharm.120.000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
The anesthetic etomidate modulates synaptic α1β2/3γ2 GABAA receptors via binding sites located in transmembrane β+/α- interfaces. Various approaches indicate that etomidate binds near β2/3M286 side chains, including recent cryogenic electron microscopy images in α1β2γ2L receptors under nonphysiologic conditions with ∼3.5-Å resolution. We hypothesized that substituted cysteine modification and protection experiments using variably sized n-alkyl-methanethiosulfonate (MTS) reagents could precisely estimate the distance between bound etomidate and β3M286 side chains in activated functional receptors. Using voltage-clamp electrophysiology in Xenopus oocytes expressing α1β3M286Cγ2L GABAA receptors, we measured functional changes after exposing GABA-activated receptors to n-alkyl-MTS reagents, from methyl-MTS to n-decyl-MTS. Based on previous studies using a large sulfhydryl reagent, we anticipated that cysteine modifications large enough to overlap etomidate sites would cause persistently increased GABA sensitivity and decreased etomidate modulation and that etomidate would hinder these modifications, reducing effects. Based on altered GABA or etomidate sensitivity, ethyl-MTS and larger n-alkyl-MTS reagents modified GABA-activated α1β3M286Cγ2L GABAA receptors. Receptor modification by n-propyl-MTS or larger reagents caused persistently increased GABA sensitivity and decreased etomidate modulation. Receptor-bound etomidate blocked β3M286C modification by n-propyl-MTS, n-butyl-MTS, and n-hexyl-MTS. In contrast, GABA sensitivity was unaltered by receptor exposure to methyl-MTS or ethyl-MTS, and ethyl-MTS modification uniquely increased etomidate modulation. These results reveal a "cut-on" between ethyl-MTS and n-propyl-MTS, from which we infer that -S-(n-propyl) is the smallest β3M286C appendage that overlaps with etomidate sites. Molecular models of the native methionine and -S-ethyl and -S-(n-propyl) modified cysteines suggest that etomidate is located between 1.7 and 3.0 Å from the β3M286 side chain. SIGNIFICANCE STATEMENT: Precise spatial relationships between drugs and their receptor sites are essential for mechanistic understanding and drug development. This study combined electrophysiology, a cysteine substitution, and n-alkyl-methanethiosulfonate modifiers, creating a precise molecular ruler to estimate the distance between a α1β3γ2L GABA type A receptor residue and etomidate bound in the transmembrane β+/α- interface.
Collapse
Affiliation(s)
- Ryan J Fantasia
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
11
|
Borghese CM, Wang HYL, McHardy SF, Messing RO, Trudell JR, Harris RA, Bertaccini EJ. Modulation of α1β3γ2 GABA A receptors expressed in X. laevis oocytes using a propofol photoswitch tethered to the transmembrane helix. Proc Natl Acad Sci U S A 2021; 118:e2008178118. [PMID: 33593898 PMCID: PMC7923644 DOI: 10.1073/pnas.2008178118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tethered photoswitches are molecules with two photo-dependent isomeric forms, each with different actions on their biological targets. They include reactive chemical groups capable of covalently binding to their target. Our aim was to develop a β-subunit-tethered propofol photoswitch (MAP20), as a tool to better study the mechanism of anesthesia through the GABAA α1β3γ2 receptor. We used short spacers between the tether (methanethiosulfonate), the photosensitive moiety (azobenzene), and the ligand (propofol), to allow a precise tethering adjacent to the putative propofol binding site at the β+α- interface of the receptor transmembrane helices (TMs). First, we used molecular modeling to identify possible tethering sites in β3TM3 and α1TM1, and then introduced cysteines in the candidate positions. Two mutant subunits [β3(M283C) and α1(V227C)] showed photomodulation of GABA responses after incubation with MAP20 and illumination with lights at specific wavelengths. The α1β3(M283C)γ2 receptor showed the greatest photomodulation, which decreased as GABA concentration increased. The location of the mutations that produced photomodulation confirmed that the propofol binding site is located in the β+α- interface close to the extracellular side of the transmembrane helices. Tethering the photoswitch to cysteines introduced in the positions homologous to β3M283 in two other subunits (α1W288 and γ2L298) also produced photomodulation, which was not entirely reversible, probably reflecting the different nature of each interface. The results are in agreement with a binding site in the β+α- interface for the anesthetic propofol.
Collapse
Affiliation(s)
- Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712;
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Hua-Yu L Wang
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - James R Trudell
- Department of Anesthesia, Stanford University, Palo Alto, CA 94305
- Beckman Program for Molecular and Genetic Medicine, Stanford University, Palo Alto, CA 94305
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Edward J Bertaccini
- Department of Anesthesia, Stanford University, Palo Alto, CA 94305
- Department of Anesthesia, Palo Alto VA Health Care System, Palo Alto Division, Palo Alto, CA 94304
| |
Collapse
|
12
|
Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int J Mol Sci 2021; 22:1286. [PMID: 33525470 PMCID: PMC7865872 DOI: 10.3390/ijms22031286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impact on cortical measurements.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Claudia Cecchetto
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
| | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
13
|
Chen Y, Ou M, Hao X, Liang P, Liang Y, Wang Y, Li Y, Zhou C. Sub-chronic exposure to morphine alters general anesthetic potency by differentially regulating the expression of neurotransmitter receptor subunits in mice. Brain Res Bull 2021; 169:136-144. [PMID: 33484757 DOI: 10.1016/j.brainresbull.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sub-chronic exposure to morphine can increase the potency of propofol but decrease the potency of ketamine by unknown mechanisms. The present study was designed to investigate the effects of sub-chronic exposure to morphine on the expression of neurotransmitter receptor subunits, which might contribute to the potency changes of ketamine and propofol in vivo. METHODS Sub-chronic exposure to morphine was established by administering subcutaneous injections of morphine for 5 consecutive days. The median effective dose (ED50) of ketamine and/or propofol was measured on day 1, day 3, day 7 and day 15, after the last morphine dosage. Mice in the sham group received an equal volume of normal saline. The expressions of N-methyl D-aspartate (NMDA) receptor and γ-aminobutyric acid A (GABAA) receptor subunits in the forebrain were measured. Knockdown or overexpression of a subunit was used to determine the causality between the change in anesthetic potency and the expression of an identified receptor subunit. RESULTS After sub-chronic exposure of mice to morphine, the expression of NMDA receptor 1 (NR1) was most elevated in the forebrain on day 1 (P < 0.0001 vs. sham). In contrast, the expression of GABAA receptor β3 (GABAARβ3) gradually decreased to its lowest level on day 7 (P = 0.005 vs. sham) in the forebrain. Regression analysis revealed that the expression of NR1 in the forebrain was relevant to the increased ED50 of ketamine (P = 0.0002), while the expression of GABAARβ3 in the forebrain was relevant to the decreased ED50 of propofol (P = 0.0051) after morphine exposure. Knockdown expression of NR1 in the forebrain reversed the elevated ED50 of ketamine after morphine treatment. Overexpression of GABAARβ3 in the forebrain increased the ED50 of propofol to the sham-level after morphine treatment. CONCLUSIONS Sub-chronic exposure to morphine can differentially modulate the expressions of NR1 and GABAARβ3 in mice, which may contribute to the changes in ED50 of ketamine and propofol in vivo.
