1
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
3
|
Germann AL, Pierce SR, Evers AS, Steinbach JH, Akk G. Perspective on the relationship between GABAA receptor activity and the apparent potency of an inhibitor. Curr Neuropharmacol 2021; 20:90-93. [PMID: 34784870 PMCID: PMC9199547 DOI: 10.2174/1570159x19666211104142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Background: In electrophysiological experiments, inhibition of a receptor-channel, such as the GABAA receptor, is measured by co-applying an agonist producing a predefined control response with an inhibitor to calculate the fraction of the control response remaining in the presence of the inhibitor. The properties of the inhibitor are determined by fitting the inhibition concentration-response relationship to the Hill equation to estimate the midpoint (IC50) of the inhibition curve. Objective: We sought to estimate sensitivity of the fitted IC50 to the level of activity of the control response. Methods: The inhibition concentration-response relationships were calculated for models with distinct mechanisms of inhibition. In Model I, the inhibitor acts allosterically to stabilize the resting state of the receptor. In Model II, the inhibitor competes with the agonist for a shared binding site. In Model III, the inhibitor stabilizes the desensitized state. Results: The simulations indicate that the fitted IC50 of the inhibition curve is sensitive to the degree of activity of the control response. In Models I and II, the IC50 of inhibition was increased as the probability of being in the active state (PA) of the control response increased. In Model III, the IC50 of inhibition was reduced at higher PA. Conclusion: We infer that the apparent potency of an inhibitor depends on the PA of the control response. While the calculations were carried out using the activation and inhibition properties that are representative of the GABAA receptor, the principles and conclusions apply to a wide variety of receptor-channels.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Spencer R Pierce
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Alex S Evers
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Joe Henry Steinbach
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| | - Gustav Akk
- Department of Anesthesiology (ALG, SRP, ASE, JHS, GA), Washington University School of Medicine, St. Louis, MO 63110. United States
| |
Collapse
|
4
|
Rossokhin AV, Sharonova IN, Dvorzhak A, Bukanova JV, Skrebitsky VG. The mechanisms of potentiation and inhibition of GABA A receptors by non-steroidal anti-inflammatory drugs, mefenamic and niflumic acids. Neuropharmacology 2019; 160:107795. [PMID: 31560908 DOI: 10.1016/j.neuropharm.2019.107795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
Fenamates mefanamic and niflumic acids (MFA and NFA) induced dual potentiating and inhibitory effects on GABA currents recorded in isolated cerebellar Purkinje cells using the whole-cell patch-clamp and fast-application techniques. Regardless of the concentration, both drugs induced a pronounced prolongation of the current response. We demonstrated that the same concentration of drugs can produce both potentiating and inhibitory effects, depending on the GABA concentration, which indicates that both processes take place simultaneously and the net effect depends on the concentrations of both the agonist and fenamate. We found that the NFA-induced block is strongly voltage-dependent. The Woodhull analysis of the block suggests that NFA has two binding sites in the pore - shallow and deep. We built a homology model of the open GABAAR based on the cryo-EM structure of the open α1 GlyR and applied Monte-Carlo energy minimization to optimize the ligand-receptor complexes. A systematic search for MFA/NFA binding sites in the GABAAR pore revealed the existence of two sites, the location of which coincides well with predictions of the Woodhull model. In silico docking suggests that two fenamate molecules are necessary to occlude the pore. We showed that MFA, acting as a PAM, competes with an intravenous anesthetic etomidate for a common binding site. We built structural models of MFA and NFA binding at the transmembrane β(+)/α(-) intersubunit interface. We suggested a hypothesis on the molecular mechanism underlying the prolongation of the receptor lifetime in open state after MFA/NFA binding and β subunit specificity of the fenamate potentiation.
