1
|
Gupta H, Pandey A, Agarwal R, Mehra H, Gupta S, Gupta N, Kumar A. Application of calcium sulfate as graft material in implantology and maxillofacial procedures: A review of literature. Natl J Maxillofac Surg 2024; 15:183-187. [PMID: 39234140 PMCID: PMC11371305 DOI: 10.4103/njms.njms_33_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 09/06/2024] Open
Abstract
Calcium sulphate (plaster of Paris) has been used since 1892 to fill bone defects and as a good bone graft substitute. Calcium sulphate is an osteoconductive, inorganic substance. Following 75 years, many other authors reported variable and a better result in grafting of bone defects and in several cases of immediate and delayed dental implants for good osseointegrations, with no complications attributed to the calcium sulphate. Early results were variable, because of its conflicting crystalline structure, purity, and quality of the calcium sulphate. Apart from this, calcium sulphate also shows predictable resorption rate in vivo, presence of minimal trace elements and extremely uniform crystalline structure. Calcium sulphate is a bio-inert material and get resorbed over a period of weeks and fibrovascular tissue takes its place which eventually allows neovascularization and bone formation within the area. Use During the conventional surgical treatment addition of calcium sulphate as a bone graft of in case of placement of dental implants and pathological bony defects it improves the clinical outcome. Calcium sulphate also act as a barrier and filling material for the treatment of "through and through" bony lesions. Use of calcium sulphate as a bone graft substitute avoids the complications and morbidity associated with autograft like infection, second surgery.
Collapse
Affiliation(s)
- Hemant Gupta
- Department of Oral and Maxillofacial Surgery, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
| | - Ashish Pandey
- Department of Oral and Maxillofacial Surgery, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
| | - Rashmi Agarwal
- Department of Oral and Maxillofacial Surgery, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
| | - Hemant Mehra
- Department of Oral and Maxillofacial Surgery, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
| | - Swati Gupta
- Prosthodontic and Crown and Bridge, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
| | - Neena Gupta
- Department of Public Health, Shalom Institute of Health Sciences, Shuats Prayagraj, Uttar Pradesh, India
| | - Abhigyan Kumar
- Department of Dentistry (Oral and Maxillofacial Surgery), Kalyan Singh Super Speciality Cancer Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Nikou T, Liaki V, Stathopoulos P, Sklirou AD, Tsakiri EN, Jakschitz T, Bonn G, Trougakos IP, Halabalaki M, Skaltsounis LA. Comparison survey of EVOO polyphenols and exploration of healthy aging-promoting properties of oleocanthal and oleacein. Food Chem Toxicol 2019; 125:403-412. [PMID: 30677444 DOI: 10.1016/j.fct.2019.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
Olive oil is widely accepted as a superior edible oil. Great attention has been given lately to olive oil polyphenols which are linked to significant health beneficial effects. Towards a survey of Greek olive oil focusing on polyphenols, representative extra virgin olive oils (EVOOs) from the main producing areas of the country and the same harvesting period have been collected and analyzed. Significant differences and interesting correlations have been identified connecting certain polyphenols namely hydroxytyrosol, tyrosol, oleacein and oleocanthal with specific parameters e.g. geographical origin, production procedure and cultivation practice. Selected EVOOs polyphenol extracts, with different oleacein and oleocanthal levels, as well as isolated oleacein and oleocanthal were bio-evaluated in mammalian cells and as a dietary supplement in the Drosophila in vivo model. We found that oleocanthal and oleacein activated healthy aging-promoting cytoprotective pathways and suppressed oxidative stress in both mammalian cells and in flies.