Collapse
Affiliation(s)
- Yali Chen
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China; The Research Units of West China-Chinese Academy of Medical Sciences (2018RU012), West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xuechao Hao
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Peng Liang
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Liang
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yangyang Wang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yu Li
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, Noviello CM, Walsh RM, Lindahl E, Hibbs RE. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020; 585:303-308. [PMID: 32879488 PMCID: PMC7486282 DOI: 10.1038/s41586-020-2654-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Shaotong Zhu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard M Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
16
|
Bodnar J. The Use of Propofol for Continuous Deep Sedation at the End of Life: A Definitive Guide. J Pain Palliat Care Pharmacother 2019; 33:63-81. [DOI: 10.1080/15360288.2019.1667941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- John Bodnar
- John Bodnar, Penn Hospice at Chester County, West Chester, Pennsylvania, USA
| |
Collapse
|
17
|
Prisco L, Ganau M, Aurangzeb S, Moswela O, Hallett C, Raby S, Fitzgibbon K, Kearns C, Sen A. A pragmatic approach to intravenous anaesthetics and electroencephalographic endpoints for the treatment of refractory and super-refractory status epilepticus in critical care. Seizure 2019; 75:153-164. [PMID: 31623937 DOI: 10.1016/j.seizure.2019.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Status epilepticus is a common neurological emergency, with overall mortality around 20%. Over half of cases are first time presentations of seizures. The pathological process by which spontaneous seizures are generated arises from an imbalance in excitatory and inhibitory neuronal networks, which if unchecked, can result in alterations in intracellular signalling pathways and electrolyte shifts, which bring about changes in the blood brain barrier, neuronal cell death and eventually cerebral atrophy. This narrative review focusses on the treatment of status epilepticus in adults. Anaesthetic agents interrupt neuronal activity by enhancing inhibitory or decreasing excitatory transmission, primarily via GABA and NMDA receptors. Intravenous anaesthetic agents are commonly used as second or third line drugs in the treatment of refractory status epilepticus, but the optimal timing and choice of anaesthetic drug has not yet been established by high quality evidence. Titration of antiepileptic and anaesthetic drugs in critically ill patients presents a particular challenge, due to alterations in drug absorbtion and metabolism as well as changes in drug distrubution, which arise from fluid shifts and altered protein binding. Furthermore, side effects associated with prolonged infusions of anaesthetic drugs can lead to multi-organ dysfunction and a need for critical care support. Electroencelography can identify patterns of burst suppression, which may be a target to guide weaning of intravenous therapy. Continuous elctroencephalography has the potential to directly impact clinical care, but despite its utility, major barriers exist which have limited its widespread use in clinical practice. A flow chart outlining the timing and dosage of anaesthetic agents used at our institution is provided.
Collapse
Affiliation(s)
- Lara Prisco
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Anaesthesia Neuroimaging Research Group, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Mario Ganau
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sidra Aurangzeb
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Olivia Moswela
- Pharmacy Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claire Hallett
- Pharmacy Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Simon Raby
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karina Fitzgibbon
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher Kearns
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
18
|
Germann AL, Pierce SR, Senneff TC, Burbridge AB, Steinbach JH, Akk G. Steady-state activation and modulation of the synaptic-type α1β2γ2L GABA A receptor by combinations of physiological and clinical ligands. Physiol Rep 2019; 7:e14230. [PMID: 31549483 PMCID: PMC6757177 DOI: 10.14814/phy2.14230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022] Open
Abstract
The synaptic α1β2γ2 GABAA receptor is activated phasically by presynaptically released GABA. The receptor is considered to be inactive between synaptic events when exposed to ambient GABA because of its low resting affinity to the transmitter. We tested the hypothesis that a combination of physiological and/or clinical positive allosteric modulators of the GABAA receptor with ambient GABA generates measurable steady-state activity. Recombinant α1β2γ2L GABAA receptors were expressed in Xenopus oocytes and activated by combinations of low concentrations of orthosteric (GABA, taurine) and allosteric (the steroid allopregnanolone, the anesthetic propofol) agonists, in the absence and presence of the inhibitory steroid pregnenolone sulfate. Steady-state activity was analyzed using the three-state cyclic Resting-Active-Desensitized model. We estimate that the steady-state open probability of the synaptic α1β2γ2L GABAA receptor in the presence of ambient GABA (1 μmol/L), taurine (10 μmol/L), and physiological levels of allopregnanolone (0.01 μmol/L) and pregnenolone sulfate (0.1 μmol/L) is 0.008. Coapplication of a clinical concentration of propofol (1 μmol/L) increases the steady-state open probability to 0.03. Comparison of total charge transfer for phasic and tonic activity indicates that steady-state activity can contribute strongly (~20 to >99%) to integrated activity from the synaptic GABAA receptor.