Collapse
Affiliation(s)
| | | | - Anton Dvorzhak
- Charité-Universitätsmedizin, Neuroscience Research Center, Berlin, Germany
| | | | | |
Collapse
|
5
|
Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABAA receptors. Eur J Pharmacol 2019; 853:247-255. [DOI: 10.1016/j.ejphar.2019.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
|
6
|
Khansari PS, Halliwell RF. Mechanisms Underlying Neuroprotection by the NSAID Mefenamic Acid in an Experimental Model of Stroke. Front Neurosci 2019; 13:64. [PMID: 30792624 PMCID: PMC6374636 DOI: 10.3389/fnins.2019.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
Stroke is a devastating neurological event with limited treatment opportunities. Recent advances in understanding the underlying pathogenesis of cerebral ischemia support the involvement of multiple biochemical pathways in the development of the ischemic damage. Fenamates are classical non-steroidal anti-inflammatory drugs but they are also highly subunit-selective modulators of GABAA receptors, activators of IKS potassium channels and antagonists of non-selective cation channels and the NLRP3 inflammosome. In the present study we investigated the effect of mefenamic acid (MFA) in a rodent model of ischemic stroke and then addressed the underlying pharmacological mechanisms in vitro for its actions in vivo. The efficacy of MFA in reducing ischemic damage was evaluated in adult male Wistar rats subjected to a 2-h middle cerebral artery occlusion. Intracerebroventricular (ICV) infusion of MFA (0.5 or 1 mg/kg) for 24 h, significantly reduced the infarct volume and the total ischemic brain damage. In vitro, the fenamates, MFA, meclofenamic acid, niflumic acid, and flufenamic acid each reduced glutamate-evoked excitotoxicity in cultured embryonic rat hippocampal neurons supporting the idea that this is a drug class action. In contrast the non-fenamate NSAIDs, ibuprofen and indomethacin did not reduce excitotoxicity in vitro indicating that neuroprotection by MFA was not dependent upon anti-inflammatory actions. Co-application of MFA (100 μM) with either of the GABAA antagonists picrotoxin (100 μM) or bicuculline (10 μM) or the potassium channel blocker tetraethylammonium (30 mM) did not prevent neuroprotection with MFA, suggesting that the actions of MFA also do not depend on GABAA receptor modulation or potassium channel activation. These new findings indicate that fenamates may be valuable in the adjunctive treatment of ischemic stroke.
Collapse
Affiliation(s)
- Parto S Khansari
- School of Pharmacy and Pharmaceutical Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Robert F Halliwell
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
7
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Tarushi A, Raptopoulou CP, Psycharis V, Kessissoglou DP, Papadopoulos AN, Psomas G. Interaction of zinc(II) with the non-steroidal anti-inflammatory drug niflumic acid. J Inorg Biochem 2017; 176:100-112. [PMID: 28886446 DOI: 10.1016/j.jinorgbio.2017.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
The reaction of ZnCl2 with the non-steroidal anti-inflammatory drug niflumic acid (Hnif) resulted in the formation of complex [Zn(nif-O)2(MeOH)4], 1. When this reaction was performed in the presence of a N,N'-donor heterocyclic ligand such as 2,2'-bipyridine (bipy), 2,2'-bipyridylamine (bipyam), 1,10-phenanthroline (phen) and 2,2'-dipyridylketone oxime (Hpko), the complexes [Zn(nif-O,O')(bipy)Cl], 2, [Zn(nif-O)(nif-O,O')2(bipyam)], 3, [Zn(nif-O,O')2(phen)], 4 and [Zn(nif-O)2(Hpko-N,N')2], 5 were formed, respectively. The complexes were characterized by physicochemical and spectroscopic techniques and X-ray crystallography (for complexes 1-3). The complexes can scavenge 1,1-diphenyl-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and hydroxyl radicals, may inhibit soybean lipoxygenase and are more active compounds than free Hnif. The interaction of the complexes with serum albumins was monitored by fluorescence emission spectroscopy and the corresponding binding constants were calculated. The affinity of the complexes with calf-thymus DNA was investigated by UV-vis spectroscopy, viscosity measurements and fluorescence emission spectroscopy for the competitive studies of the complexes with ethidium bromide revealing their interaction probably via intercalation.