Collapse
Affiliation(s)
- Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Vasiliki Liaki
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Panagiotis Stathopoulos
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Thomas Jakschitz
- Austrian Drug Screening Institute - ADSI, University of Innsbruck, Innrain 66, A-6020, Innsbruck, Austria
| | - Günther Bonn
- Austrian Drug Screening Institute - ADSI, University of Innsbruck, Innrain 66, A-6020, Innsbruck, Austria; Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece.
| |
Collapse
|
3
|
Huang J, Wang H. Hsp83/Hsp90 Physically Associates with Insulin Receptor to Promote Neural Stem Cell Reactivation. Stem Cell Reports 2018; 11:883-896. [PMID: 30245208 PMCID: PMC6178561 DOI: 10.1016/j.stemcr.2018.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) have the ability to exit quiescence and reactivate in response to physiological stimuli. In the Drosophila brain, insulin receptor (InR)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway triggers NSC reactivation. However, intrinsic mechanisms that control the InR/PI3K/Akt pathway during reactivation remain unknown. Here, we have identified heat shock protein 83 (Hsp83/Hsp90), a molecular chaperone, as an intrinsic regulator of NSC reactivation. Hsp83 is both necessary and sufficient for NSC reactivation by promoting the activation of InR pathway in larval brains in the presence of dietary amino acids. Both Hsp83 and its co-chaperone Cdc37 physically associate with InR. Finally, reactivation defects observed in brains depleted of hsp83 were rescued by over-activation of the InR/PI3K/Akt pathway, suggesting that Hsp83 functions upstream of the InR/PI3K/Akt pathway during NSC reactivation. Given the conservation of Hsp83 and the InR pathway, our finding may provide insights into the molecular mechanisms underlying mammalian NSC reactivation. Hsp83/Hsp90 and its co-chaperone Cdc37 are required for NSC reactivation Hsp83 overexpression results in premature NSC reactivation on fed condition Hsp83 and Cdc37 physically associate with InR Hsp83 and Cdc37 are required for the activation of InR pathway in NSCs
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
4
|
Lee D, Kraus A, Prins D, Groenendyk J, Aubry I, Liu WX, Li HD, Julien O, Touret N, Sykes BD, Tremblay ML, Michalak M. UBC9-dependent association between calnexin and protein tyrosine phosphatase 1B (PTP1B) at the endoplasmic reticulum. J Biol Chem 2015; 290:5725-38. [PMID: 25586181 DOI: 10.1074/jbc.m114.635474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.
Collapse
Affiliation(s)
- Dukgyu Lee
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Allison Kraus
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Daniel Prins
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Jody Groenendyk
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Isabelle Aubry
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Wen-Xin Liu
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Hao-Dong Li
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Olivier Julien
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Nicolas Touret
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Brian D Sykes
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Michel L Tremblay
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marek Michalak
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
5
|
Duerfeldt AS, Peterson LB, Maynard JC, Ng CL, Eletto D, Ostrovsky O, Shinogle HE, Moore DS, Argon Y, Nicchitta CV, Blagg BSJ. Development of a Grp94 inhibitor. J Am Chem Soc 2012; 134:9796-804. [PMID: 22642269 DOI: 10.1021/ja303477g] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock protein 90 (Hsp90) represents a promising therapeutic target for the treatment of cancer and other diseases. Unfortunately, results from clinical trials have been disappointing as off-target effects and toxicities have been observed. These detriments may be a consequence of pan-Hsp90 inhibition, as all clinically evaluated Hsp90 inhibitors simultaneously disrupt all four human Hsp90 isoforms. Using a structure-based approach, we designed an inhibitor of Grp94, the ER-resident Hsp90. The effect manifested by compound 2 on several Grp94 and Hsp90α/β (cytosolic isoforms) clients were investigated. Compound 2 prevented intracellular trafficking of the Toll receptor, inhibited the secretion of IGF-II, affected the conformation of Grp94, and suppressed Drosophila larval growth, all Grp94-dependent processes. In contrast, compound 2 had no effect on cell viability or cytosolic Hsp90α/β client proteins at similar concentrations. The design, synthesis, and evaluation of 2 are described herein.