Collapse
Affiliation(s)
- Allison L. Germann
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Spencer R. Pierce
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Thomas C. Senneff
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Ariel B. Burbridge
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Joe Henry Steinbach
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
- Taylor Family Institute for Innovative Psychiatric ResearchWashington University School of MedicineSt. LouisMissouri
| | - Gustav Akk
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
- Taylor Family Institute for Innovative Psychiatric ResearchWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
19
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A. Coherence of Visual-Evoked Gamma Oscillations Is Disrupted by Propofol but Preserved Under Equipotent Doses of Isoflurane. Front Syst Neurosci 2019; 13:19. [PMID: 31139058 PMCID: PMC6519322 DOI: 10.3389/fnsys.2019.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research demonstrates that the underlying state of the brain influences how sensory stimuli are processed. Canonically, the state of the brain has been defined by quantifying the spectral characteristics of spontaneous fluctuations in local field potentials (LFP). Here, we utilized isoflurane and propofol anesthesia to parametrically alter the spectral state of the murine brain. With either drug, we produce slow wave activity, with low anesthetic doses, or burst suppression, with higher doses. We find that while spontaneous LFP oscillations were similar, the average visual-evoked potential (VEP) was always smaller in amplitude and shorter in duration under propofol than under comparable doses of isoflurane. This diminished average VEP results from increased trial-to-trial variability in VEPs under propofol. One feature of single trial VEPs that was consistent in all animals was visual-evoked gamma band oscillation (20-60 Hz). This gamma band oscillation was coherent between trials in the early phase (<250 ms) of the visual evoked potential under isoflurane. Inter trial phase coherence (ITPC) of gamma oscillations was dramatically attenuated in the same propofol anesthetized mice despite similar spontaneous oscillations in the LFP. This suggests that while both anesthetics lead to loss of consciousness (LOC), elicit slow oscillations and burst suppression, only the isoflurane permits phase resetting of gamma oscillations by visual stimuli. These results demonstrate that accurate characterization of a brain state must include both spontaneous as well as stimulus-induced perturbations of brain activity.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connor Brennan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brenna Shortal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Chen ZW, Bracamontes JR, Budelier MM, Germann AL, Shin DJ, Kathiresan K, Qian MX, Manion B, Cheng WWL, Reichert DE, Akk G, Covey DF, Evers AS. Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol 2019; 17:e3000157. [PMID: 30845142 PMCID: PMC6424464 DOI: 10.1371/journal.pbio.3000157] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/19/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry (MS), we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1β3 GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 (labeled residues α1-N408, Y415) and β3 (labeled residue β3-Y442) subunits, adjacent to the extracellular domains (ECDs). An intersubunit site (labeled residues β3-L294 and G308) in the interface between the β3(+) and α1(−) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies of receptors with mutations based on these predictions (α1-V227W, N408A/Y411F, and Q242L) indicate that both the α1 intrasubunit and β3-α1 intersubunit sites are critical for neurosteroid action. Novel neurosteroid analogue photolabeling reagents identify three specific neurosteroid binding sites on α1β3 GABAA receptors, showing that a site between the α and β subunits, as well as a site within the α-subunit, contribute to neurosteroid-mediated enhancement of GABAA currents. Neurosteroids are cholesterol metabolites produced by neurons and glial cells that participate in central nervous system (CNS) development, regulate neuronal excitability, and modulate complex behaviors such as mood. Exogenously administered neurosteroid analogues are effective sedative hypnotics and are being developed as antidepressants and anticonvulsants. Gamma amino-butyric acid Type A (GABAA) receptors, the principal ionotropic inhibitory neurotransmitter receptors in the brain, are the primary functional target of neurosteroids. Understanding the molecular details of neurosteroid interactions with GABAA receptors is critical to understanding their mechanism of action and developing specific and effective therapeutic agents. In the current study, we developed a suite of neurosteroid analogue affinity labeling reagents, which we used to identify three distinct binding sites on GABAA receptors and to determine the orientation of neurosteroid binding in each site. Electrophysiological studies performed on receptors with mutations designed to disrupt the identified binding sites showed that two of the three sites contribute to neurosteroid modulation of GABAA currents. The distinct patterns of neurosteroid affinity, binding orientation, and effect provide the potential for the development of isoform-specific agonists, partial agonists, and antagonists with targeted therapeutic effects.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America.,Taylor Family Institute for Innovative Psychiatric Research, St Louis, Missouri, United States of America
| | - John R Bracamontes
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Melissa M Budelier
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Allison L Germann
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Daniel J Shin
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Krishnan Kathiresan
- Department of Developmental Biology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Ming-Xing Qian
- Department of Developmental Biology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Brad Manion
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - David E Reichert
- Taylor Family Institute for Innovative Psychiatric Research, St Louis, Missouri, United States of America.,Department of Radiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America.,Taylor Family Institute for Innovative Psychiatric Research, St Louis, Missouri, United States of America.,Department of Developmental Biology, Washington University in St Louis, St Louis, Missouri, United States of America