Collapse
Affiliation(s)
- Alketa Tarushi
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", GR-15310, Aghia Paraskevi, Attikis, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", GR-15310, Aghia Paraskevi, Attikis, Greece
| | - Dimitris P Kessissoglou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutrition and Dietetics, Faculty of Food Technology and Nutrition, Alexandrion Technological Educational Institution, Sindos, Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
9
|
Maleeva G, Peiretti F, Zhorov BS, Bregestovski P. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid. Front Mol Neurosci 2017; 10:125. [PMID: 28559795 PMCID: PMC5432571 DOI: 10.3389/fnmol.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
Niflumic acid (NFA) is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs) with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2') increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.
Collapse
Affiliation(s)
- Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Cytology, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Franck Peiretti
- INSERM 1062, INRA 1260, NORT, Aix-Marseille UniversityMarseille, France
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Physiology, Kazan State Medical UniversityKazan, Russia
| |
Collapse
|
10
|
Tsai T, Yuan Y, Hajela RK, Philips SW, Atchison WD. Methylmercury induces an initial increase in GABA-evoked currents in Xenopus oocytes expressing α 1 and α 6 subunit-containing GABA A receptors. Neurotoxicology 2016; 60:161-170. [PMID: 27720918 DOI: 10.1016/j.neuro.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022]
Abstract
Early onset effects of methylmercury (MeHg) on recombinant α1β2γ2S or α6β2γ2S subunit-containing GABAA receptors were examined. These are two of the most prevalent receptor types found in cerebellum-a consistent target of MeHg-induced neurotoxicity. Heterologously expressed receptors were used in order to: (1) isolate receptor-mediated events from extraneous effects of MeHg due to stimulation of the receptor secondary to increased release of GABA seen with MeHg in neurons in situ and (2) limit the phenotypes of GABAA receptors present at one time. Initial changes in IGABA in Xenopus laevis oocytes expressing either α1β2γ2S or α6β2γ2S receptors were compared during continuous bath application of MeHg. A time-dependent increase in IGABA mediated by both receptor subtypes occurred following the first 25-30min of MeHg (5μM) exposure. In α6β2γ2S containing receptors, the MeHg-induced increase in IGABA was less pronounced compared to that mediated by α1β2γ2S containing receptors, although the pattern of effects was generally similar. Washing with MeHg-free solution reversed the increase in current amplitude. Application of bicuculline at the time of peak potentiation of IGABA rapidly and completely reversed the MeHg-induced currents. Therefore these MeHg-increased inward currents are mediated specifically by the two subtypes of GABAA receptors and appear to entail direct actions of MeHg on the receptor. However bicuculline did not affect stimulation by MeHg of oocyte endogenous Cl- -mediated current, which presumably results from increased [Ca2+]i. Thus, MeHg initially potentiates IGABA in oocytes expressing either α1β2γ2S or α6β2γ2S receptors prior to its more defined later effects, suggesting that MeHg may initially interact directly with GABAA receptors in a reversible manner to cause this potentiation.
Collapse
Affiliation(s)
- Tidao Tsai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Ravindra K Hajela
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Shuan W Philips
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| |
Collapse
|
11
|
Marwaha L, Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacology 2016; 24:319-334. [PMID: 27757590 DOI: 10.1007/s10787-016-0285-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
Abstract
TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic adjunct for antiretroviral drug-induced neuropathy.
Collapse
Affiliation(s)
- Lovish Marwaha
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Priyanka Saroj
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India.