Collapse
Affiliation(s)
- Adam S Duerfeldt
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol 2011; 162:328-45. [PMID: 20942857 DOI: 10.1111/j.1476-5381.2010.01064.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytosolic heat shock proteins have received significant attention as emerging therapeutic targets. Much of this excitement has been triggered by the discovery that HSP90 plays a central role in the maintenance and stability of multifarious oncogenic membrane receptors and their resultant tyrosine kinase activity. Numerous studies have dealt with the effects of small molecules on chaperone- and stress-related pathways of the endoplasmic reticulum (ER). However, unlike cytosolic chaperones, relatively little emphasis has been placed upon translational avenues towards targeting of the ER for inhibition of folding/secretion of disease-promoting proteins. Here, we summarise existing small molecule inhibitors and potential future targets of ER chaperone-mediated inhibition. Client proteins of translational relevance in disease treatment are outlined, alongside putative future disease treatment modalities based on ER-centric targeted therapies. Particular attention is paid to cancer and autoimmune disorders via the effects of the GRP94 inhibitor geldanamycin and its population of client proteins, overloading of the unfolded protein response, and inhibition of members of the IL-12 family of cytokines by celecoxib and non-coxib analogues.
Collapse
|
7
|
Abstract
SummaryInsulin plays an important role in maintaining the whole organism’s homeostasis. The presence of insulin receptors in all vertebrates and invertebrates cells reflects the diversity of regulatory processes in which this hormone is involved. Furthermore, many different factors may influence the level of insulin receptor expression. These factors include e.g. the sole insulin or stage of development. Mutations in the receptor may lead to the development of insulin resistance. These mutations differ in the level of severity and are frequently associated with diabetes mellitus, hypertension, cardiovascular disorders, heart failure, metabolic syndrome and infertility in women. More than 50 mutations in insulin receptor gene have already been characterized. These mutations are associated with rare forms of insulin resistance like leprechaunism, insulin resistance type A or Rabson-Mendenhall syndrome. Molecular analysis of insulin receptor gene may lead to a better understanding of molecular mechanisms underlying various types of insulin resistance and help to develop more efficient treatment.
Collapse
|
8
|
Distinct regulation of insulin receptor substrate-1 and -2 by 90-kDa heat-shock protein in adrenal chromaffin cells. Neurochem Int 2010; 56:42-50. [DOI: 10.1016/j.neuint.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
|
9
|
Calreticulin regulates insulin receptor expression and its downstream PI3 Kinase/Akt signalling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2344-51. [DOI: 10.1016/j.bbamcr.2008.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 01/09/2023]
|
10
|
Yokoo H, Nemoto T, Yanagita T, Satoh S, Yoshikawa N, Maruta T, Wada A. Glycogen synthase kinase-3beta: homologous regulation of cell surface insulin receptor level via controlling insulin receptor mRNA stability in adrenal chromaffin cells. J Neurochem 2007; 103:1883-96. [PMID: 17883398 DOI: 10.1111/j.1471-4159.2007.04929.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cultured bovine adrenal chromaffin cells, 48 h-treatment with 20 mmol/L LiCl, 1 mmol/L valproic acid, 30 micromol/L SB216763, 30 micromol/L SB415286, or 100 nmol/L insulin, a condition that inhibits constitutive active glycogen synthase kinase-3 (GSK-3), decreased cell surface (125)I-insulin binding capacity by approximately 39%, without altering the K(d) value; LiCl, SB216763 or insulin decreased insulin receptor (IR) and IR precursor levels, attenuating insulin-induced Tyr-autophosphorylation of IR. LiCl increased inhibitory Ser9-phosphorylation of GSK-3beta at 6 h, decreasing (125)I-insulin binding at 24 h. SB216763-induced (125)I-insulin binding reduction (IC(50) = 3 micromol/L) was preceded by beta-catenin level increase by SB216763 (EC(50) = 11 micromol/L), a hallmark of GSK-3 inhibition. Insulin-induced rapid (> 1 min) Ser9-phosphorylation of GSK-3beta (Nemoto et al. 2006) was followed by approximately 48% decrease of IR level. LiCl did not stimulate endocytosis, nor proteolysis of IR. LiCl destabilized IR mRNA (t(1/2) = 9.3 vs. 6.5 h), decreasing IR mRNA level by approximately 47%, without altering IR gene transcription. Decreases of (125)I-insulin binding and IR level, as well as increased Ser9-phosphorylation of GSK-3beta were restored to the control levels by washing the test compound-treated cells. Thus, GSK-3beta regulates IR level via controlling IR mRNA stability.