| | - Alex S Evers
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, United States of America.,Taylor Family Institute for Innovative Psychiatric Research, St Louis, Missouri, United States of America.,Department of Developmental Biology, Washington University in St Louis, St Louis, Missouri, United States of America
| |
Collapse
|
22
|
Toossi A, Everaert DG, Uwiera RRE, Hu DS, Robinson K, Gragasin FS, Mushahwar VK. Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. J Neural Eng 2019; 16:036003. [PMID: 30790787 DOI: 10.1088/1741-2552/ab0938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The overall goal of this study was to investigate the effects of various anesthetic protocols on the intraoperative responses to intraspinal microstimulation (ISMS). ISMS is a neuroprosthetic approach that targets the motor networks in the ventral horns of the spinal cord to restore function after spinal cord injury. In preclinical studies, ISMS in the lumbosacral enlargement produced standing and walking by activating networks controlling the hindlimb muscles. ISMS implants are placed surgically under anesthesia, and refinements in placement are made based on the evoked responses. Anesthesia can have a significant effect on the responses evoked by spinal neuroprostheses; therefore, in preparation for clinical testing of ISMS, we compared the evoked responses under a common clinical neurosurgical anesthetic protocol with those evoked under protocols commonly used in preclinical studies. APPROACH Experiments were conducted in seven pigs. An ISMS microelectrode array was implanted in the lumbar enlargement and responses to ISMS were measured under three anesthetic protocols: (1) isoflurane, an agent used pre-clinically and clinically, (2) total intravenous anesthesia (TIVA) with propofol as the main agent commonly used in clinical neurosurgical procedures, (3) TIVA with sodium pentobarbital, an anesthetic agent used mostly preclinically. Responses to ISMS were evaluated based on stimulation thresholds, movement kinematics, and joint torques. Motor evoked potentials (MEP) and plasma concentrations of propofol were also measured. MAIN RESULTS ISMS under propofol anesthesia produced large and functional responses that were not statistically different from those produced under pentobarbital anesthesia. Isoflurane, however, significantly suppressed the ISMS-evoked responses. SIGNIFICANCE This study demonstrated that the choice of anesthesia is critical for intraoperative assessments of motor responses evoked by spinal neuroprostheses. Propofol and pentobarbital anesthesia did not overly suppress the effects of ISMS; therefore, propofol is expected to be a suitable anesthetic agent for clinical intraoperative testing of an intraspinal neuroprosthetic system.
Collapse
Affiliation(s)
- Amirali Toossi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitative Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Szabo A, Nourmahnad A, Halpin E, Forman SA. Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant α1 β3 γ2L GABA A Receptors Indicates Selectivity and Crosstalk among Intersubunit Transmembrane Anesthetic Sites. Mol Pharmacol 2019; 95:408-417. [PMID: 30696720 DOI: 10.1124/mol.118.115048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022] Open
Abstract
Propofol, etomidate, and barbiturate anesthetics are allosteric coagonists at pentameric α1β3γ2 GABAA receptors, modulating channel activation via four biochemically established intersubunit transmembrane pockets. Etomidate selectively occupies the two β +/α - pockets, the barbiturate photolabel R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) occupies homologous α +/β - and γ +/β - pockets, and propofol occupies all four. Functional studies of mutations at M2-15' or M3-36' loci abutting these pockets provide conflicting results regarding their relative contributions to propofol modulation. We electrophysiologically measured GABA-dependent channel activation in α1β3γ2L or receptors with single M2-15' (α1S270I, β3N265M, and γ2S280W) or M3-36' (α1A291W, β3M286W, and γ2S301W) mutations, in the absence and presence of equipotent clinical range concentrations of etomidate, R-mTFD-MPAB, and propofol. Estimated open probabilities were calculated and analyzed using global two-state Monod-Wyman-Changeux models to derive log(d) parameters proportional to anesthetic-induced channel modulating energies (where d is the allosteric anesthetic shift factor). All mutations reduced the log(d) values for anesthetics occupying both abutting and nonabutting pockets. The Δlog(d) values [log(d, mutant) - log(d, wild type)] for M2-15' mutations abutting an anesthetic's biochemically established binding sites were consistently larger than the Δlog(d) values for nonabutting mutations, although this was not true for the M3-36' mutant Δlog(d) values. The sums of the anesthetic-associated Δlog(d) values for sets of M2-15' or M3-36' mutations were all much larger than the wild-type log(d) values. Mutant Δlog(d) values qualitatively reflect anesthetic site occupancy patterns. However, the lack of Δlog(d) additivity undermines quantitative comparisons of distinct site contributions to anesthetic modulation because the mutations impaired both abutting anesthetic binding effects and positive cooperativity between anesthetic binding sites.
Collapse
Affiliation(s)
- Andrea Szabo
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Ishiguro M, Kobayashi S, Matsuyama K, Nagamine T. Effects of propofol on IPSCs in CA1 and dentate gyrus cells of rat hippocampus: Propofol effects on hippocampal cells' IPSCs. Neurosci Res 2018; 143:13-19. [PMID: 29778809 DOI: 10.1016/j.neures.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Abstract
Propofol (2, 6-diisopropylphenol) is one of the most popular intravenous anesthetic agents. In this study, we compared the effects of propofol on inhibitory postsynaptic currents (IPSCs) induced by single and paired electrical stimulations in CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices using the whole cell patch-clamp technique. In the absence of propofol, the amplitude of evoked IPSC by single stimulation and decay time constants were stable in both CA1-PCs and DG-GCs for 30 min. Propofol (1 μM and 10 μM) increased both IPSC amplitude in CA1-PCs, but not in DG-GCs. Further, using a paired pulse stimulation protocol, the ratio of IPSC amplitudes (the second response: A2/the first response: A1) was increased by propofol in CA1, but not in DG-GCs. These results suggest that propofol selectively affects IPSCs in CA1-PCs, which is similar to previously reported actions of benzodiazepines.