| |
Collapse
|
12
|
Zhao L, Li LI, Ma KT, Wang Y, Li J, Shi WY, Zhu HE, Zhang ZS, Si JQ. NSAIDs modulate GABA-activated currents via Ca 2+-activated Cl - channels in rat dorsal root ganglion neurons. Exp Ther Med 2016; 11:1755-1761. [PMID: 27168798 PMCID: PMC4840517 DOI: 10.3892/etm.2016.3158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate γ-aminobutyrate (GABA)-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons (DRG), was examined in the present study. During the preparation of DRG neurons harvested from Sprague-Dawley rats, the whole-cell recording technique was used to record the effect of NSAIDs on GABA-activated inward currents, and the expression levels of the TMEM16A and TMEM16B subunits were revealed. In the event that DRG neurons were pre-incubated for 20 sec with niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) prior to the administration of GABA, the GABA-induced inward currents were diminished markedly in the majority of neurons examined (96.3%). The inward currents induced by 100 µmol/l GABA were attenuated by (0±0.09%; neurons = 4), (5.32±3.51%; neurons = 6), (21.3±4.00%; neurons = 5), (33.8±5.20%; neurons = 17), (52.2±5.10%; neurons = 4) and (61.1±4.12%; neurons = 12) by 0.1, 1, 3, 10, 30 and 100 µmol/l NFA, respectively. The inward currents induced by 100 µmol/l GABA were attenuated by (13.8±6%; neurons = 6), (23.2±14.7%; neurons = 6) and (29.7±9.1%; neurons = 9) by 3, 10 and 30 µmol/l NPPB, respectively. NFA and NPPB dose-dependently inhibited GABA-activated currents with half maximal inhibitory concentration (IC50) values of 6.7 and 11 µmol/l, respectively. The inhibitory effect of 100 µmol/l NFA on the GABA-evoked inward current were also strongly inhibited by nitrendipine (NTDP; an L-type calcium channel blocker), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (a highly selective calcium chelating reagent), caffeine (a widely available Ca2+ consuming drug) and calcium-free extracellular fluid, in a concentration-dependent manner. Immunofluorescent staining indicated that TMEM16A and TMEM16B expression was widely distributed in DRG neurons. The results suggest that NSAIDs may be able to regulate Ca2+-activated chloride channels to reduce GABAA receptor-mediated inward currents in DRGs.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - L I Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - H E Zhu
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zhong-Shuang Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Physiology, School of Basic Medical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
13
|
Bal R, Ustundag Y, Bulut F, Demir CF, Bal A. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat. Arch Med Sci 2016; 12:208-15. [PMID: 26925138 PMCID: PMC4754382 DOI: 10.5114/aoms.2016.57597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. MATERIAL AND METHODS Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. RESULTS Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). CONCLUSIONS We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw.
Collapse
Affiliation(s)
- Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Yasemin Ustundag
- Department of Anatomy, Faculty of Veterinary, Firat University, Elazig, Turkey
| | - Funda Bulut
- Department of Medical Biology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Caner Feyzi Demir
- Department of Neurology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ali Bal
- Department of Plastic-Reconstructive and Esthetic Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
14
|
Zhang W, Schmelzeisen S, Parthier D, Frings S, Möhrlen F. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex. PLoS One 2015; 10:e0142160. [PMID: 26558388 PMCID: PMC4641602 DOI: 10.1371/journal.pone.0142160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Steffen Schmelzeisen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Daniel Parthier
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
15
|
Uusi-Oukari M, Vähätalo L, Liljeblad A. Modifications of diflunisal and meclofenamate carboxyl groups affect their allosteric effects on GABAA receptor ligand binding. Neurochem Res 2014; 39:1183-91. [PMID: 24925262 DOI: 10.1007/s11064-014-1351-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
Abstract
Gamma-aminobutyric acid type A receptors (GABAAR) are allosterically modulated by the nonsteroidal anti-inflammatory drugs diflunisal and fenamates. The carboxyl group of these compounds is charged at physiological pH and therefore penetration of the compounds into the brain is low. In the present study we have transformed the carboxyl group of diflunisal and meclofenamate into non-ionizable functional groups and analyzed the effects of the modifications on stimulation of [(3)H]muscimol binding and on potentiation of γ-aminobutyric acid-induced displacement of 4'-ethenyl-4-n-[2,3-(3)H]propylbicycloorthobenzoate. N-Butylamide derivative of diflunisal modulated radioligand binding with equal or higher potency than the parent compound, while diflunisalamide showed reduced allosteric effect as compared to diflunisal. Amide derivative of meclofenamate equally affected radioligand binding parameters, while both diflunisal and meclofenamate methyl esters were less active than the parent compounds. Our study clearly demonstrates that an intact carboxyl group in diflunisal and meclofenamate is not indispensable for their positive GABAAR modulation. Further derivatization of the compound might yield compounds with higher selectivity for GABAARs that could be utilized in drug development.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014, Turku, Finland,