Collapse
Affiliation(s)
- Hiroki Yokoo
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Sugano T, Yanagita T, Yokoo H, Satoh S, Kobayashi H, Wada A. Enhancement of insulin-induced PI3K/Akt/GSK-3beta and ERK signaling by neuronal nicotinic receptor/PKC-alpha/ERK pathway: up-regulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells. J Neurochem 2006; 98:20-33. [PMID: 16805793 DOI: 10.1111/j.1471-4159.2006.03846.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In cultured bovine adrenal chromaffin cells treated with nicotine (10 microm for 24 h), phosphorylation of Akt, glycogen synthase kinase-3beta (GSK-3beta) and extracellular signal-regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by approximately 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)- and concentration (EC(50) 3.6 and 13 microm)-dependent increases in insulin receptor substrate (IRS)-1 and IRS-2 levels by approximately 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin-induced tyrosine phosphorylation of IRS-1/IRS-2 and recruitment of phosphoinositide 3-kinase (PI3K) to IRS-1/IRS-2 were augmented by approximately 63%. The increase in IRS-1/IRS-2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetrakis-acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS-1 and IRS-2 mRNA levels by approximately 57 and approximately 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC-alpha, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC-alpha by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up-regulated expression of IRS-1/IRS-2 via Ca(2+)-dependent sequential activation of cPKC-alpha and ERK, and enhanced insulin-induced PI3K/Akt/GSK-3beta and ERK signaling pathways.
Collapse
Affiliation(s)
- Takashi Sugano
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Højlund K, Wojtaszewski JFP, Birk J, Hansen BF, Vestergaard H, Beck-Nielsen H. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene. Diabetologia 2006; 49:1827-37. [PMID: 16761106 DOI: 10.1007/s00125-006-0312-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 04/24/2006] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable, and therefore the cellular mechanisms underlying insulin resistance in Arg1174Gln carriers remain to be clarified. SUBJECTS, MATERIALS AND METHODS We studied glucose metabolism and insulin signalling in skeletal muscle from six Arg1174Gln carriers and matched control subjects during a euglycaemic-hyperinsulinaemic clamp. RESULTS Impaired clearance of exogenous insulin caused four-fold higher clamp insulin levels in Arg1174Gln carriers compared with control subjects (p<0.05). In Arg1174Gln carriers insulin increased glucose disposal and non-oxidative glucose metabolism (p<0.05), but to a lower extent than in controls (p<0.05). Insulin increased Akt phosphorylation at Ser473 and Thr308, inhibited glycogen synthase kinase-3alpha activity, reduced phosphorylation of glycogen synthase at sites 3a+3b, and increased glycogen synthase activity in Arg1174Gln carriers (all p<0.05). In the insulin-stimulated state, Akt phosphorylation at Thr308 and glycogen synthase activity were reduced in Arg1174Gln carriers compared with controls (p<0.05), whereas glycogen synthase kinase-3alpha activity and phosphorylation of glycogen synthase at sites 3a+3b were similar in the two groups. CONCLUSIONS/INTERPRETATION In vivo insulin signalling in skeletal muscle of patients harbouring the Arg1174Gln mutation is surprisingly intact, with modest impairments in insulin-stimulated activity of Akt and glycogen synthase explaining the moderate degree of insulin resistance. Our data suggest that impaired insulin clearance in part rescues in vivo insulin signalling in muscle in these carriers of a mutant INSR, probably by increasing insulin action on the non-mutated insulin receptors.