Collapse
Affiliation(s)
- Masanori Ishiguro
- Department of Systems Neuroscience, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Suguru Kobayashi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kiyoji Matsuyama
- Department of Occupational Therapy, Sapporo Medical University School of Health Sciences, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takashi Nagamine
- Department of Systems Neuroscience, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
25
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|
26
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
27
|
Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 2018; 147:153-169. [DOI: 10.1016/j.bcp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022]
|
28
|
Interactions of Propofol With Human Voltage-gated Kv1.5 Channel Determined by Docking Simulation and Mutagenesis Analyses. J Cardiovasc Pharmacol 2018; 71:10-18. [DOI: 10.1097/fjc.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Matsuura N. Muscle power during intravenous sedation. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:125-133. [PMID: 29201257 PMCID: PMC5703690 DOI: 10.1016/j.jdsr.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 11/29/2022] Open
Abstract
Intravenous sedation is effective to reduce fear and anxiety in dental treatment. It also has been used for behavior modification technique in dental patients with special needs. Midazolam and propofol are commonly used for intravenous sedation. Although there have been many researches on the effects of midazolam and propofol on vital function and the recovery profile, little is known about muscle power. This review discusses the effects of intravenous sedation using midazolam and propofol on both grip strength and bite force. During light propofol sedation, grip strength increases slightly and bite force increases in a dose-dependent manner. Grip strength decreases while bite force increases during light midazolam sedation, and also during light sedation using a combination of midazolam and propofol. Flumazenil did not antagonise the increase in bite force by midazolam. These results may suggest following possibilities; (1) Activation of peripheral benzodiazepine receptors located within the temporomandibular joint region and masticatory muscles may be the cause of increasing bite force. (2) Propofol limited the long-latency exteroceptive suppression (ES2) period during jaw-opening reflex. Thus, control of masticatory muscle contraction, which is thought to have a negative feedback effect on excessive bite force, may be depressed by propofol.
Collapse
Affiliation(s)
- Nobuyuki Matsuura
- Department of Dental Anesthesiology, Tokyo Dental College, 2-9-18 Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
31
|
Shin DJ, Germann AL, Johnson AD, Forman SA, Steinbach JH, Akk G. Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABA A Receptors. Mol Pharmacol 2017; 93:178-189. [PMID: 29192122 DOI: 10.1124/mol.117.110403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022] Open
Abstract
GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the β(M286) residue at the β"+"-α"-" interface in the transmembrane region and the β(Y143) residue near the β"-" surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used β2α1γ2L and β2α1 concatemeric constructs to determine the functional effects of the β(Y143W) and β(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at β(Y143) and β(M286).
Collapse
Affiliation(s)
- Daniel J Shin
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Allison L Germann
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Alexander D Johnson
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Stuart A Forman
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Joe Henry Steinbach
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Gustav Akk
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| |
Collapse
|
32
|
Taharabaru S, Satomoto M, Tamura T, Adachi YU. Smaller effect of propofol than sevoflurane anesthesia on dopamine turnover induced by methamphetamine and nomifensine in the rat striatum: an in vivo microdialysis study. Exp Anim 2017; 67:147-153. [PMID: 29176298 PMCID: PMC5955746 DOI: 10.1538/expanim.17-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Volatile anesthetics accelerate dopamine turnover in the brain, especially when used in
conjunction with psychotropic agents such as methamphetamine and nomifensine. The effect
of intravenous propofol anesthesia on the extracellular dopamine concentrations is
unclear. The aim of this study was to compare the effect of two anesthetics on the
extracellular concentrations of dopamine and metabolites using an in vivo
microdialysis model. Male Sprague Dawley rats were implanted with a microdialysis probe
into the right striatum. The probe was perfused with modified Ringer’s solution, and the
dialysate was directly injected into a high-performance liquid chromatography system every
20 min. The rats were intraperitoneally administered saline, methamphetamine at 2 mg/kg,
or nomifensine at 10 mg/kg. After treatment, the rats were anesthetized with intravenous
propofol (20 mg/kg followed by 25 or 50 mg/kg/h) or inhalational sevoflurane (2.5%) for 1
h. Propofol showed no effect on the extracellular concentration of dopamine during
anesthesia; however, propofol decreased the dopamine concentration after anesthesia in the
high-dose group. Sevoflurane anesthesia increased the concentration of metabolites.
Systemic administration of methamphetamine and nomifensine increased the extracellular
concentration of dopamine. Sevoflurane anesthesia significantly enhanced the increase in
the dopamine concentration induced by both methamphetamine and nomifensine, whereas
propofol anesthesia showed no effect on the methamphetamine- and nomifensine-induced
dopamine increase during anesthesia. The enhancing effect of psychotropic agent-induced
acceleration of dopamine turnover was smaller for propofol anesthesia than for sevoflurane
anesthesia.
Collapse
Affiliation(s)
- Saori Taharabaru
- Department of Anesthesia, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Maiko Satomoto
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Takahiro Tamura
- Department of Anesthesia, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Yushi U Adachi
- Departemnt of Surgical Intensive Care Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showaku, Nagoya-shi, Aichi 466-8550, Japan
| |
Collapse
|
33
|
Competitive Antagonism of Anesthetic Action at the γ-Aminobutyric Acid Type A Receptor by a Novel Etomidate Analog with Low Intrinsic Efficacy. Anesthesiology 2017; 127:824-837. [PMID: 28857763 DOI: 10.1097/aln.0000000000001840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The authors characterized the γ-aminobutyric acid type A receptor pharmacology of the novel etomidate analog naphthalene-etomidate, a potential lead compound for the development of anesthetic-selective competitive antagonists. METHODS The positive modulatory potencies and efficacies of etomidate and naphthalene-etomidate were defined in oocyte-expressed α1β3γ2L γ-aminobutyric acid type A receptors using voltage clamp electrophysiology. Using the same technique, the ability of naphthalene-etomidate to reduce currents evoked by γ-aminobutyric acid alone or γ-aminobutyric acid potentiated by etomidate, propofol, pentobarbital, and diazepam was quantified. The binding affinity of naphthalene-etomidate to the transmembrane anesthetic binding sites of the γ-aminobutyric acid type A receptor was determined from its ability to inhibit receptor photoaffinity labeling by the site-selective photolabels [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS In contrast to etomidate, naphthalene-etomidate only weakly potentiated γ-aminobutyric acid-evoked currents and induced little direct activation even at a near-saturating aqueous concentration. It inhibited labeling of γ-aminobutyric acid type A receptors by [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid with similar half-maximal inhibitory concentrations of 48 μM (95% CI, 28 to 81 μM) and 33 μM (95% CI, 20 to 54 μM). It also reduced the positive modulatory actions of anesthetics (propofol > etomidate ~ pentobarbital) but not those of γ-aminobutyric acid or diazepam. At 300 μM, naphthalene-etomidate increased the half-maximal potentiating propofol concentration from 6.0 μM (95% CI, 4.4 to 8.0 μM) to 36 μM (95% CI, 17 to 78 μM) without affecting the maximal response obtained at high propofol concentrations. CONCLUSIONS Naphthalene-etomidate is a very low-efficacy etomidate analog that exhibits the pharmacology of an anesthetic competitive antagonist at the γ-aminobutyric acid type A receptor.