| | | | | |
Collapse
|
16
|
Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A. Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 2013; 591:3901-17. [PMID: 23732644 PMCID: PMC3764636 DOI: 10.1113/jphysiol.2013.257162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological properties and functional role of GABAergic signal transmission from neurons to the gap junction-coupled astrocytic network are still unclear. GABA-induced astrocytic Cl− flux has been hypothesized to affect the driving force for GABAergic transmission by modulating [Cl−]o. Thus, revealing the properties of GABA-mediated astrocytic responses will deepen our understanding of GABAergic signal transmission. Here, we analysed the Cl− dynamics of neurons and astrocytes in CA1 hippocampal GABAergic tripartite synapses, using Cl− imaging during GABA application, and whole cell recordings from interneuron–astrocyte pairs in the stratum lacunosum-moleculare. Astrocytic [Cl−]i was adjusted to physiological conditions (40 mm). Although GABA application evoked bidirectional Cl− flux via GABAA receptors and mouse GABA transporter 4 (mGAT4) in CA1 astrocytes, a train of interneuron firing induced only GABAA receptor-mediated inward currents in an adjacent astrocyte. A GAT1 inhibitor increased the interneuron firing-induced currents and induced bicuculline-insensitive, mGAT4 inhibitor-sensitive currents, suggesting that synaptic spillover of GABA predominantly induced the astrocytic Cl− efflux because GABAA receptors are localized near the synaptic clefts. This GABA-induced Cl− efflux was accompanied by Cl− siphoning via the gap junctions of the astrocytic network because gap junction inhibitors significantly reduced the interneuron firing-induced currents. Thus, Cl− efflux from astrocytes is homeostatically maintained within astrocytic networks. A gap junction inhibitor enhanced the activity-dependent depolarizing shifts of reversal potential of neuronal IPSCs evoked by repetitive stimulation to GABAergic synapses. These results suggest that Cl− conductance within the astrocytic network may contribute to maintaining GABAergic synaptic transmission by regulating [Cl−]o.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
17
|
Ning N, Wen Y, Li Y, Li J. Meclofenamic acid blocks the gap junction communication between the retinal pigment epithelial cells. Hum Exp Toxicol 2013; 32:1164-9. [PMID: 23584353 DOI: 10.1177/0960327112472997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). MATERIALS AND METHODS In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. RESULTS Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. CONCLUSION The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.
Collapse
Affiliation(s)
- N Ning
- 1Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | | | |
Collapse
|
18
|
Sun H, Wen Y, Ning N, An J, Li J. Retinal toxicity associated with high dose of meclofenamic acid. Drug Chem Toxicol 2013; 36:461-5. [PMID: 23534549 DOI: 10.3109/01480545.2013.776582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used medications because they provide effective relief of chronic pain and inflammation through inhibition of cyclooxygenase (COX). However, visual side effects also have been reported, such as temporary blindness, visual field defect, blurred vision, scotomata, and color vision changes subsequent to short- or long-term use. Our aim was to investigate the effect of a high dose of meclofenamic acid (MFA) on the retina. In our study, we applied electroretinography (ERG) and histologic examination to study functional and morphological damage of the retina in rabbits after MFA treatment. We reveal that MFA markedly decreased the amplitudes of b-wave of Rod-response and a- and b-wave of the scotopic standard combined ERG, respectively, and induced morphological destruction of the retina, especially photoreceptor cells. We conclude that a high dose of MFA causes retinal toxicity and impairs visual transduction. These findings may explain, at least partially, the vision problems of certain clinically used NSAIDs.
Collapse
Affiliation(s)
- Hui Sun
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | |
Collapse
|
19
|
Rae MG, Hilton J, Sharkey J. Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human α1β2γ2 GABA(A) receptors. Neurochem Int 2012; 60:543-54. [PMID: 22369768 DOI: 10.1016/j.neuint.2012.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 11/30/2022]
Abstract
Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.