Collapse
Affiliation(s)
- K Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Nemoto T, Yokoo H, Satoh S, Yanagita T, Sugano T, Yoshikawa N, Maruta T, Kobayashi H, Wada A. Constitutive activity of glycogen synthase kinase-3beta: positive regulation of steady-state levels of insulin receptor substrates-1 and -2 in adrenal chromaffin cells. Brain Res 2006; 1110:1-12. [PMID: 16870161 DOI: 10.1016/j.brainres.2006.06.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/14/2006] [Accepted: 06/18/2006] [Indexed: 01/17/2023]
Abstract
In cultured bovine adrenal chromaffin cells, 12-h treatment with 1-20 mM LiCl, an inhibitor of glycogen synthase kinase-3 (GSK-3), increased Ser(9) phosphorylation of GSK-3beta by approximately 44%, while decreasing insulin receptor substrate-1 (IRS-1) and IRS-2 protein levels by approximately 38 and approximately 62% in a concentration-dependent manner. Treatment with SB216763 (0.1-30 microM for 12 h), a selective inhibitor of GSK-3, lowered IRS-1 and IRS-2 levels by approximately 38 and approximately 48%, while increasing beta-catenin protein level by approximately 47%, due to the prevention of GSK-3-induced degradation of beta-catenin by SB216763. Insulin (100 nM for 24 h) increased Ser(9) phosphorylation of GSK-3beta by approximately 104%, while decreasing IRS-1 and IRS-2 levels by approximately 41 and approximately 72%; the insulin-induced Ser(9) phosphorylation of GSK-3beta, as well as down-regulations of IRS-1 and IRS-2 levels were restored to the control levels of nontreated cells at 24 h after the washout of the insulin (100 nM for 12 h)-treated cells. Either clasto-lactacystin beta-lactone or lactacystin (an inhibitor of proteasome) prevented LiCl- or SB216763-induced decreases of IRS-1 and IRS-2 levels by approximately 100 and approximately 69%, respectively. In contrast, calpastatin (an inhibitor of calpain) and leupeptin (an inhibitor of lysosome) failed to prevent the decreases of IRS-1 and IRS-2 levels caused by LiCl or SB216763. LiCl or SB216763 lowered IRS-2 mRNA level, with no effect on IRS-1 mRNA level. These results suggest that constitutive activity of GSK-3beta in quiescent cells positively maintains steady-state levels of IRS-1 and IRS-2 via regulating proteasomal degradation and/or synthesis of IRS-1 and IRS-2 proteins.
Collapse
Affiliation(s)
- Takayuki Nemoto
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vega VL, De Maio A. Increase in phagocytosis after geldanamycin treatment or heat shock: role of heat shock proteins. THE JOURNAL OF IMMUNOLOGY 2005; 175:5280-7. [PMID: 16210633 DOI: 10.4049/jimmunol.175.8.5280] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response to injury is activated at the systemic and cellular levels. At the systemic level, phagocytosis plays a key role in controlling infections and clearing necrotic and apoptotic cells. The expression of heat shock proteins (Hsp), which is a well-conserved process, is a major component of cellular response to stress. This study investigated the relationship between Hsps and phagocytosis. An increase in the phagocytosis of opsonized bacteria particles and latex beads was observed upon incubation of murine macrophages with geldanamycin (GA), a specific inhibitor of the Hsp90 family of proteins. The effect of GA on phagocytosis was blocked by coincubation with inhibitors of transcription (actinomycin D) or translation (cycloheximide), suggesting that gene expression was required. Because expression of Hsps has been observed after GA treatment, the effect of heat shock on phagocytosis was investigated. Similar to GA treatment, heat shock resulted in an actinomycin D-sensitive elevation of phagocytosis, which suggests that Hsps are involved. The increase in phagocytosis after GA treatment was not due to increased binding of opsonized particles to their respective receptors on the macrophage surface or to elevated oxidative stress. However, it was correlated with a rapid polymerization of actin in proximity to the plasma membrane. These results suggest that Hsps play a role in the modulation of the phagocytic process, which is part of the stress response.