Collapse
|
34
|
Tryptophan and Cysteine Mutations in M1 Helices of α1β3γ2L γ-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site. Anesthesiology 2017; 125:1144-1158. [PMID: 27753644 DOI: 10.1097/aln.0000000000001390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND γ-Aminobutyric acid type A (GABAA) receptors mediate important effects of intravenous general anesthetics. Photolabel derivatives of etomidate, propofol, barbiturates, and a neurosteroid get incorporated in GABAA receptor transmembrane helices M1 and M3 adjacent to intersubunit pockets. However, photolabels have not been consistently targeted at heteromeric αβγ receptors and do not form adducts with all contact residues. Complementary approaches may further define anesthetic sites in typical GABAA receptors. METHODS Two mutation-based strategies, substituted tryptophan sensitivity and substituted cysteine modification-protection, combined with voltage-clamp electrophysiology in Xenopus oocytes, were used to evaluate interactions between four intravenous anesthetics and six amino acids in M1 helices of α1, β3, and γ2L GABAA receptor subunits: two photolabeled residues, α1M236 and β3M227, and their homologs. RESULTS Tryptophan substitutions at α1M236 and positional homologs β3L231 and γ2L246 all caused spontaneous channel gating and reduced γ-aminobutyric acid EC50. Substituted cysteine modification experiments indicated etomidate protection at α1L232C and α1M236C, R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid protection at β3M227C and β3L231C, and propofol protection at α1M236C and β3M227C. No alphaxalone protection was evident at the residues the authors explored, and none of the tested anesthetics protected γ2I242C or γ2L246C. CONCLUSIONS All five intersubunit transmembrane pockets of GABAA receptors display similar allosteric linkage to ion channel gating. Substituted cysteine modification and protection results were fully concordant with anesthetic photolabeling at α1M236 and β3M227 and revealed overlapping noncongruent sites for etomidate and propofol in β-α interfaces and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid and propofol in α-β and γ-β interfaces. The authors' results identify the α-γ transmembrane interface as a potentially unique orphan modulator site.
Collapse
|
35
|
Bodnar J. A Review of Agents for Palliative Sedation/Continuous Deep Sedation: Pharmacology and Practical Applications. J Pain Palliat Care Pharmacother 2017; 31:16-37. [PMID: 28287357 DOI: 10.1080/15360288.2017.1279502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous deep sedation at the end of life is a specific form of palliative sedation requiring a care plan that essentially places and maintains the patient in an unresponsive state because their symptoms are refractory to any other interventions. Because this application is uncommon, many providers may lack practical experience in this specialized area and resources they can access are outdated, nonspecific, and/or not comprehensive. The purpose of this review is to provide an evidence- and experience-based reference that specifically addresses those medications and regimens and their practical applications for this very narrow, but vital, aspect of hospice care. Patient goals in a hospital and hospice environments are different, so the manner in which widely used sedatives are dosed and applied can differ greatly as well. Parameters applied in end-of-life care that are based on experience and a thorough understanding of the pharmacology of those medications will differ from those applied in an intensive care unit or other medical environments. By recognizing these different goals and applying well-founded regimens geared specifically for end-of-life sedation, we can address our patients' symptoms in a more timely and efficacious manner.
Collapse
|
36
|
Eaton MM, Germann AL, Arora R, Cao LQ, Gao X, Shin DJ, Wu A, Chiara DC, Cohen JB, Steinbach JH, Evers AS, Akk G. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol. Curr Neuropharmacol 2017; 14:772-80. [PMID: 26830963 PMCID: PMC5050400 DOI: 10.2174/1570159x14666160202121319] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/08/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Gustav Akk
- Department of Anesthesiology, Washington University, Campus Box 8054, 660 South Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
37
|
Chua HC, Chebib M. GABA A Receptors and the Diversity in their Structure and Pharmacology. ADVANCES IN PHARMACOLOGY 2017; 79:1-34. [DOI: 10.1016/bs.apha.2017.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Cerasoli I, Nannarone S, Schauvliege S, Duchateau L, Bufalari A. The effects of intravenous lidocaine before propofol induction in premedicated dogs. J Small Anim Pract 2016; 57:435-40. [DOI: 10.1111/jsap.12502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 11/27/2022]
Affiliation(s)
- I. Cerasoli
- Department of Surgery and Anaesthesia of Domestic Animals, Faculty of Veterinary MedicineGhent University Merelbeke 9820 Belgium
| | - S. Nannarone
- Dipartimento di Medicina Veterinaria, Centro dello Studio del Cavallo Sportivo Veterinary Teaching HospitalUniversità degli Studi di Perugia Perugia 06126 Italy
| | - S. Schauvliege
- Department of Surgery and Anaesthesia of Domestic Animals, Faculty of Veterinary MedicineGhent University Merelbeke 9820 Belgium
| | - L. Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary MedicineGhent University Merelbeke 9820 Belgium
| | - A. Bufalari
- Department of Surgery and Anaesthesia of Domestic Animals, Faculty of Veterinary MedicineGhent University Merelbeke 9820 Belgium
- Dipartimento di Medicina Veterinaria, Centro dello Studio del Cavallo Sportivo Veterinary Teaching HospitalUniversità degli Studi di Perugia Perugia 06126 Italy
| |
Collapse
|
39
|
Kuhlmann L, Freestone DR, Manton JH, Heyse B, Vereecke HE, Lipping T, Struys MM, Liley DT. Neural mass model-based tracking of anesthetic brain states. Neuroimage 2016; 133:438-456. [DOI: 10.1016/j.neuroimage.2016.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023] Open
|
40
|
Maldifassi MC, Baur R, Pierce D, Nourmahnad A, Forman SA, Sigel E. Novel positive allosteric modulators of GABAA receptors with anesthetic activity. Sci Rep 2016; 6:25943. [PMID: 27198062 PMCID: PMC4873749 DOI: 10.1038/srep25943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics.