Collapse
Affiliation(s)
- M G Rae
- Department of Physiology, University College Cork, Ireland.
| | | | | |
Collapse
|
20
|
Diaz MR, Wadleigh A, Hughes BA, Woodward JJ, Valenzuela CF. Bestrophin1 Channels are Insensitive to Ethanol and Do not Mediate Tonic GABAergic Currents in Cerebellar Granule Cells. Front Neurosci 2012; 5:148. [PMID: 22275879 PMCID: PMC3257865 DOI: 10.3389/fnins.2011.00148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/27/2011] [Indexed: 11/13/2022] Open
Abstract
The granule cell layer of the cerebellum functions in spatio-temporal encoding of information. Granule cells (GCs) are tonically inhibited by spillover of GABA released from Golgi cells and this tonic inhibition is facilitated by acute ethanol. Recently, it was demonstrated that a specialized Ca(2+)-activated anion-channel, bestrophin1 (Best1), found on glial cells, can release GABA that contributes up to 50-75% of the tonic GABAergic current. However, it is unknown if ethanol has any actions on Best1 function. Using whole-cell electrophysiology, we found that recombinant Best1 channels expressed in HEK-293 cells were insensitive to 40 and 80 mM ethanol. We attempted to measure the Best1-mediated component of the tonic current in slices using 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We confirmed that this agent blocks recombinant Best1 channels. Unexpectedly, we found that NPPB significantly potentiated the tonic current and the area and decay of GABA(A)-mediated spontaneous inhibitory post-synaptic currents (IPSCs) in GCs in rodent slices under two different recording conditions. To better isolate the Best1-dependent tonic current component, we blocked the Golgi cell component of the tonic current with tetrodotoxin and found that NPPB similarly and significantly potentiated the tonic current amplitude and decay time of miniature IPSCs. Two other Cl(-)-channel blockers were also tested: 4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) showed no effect on GABAergic transmission, while niflumic acid (NFA) significantly suppressed the tonic current noise, as well as the mIPSC frequency, amplitude, and area. These data suggest that acute ethanol exposure does not modulate Best1 channels and these findings serve to challenge recent data indicating that these channels participate in the generation of tonic GABAergic currents in cerebellar GCs.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
21
|
Habib NS, Farghaly AM, Ashour FA, Bekhit AA, Abd El Razik HA, Abd El Azeim T. Synthesis of Some Triazolophthalazine Derivatives for Their Anti-Inflammatory and Antimicrobial Activities. Arch Pharm (Weinheim) 2011; 344:530-542. [DOI: 10.1002/ardp.201100053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170:117-22. [PMID: 20600636 DOI: 10.1016/j.neuroscience.2010.06.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 11/20/2022]
Abstract
We studied the possible activation of a neuropeptide FF2 receptor (NPFF2R) by kisspeptins, neuropeptides derived from the mouse and human metastin or Kiss-1 precursor. The hypothesis was that the human kisspeptins, which share the C-terminal dipeptide RF-NH(2) with NPFF, might activate the NPFF2R, as has previously been shown for two related peptides, prolactin-releasing peptide and RF-amide-related peptide. Using two-electrode voltage clamp of Xenopus oocytes, we found that 100 nM NPFF strongly activated the human NPFF2R expressed together with rat GIRK1/4 inward rectifier potassium channels, and that 100 nM hKisspeptin-13 and hKisspeptin-8 had about 25% relative efficacy to that of NPFF. The current response induced by hKisspeptin-13 was proportional to its concentration (1-500 nM). The corresponding mouse peptides resulted in low activation only. When hNPFF2R was expressed in Chinese hamster ovary (CHO) cells, NPFF and its stable analog (1DMe)Y8Fa induced guanosine 5'-(gamma-[(35)S]thio)-triphosphate (GTP-gamma-[(35)S]) binding with EC(50) values of 13+/-4 and 16+/-4 nM, respectively. hKisspeptin-13 induced the binding with an EC(50) value of 110+/-50 nM, whereas mKisspeptin-13 induced very modestly activation with an EC(50) value>2 microM. The results suggest that, besides regulation of reproduction, kisspeptins have a potential to mediate physiological effects on, for example autonomic regulation and nociception in man via the NPFF2R pathways.