Collapse
Affiliation(s)
- Virginia L Vega
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
15
|
Wada A, Yokoo H, Yanagita T, Kobayashi H. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci 2005; 99:128-43. [PMID: 16210778 DOI: 10.1254/jphs.crj05006x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.
Collapse
Affiliation(s)
- Akihiko Wada
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
16
|
Yokoo H, Sugano T, Satoh S, Yanagita T, Kobayashi H, Wada A. [Expression of insulin receptor and its signaling molecules: regulatory mechanisms in neuronal cells]. Nihon Yakurigaku Zasshi 2005; 125:141-6. [PMID: 15855732 DOI: 10.1254/fpj.125.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Yokoo H, Saitoh T, Shiraishi S, Yanagita T, Sugano T, Minami SI, Kobayashi H, Wada A. Distinct effects of ketone bodies on down-regulation of cell surface insulin receptor and insulin receptor substrate-1 phosphorylation in adrenal chromaffin cells. J Pharmacol Exp Ther 2003; 304:994-1002. [PMID: 12604674 DOI: 10.1124/jpet.102.044115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment (>/=24 h) of cultured bovine adrenal chromaffin cells with ketoacidosis-related concentrations (>/=3 mM) of acetoacetate (but not beta-hydroxybutyrate, acetone, and acidic medium) caused a time- and concentration-dependent reduction of cell surface (125)I-insulin binding by ~38%, with no change in the K(d) value. The reduction of (125)I-insulin binding returned to control nontreated level at 24 h after the washout of acetoacetate-treated cells. Acetoacetate did not increase the internalization rate of cell surface insulin receptor (IR), as measured in the presence of brefeldin A, an inhibitor of cell surface vesicular exit from the trans-Golgi network. Acetoacetate (10 mM for 24 h) lowered cellular levels of the immunoreactive IR precursor molecule (approximately 190 kDa) and IR by 22 and 28%, respectively. Acetoacetate decreased IR mRNA levels by approximately 23% as early as 6 h, producing their maximum plateau reduction at 12 and 24 h. The half-life of IR mRNA was shortened by acetoacetate from 13.6 to 9.5 h. Immunoprecipitation followed by immunoblot analysis revealed that insulin-induced (100 nM for 10 min) tyrosine-phosphorylation of insulin receptor substrate-1 (IRS-1) was attenuated by 56% in acetoacetate-treated cells, with no change in IRS-1 level. These results suggest that chronic treatment with acetoacetate selectively down-regulated the density of cell surface functional IR via lowering IR mRNA levels and IR synthesis, thereby retarding insulin-induced activation of IRS-1.
Collapse
Affiliation(s)
- Hiroki Yokoo
- Department of Pharmacology, Miyazaki Medical College, Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Protection against oxidative stress is highly interrelated with the function of the most ancient cellular defense system, the network of molecular chaperones, heat shock, or stress-proteins. These ubiquitous, conserved proteins help other proteins and macromolecules to fold or re-fold and reach their final, native conformation. Redox regulation of protein folding becomes especially important during the preparation of extracellular proteins to the outside oxidative milieu, which should take place in a gradual and step-by-step controlled manner in the endoplasmic reticulum or in the periplasm. Several chaperones, such as members of the Hsp33 family in yeast and the plethora of small heat shock proteins as well as one of the major chaperones, Hsp70 are able to act against cytoplasmic oxidative damage. Abrupt changes of cellular redox status lead to chaperone induction. The function of several chaperones is tightly regulated by the surrounding redox conditions. Moreover, our recent data suggest that chaperones may act as a central switchboard for the transmission of redox changes in the life of the cell.
Collapse
Affiliation(s)
- Eszter Papp
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary
| | | | | | | |
Collapse
|