Collapse
Affiliation(s)
- Maria C Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - David Pierce
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Anahita Nourmahnad
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
41
|
Hoffmann KM, Beltrán L, Ziemba PM, Hatt H, Gisselmann G. Potentiating effect of glabridin from Glycyrrhiza glabra on GABA A receptors. Biochem Biophys Rep 2016; 6:197-202. [PMID: 29214227 PMCID: PMC5689168 DOI: 10.1016/j.bbrep.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 10/25/2022] Open
Abstract
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1-3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.
Collapse
Affiliation(s)
- Katrin M Hoffmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Leopoldo Beltrán
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul M Ziemba
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
42
|
Chowdhury L, Croft CJ, Goel S, Zaman N, Tai ACS, Walch EM, Smith K, Page A, Shea KM, Hall CD, Jishkariani D, Pillai GG, Hall AC. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents. J Pharmacol Exp Ther 2016; 357:570-9. [PMID: 27029583 DOI: 10.1124/jpet.115.228890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices.
Collapse
Affiliation(s)
- Luvana Chowdhury
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Celine J Croft
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Shikha Goel
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Naina Zaman
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Angela C-S Tai
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Erin M Walch
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Kelly Smith
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Alexandra Page
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Kevin M Shea
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - C Dennis Hall
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - D Jishkariani
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Girinath G Pillai
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Adam C Hall
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| |
Collapse
|
43
|
Udelsmann A, Saccomani P, Dreyer E, da Costa ALC. Treatment of status migrainosus by general anesthesia: a case report. Braz J Anesthesiol 2015; 65:407-10. [PMID: 26323741 DOI: 10.1016/j.bjane.2013.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/09/2013] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The status migrainosus is a complication of migraine characterized by severe headache for more than 72h that did not respond to treatment, with risk of stroke and suicide. Researches on treatment are directed to drugs that stimulate GABA receptors; propofol and isoflurane act on sub-GABAa receptors and theoretically could be interesting. The first has been the subject of research in severe migraine. Opioids are employed in pain, and its use in chronic headache is debatable, but these agents are employed in acute cases. The goal is to present a case of refractory status migrainosus in that we decided to break the pain cycle by general anesthesia. CASE REPORT Female patient, aged 50 years, with status migrainosus, in the last five days with visits to the emergency department, medicated parenterally with various agents without result. Without comorbidities, dehydrated, described her pain as "well over 10" in Visual Numeric Scale (VNS). After consulting the literature, and given the apparent severity of the condition, we opted for a general anesthesia: induction with fentanyl, propofol, and vecuronium and maintenance with isoflurane and propofol for two hours. Following the treatment, in the postanesthetic recuperation (PAR), the patient related her pain as VNS 3, and was released after five hours with VNS 2. Subsequently, her preventive treatment was resumed. CONCLUSION Status migrainosus is a rare disabling complication and anesthetics have been the subject of research in its treatment; the option for general anesthesia with agents that stimulate GABA receptors, propofol and isoflurane, in association with fentanyl, proved effective and should encourage new research.
Collapse
Affiliation(s)
- Artur Udelsmann
- Departamento de Anestesiologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Priscila Saccomani
- Serviço de Anestesia, Hospital das Clínicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Elisabeth Dreyer
- Hospital das Clínicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
44
|
Kojima A, Ito Y, Ding WG, Kitagawa H, Matsuura H. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region. Eur J Pharmacol 2015; 764:622-632. [PMID: 26256861 DOI: 10.1016/j.ejphar.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
The intravenous anesthetic propofol affects the function of a diversity of ligand-gated and voltage-gated ion channels. However, there is little information as to whether propofol directly interacts with voltage-gated ion channel proteins to modulate their functions. The Kv1.5 channel is activated by membrane depolarization during action potentials and contributes to atrial repolarization in the human heart. This study was undertaken to examine the effect of propofol on voltage-gated human Kv1.5 (hKv1.5) channel and to elucidate the underlying molecular determinants. Site-directed mutagenesis was carried out through six amino acids that reside within the pore domain of hKv1.5 channel. Whole-cell patch-clamp technique was used to record membrane currents through the wild type and mutant hKv1.5 channels heterologously expressed in Chinese hamster ovary cells. Propofol (≥5 μM) reversibly and concentration-dependently (IC50 of 49.3±9.4 μM; n=6) blocked hKv1.5 current. Propofol-induced block of hKv1.5 current gradually progressed during depolarizing voltage-clamp steps and was enhanced by higher frequency of activation, consistent with a preferential block of the channels in their open state. The degree of current block by propofol was significantly attenuated in T480A, I502A, I508A and V516A, but not in H463C and L510A mutants of hKv1.5 channel. Thus, several amino acids near the selectivity filter (Thr480) or within S6 (Ile502, Ile508 and Val516) are found to be critically involved in the blocking action of propofol. This study provides the first evidence suggesting that direct interaction with specific amino acids underlies the blocking action of propofol on voltage-gated hKv1.5 channel.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Yuki Ito
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
45
|
Wilson LD, Verrall RE. A volumetric and NMR study of cyclodextrin-inhalation anesthetic complexes in aqueous solutions. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apparent molar volumes (Vϕ) of two anesthetics (halothane and forane) have been determined in water and in binary solvent (H2O + cyclodextrin) systems at 25 °C. The results show that the magnitudes of Vϕ are greater in ternary solutions than in the binary aqueous systems. The apparent molar volumes at infinite dilution (Vϕo) of halothane in ternary solutions are observed to depend on the following factors: (i) the magnitude of the binding constant (K1:1), (ii) the lipophilicity of the anesthetic, (iii) the mole ratio of the host/halothane system, and (iv) the topology (i.e., facial vs. inclusion) of the host/guest complex. The volumetric properties of the ternary systems have been analyzed in terms of the complexed and uncomplexed species by application of Young’s rule. The formation of 1:1 CD–halothane complexes was successfully modeled using a two-state model. The binding affinity of the various cyclodextrins toward halothane is listed in descending order as follows: DM-β-CD > HP-β-CD > β-CD > α-CD > TM-β-CD.