Collapse
|
23
|
Modulation of Glutamate and Glycine Transporters by Niflumic, Flufenamic and Mefenamic Acids. Neurochem Res 2009; 34:1738-47. [DOI: 10.1007/s11064-009-9983-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 04/20/2009] [Indexed: 12/21/2022]
|
24
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
25
|
Cheng L, Sanguinetti MC. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains. Mol Pharmacol 2009; 75:1210-21. [PMID: 19218366 DOI: 10.1124/mol.108.054437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.
Collapse
Affiliation(s)
- Lan Cheng
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
26
|
Chloride-dependent acute excitotoxicity in adult rat retinal ganglion cells. Neuropharmacology 2008; 55:677-86. [PMID: 18586043 DOI: 10.1016/j.neuropharm.2008.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 02/26/2008] [Accepted: 06/02/2008] [Indexed: 11/19/2022]
Abstract
Mechanisms of excitotoxic degeneration of retinal ganglion cells (RGCs) remain controversial, due to the lack of suitable in vitro experimental systems for evaluation of RGC death. In this study, we investigated acute excitotoxicity in RGCs using eyecup preparations obtained from adult rats, with special reference to ionic dependence of N-methyl-D-aspartate (NMDA) and kainate toxicity. Retrograde labeling of RGCs with a fluorescent tracer diamidino yellow, combined with labeling of dead cells by propidium iodide, enabled us to discriminate dead RGCs from other cells in the ganglion cell layer. Exposure of eyecups to NMDA or kainate for 30min followed by 6h post-incubation caused cell death in a subpopulation of RGCs as well as other (presumably displaced amacrine) cells. RGCs in the peripheral area of the retina were less sensitive to NMDA toxicity than those in the central area. Death of RGCs and other retinal cells by NMDA or kainate was largely abolished by substitution of extracellular Cl(-), whereas chelation of extracellular Ca(2+) did not inhibit NMDA or kainate toxicity in RGCs. Strychnine but not bicuculline partially inhibited NMDA-induced RGC death, although these drugs were not effective against kainate-induced RGC death. On the other hand, niflumic acid, a Cl(-) channel blocker, markedly inhibited RGC death induced by kainate as well as by NMDA. These results underscore the important role of Cl(-) in acute excitotoxicity in adult rat RGCs.
Collapse
|
27
|
Gong N, Zhang M, Zhang XB, Chen L, Sun GC, Xu TL. The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABAergic inhibition. Neuropharmacology 2007; 54:454-63. [PMID: 18078964 DOI: 10.1016/j.neuropharm.2007.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 01/04/2023]
Abstract
Salicylate is the major metabolite and active component of aspirin (acetylsalicylic acid), which is widely used in clinical medicine for treating inflammation, pain syndromes and cardiovascular disorders. The well-known mechanism underlying salicylate's action mainly involves the inhibition of cyclooxygenase and subsequent decrease in prostaglandin production. Recent evidence suggests that salicylate also affects neuronal function through interaction with specific membrane channels/receptors. However, the effect of salicylate on synaptic and neural network function remains largely unknown. In this study, we investigated the effect of sodium salicylate on the synaptic transmission and neuronal excitation in the hippocampal CA1 area of rats, a key structure for many complex brain functions. With electrophysiological recordings in hippocampal slices, we found that sodium salicylate significantly enhanced neuronal excitation through reducing inhibitory GABAergic transmission without affecting the basal excitatory synaptic transmission. Salicylate significantly inhibited the amplitudes of both evoked and miniature inhibitory postsynaptic currents, and directly reduced gamma-aminobutyric acid type A (GABA(A)) receptor-mediated responses in cultured rat hippocampal neurons. Together, our results suggest that the widely used aspirin might impair hippocampal synaptic and neural network functions through its actions on GABAergic neurotransmission. Given the capability of aspirin to penetrate the blood-brain barrier, the present data imply that aspirin intake may cause network hyperactivity and be potentially harmful in susceptible subpopulations.