Collapse
Affiliation(s)
- Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156), Saskatoon, SK S7N 5C9, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156), Saskatoon, SK S7N 5C9, Canada
| | - Ronald E. Verrall
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156), Saskatoon, SK S7N 5C9, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156), Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
46
|
Naito A, Muchhala KH, Trang J, Asatryan L, Trudell JR, Homanics GE, Alkana RL, Davies DL. Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol. Neuroscience 2015; 297:68-77. [PMID: 25827497 DOI: 10.1016/j.neuroscience.2015.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
We recently developed ultra-sensitive ethanol receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild-type (WT) receptors. The current study investigated: (1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and (2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on α1 GlyRs within the extracellular Loop 2 region.
Collapse
Affiliation(s)
- A Naito
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - K H Muchhala
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - J Trang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - L Asatryan
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - J R Trudell
- Department of Anesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford University Medical Center, Stanford, CA 94305, USA
| | - G E Homanics
- Department of Anesthesiology, University of Pittsburgh, 6060 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, 6060 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA
| | - R L Alkana
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - D L Davies
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
47
|
Bryson EO. The Abuse of Agents Used to Induce or Maintain General Anesthesia: Intravenous Hypnotics and the Halogenated Hydrocarbons. Subst Abus 2015. [DOI: 10.1007/978-1-4939-1951-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Babateen O, Jin Z, Bhandage A, Korol SV, Westermark B, Forsberg Nilsson K, Uhrbom L, Smits A, Birnir B. Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. Eur J Pharmacol 2014; 748:101-7. [PMID: 25510230 DOI: 10.1016/j.ejphar.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
GABAA receptors are pentameric chloride ion channels that are opened by GABA. We have screened a cell line derived from human glioblastoma, U3047MG, for expression of GABAA receptor subunit isoforms and formation of functional ion channels. We identified GABAA receptors subunit α2, α3, α5, β1, β2, β3, δ, γ3, π, and θ mRNAs in the U3047MG cell line. Whole-cell GABA-activated currents were recorded and the half-maximal concentration (EC₅₀) for the GABA-activated current was 36 μM. The currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and enhanced by the benzodiazepine diazepam (1 μM) and the general anesthetics etomidate and propofol (50 μM). In line with the expressed GABAA receptors containing at least the α3β3θ subunits, the receptors were highly sensitive to etomidate (EC₅₀=55 nM). Immunocytochemistry identified expression of the α3 and β3 subunit proteins. Our results show that the GABAA receptors in the glial cell line are functional and are modulated by classical GABAA receptor drugs. We propose that the U3047MG cell line may be used as a model system to study GABAA receptors function and pharmacology in glial cells.
Collapse
Affiliation(s)
- Omar Babateen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - AmolK Bhandage
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg Nilsson
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
49
|
de la Peña JB, Ahsan HM, dela Peña IJ, Park HB, Kim HJ, Sohn A, Kim YT, Cheong JH. Propofol pretreatment induced place preference and self-administration of the tiletamine-zolazepam combination: implication on drug of abuse substitution. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 40:321-6. [DOI: 10.3109/00952990.2014.920850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hafiz Muhammad Ahsan
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| | - Irene Joy dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| | - Hyun Bin Park
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| | - Aeree Sohn
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| | - Yun Tai Kim
- Department of Applied Bioscience, College of Life Science
Gyeongghi-doKorea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University
Nowon-gu, Seoul
| |
Collapse
|
50
|
Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site. J Neurosci 2014; 34:2155-9. [PMID: 24501356 DOI: 10.1523/jneurosci.4307-13.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas propofol inhibition of cation-selective pLGICs occurs via a binding site contained within helices M1-M4 of individual subunits. We considered this idea by testing propofol modulation of homomeric human glycine receptors (GlyRs) and nematode glutamate-gated chloride channels (GluCls) recombinantly expressed in Xenopus laevis oocytes with electrophysiology. The Haemonchus contortus AVR-14B GluCl was inhibited by propofol with an IC50 value of 252 ± 48 μM, providing the first example of propofol inhibition of an anion-selective pLGIC. Remarkably, inhibition was converted to enhancement by a single I18'S substitution in the channel-forming M2 helix (EC50 = 979 ± 88 μM). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when the equivalent positions were examined in GlyRs, the M2 S18'I substitution significantly altered the maximum level of enhancement by propofol, and the M3 A288I substitution abolished propofol enhancement. These data are not consistent with separate binding sites for the opposing effects of propofol. Instead, these data suggest that propofol enhancement and inhibition are mediated by binding to a single site in anion-selective pLGICs, and the modulatory effect on channel gating depends on the M2 18' residue.
Collapse
|