Collapse
Affiliation(s)
- Neng Gong
- Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | |
Collapse
|
28
|
Naziroğlu M, Lückhoff A, Jüngling E. Antagonist effect of flufenamic acid on TRPM2 cation channels activated by hydrogen peroxide. Cell Biochem Funct 2007; 25:383-7. [PMID: 16933200 DOI: 10.1002/cbf.1310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca(2+)-permeable cation channel that is activated by hydrogen peroxide (H(2)O(2)) as a consequence of oxidative stress although the channel activation by H(2)O(2) appears to represent a cell-specific process in cells with endogenous expression of TRPM2. Flufenamic acid (FA) is a non-steroidal anti-inflammatory compound. Whether H(2)O(2) activates or FA inhibits TRPM2 channels in Chinese hamster ovary (CHO) cell is currently unknown. Due to lack of known antogonists of this channel, we demonstrate in CHO cells that FA inhibits TRPM2 activated by extracellular H(2)O(2). CHO cells were transfected with cDNA coding for TRPM2. Cells were studied with the conventional whole-cell patch clamp technique. The intracellular solution used EDTA (10 mM) as chelator for Ca(2+) and heavy metal ions. H(2)O(2) (10 mM) and FA (0.1 mM) were applied extracellularly. Non-selective cation currents were consistently induced by H(2)O(2). The time cause of H(2)O(2) effects was characterized by a delay of 2-5 min and a slow current induction to reach a plateau. The H(2)O(2)- induced inward current was effectively inhibited by 0.1 mM FA applied extracellularly. In conclusion, we have demonstrated that FA is an effective antogonist of TRPM2 channels and H(2)O(2)activated currents in CHO cells. FA in CHO cells may be considered, at best, a starting point for the development of TRPM2 channel blockers.
Collapse
Affiliation(s)
- Mustafa Naziroğlu
- Institute of Physiology, Medical Faculty, RWTH Aachen, Pauwelsstrasse, Aachen, Germany.
| | | | | |
Collapse
|
29
|
Uusi-Oukari M, Maksay G. Allosteric modulation of [3H]EBOB binding to GABAA receptors by diflunisal analogues. Neurochem Int 2006; 49:676-82. [PMID: 16884828 DOI: 10.1016/j.neuint.2006.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022]
Abstract
Allosteric modulatory effects of 12 biphenyl derivatives of diflunisal and two fenamates were studied on A-type receptors of GABA (GABAAR) via [3H]4'-ethynylbicycloorthobenzoate (EBOB) binding to synaptic membrane preparations of rat forebrain. A simplified ternary allosteric model was used to determine binding affinities of the compounds and the extents of cooperativity with GABA. Structure activity analysis revealed that 4-hydroxy substituents of the biphenyls contribute to their micromolar binding affinities more than 3-carboxyl groups. Electron-withdrawing fluorinated substituents, especially in ortho position, were also advantageous. These factors also strongly enhanced the cooperativity with GABA binding. The correlation between displacing potency of the allosteric agents and cooperativity with GABA suggests that these processes are associated with common mechanisms. The pharmacological relevance of these interactions is discussed. These data help to differentiate the structural requirements of these agents to act on GABAergic neurotransmission versus nonsteroidal anti-inflammatory effects.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Molecular Pharmacology, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, POB 17, Hungary.
| | | |
Collapse
|
30
|
Ranna M, Sinkkonen ST, Möykkynen T, Uusi-Oukari M, Korpi ER. Impact of epsilon and theta subunits on pharmacological properties of alpha3beta1 GABAA receptors expressed in Xenopus oocytes. BMC Pharmacol 2006; 6:1. [PMID: 16412217 PMCID: PMC1363348 DOI: 10.1186/1471-2210-6-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 01/13/2006] [Indexed: 11/29/2022] Open
Abstract
Background γ-Aminobutyric acid type A (GABAA) receptors provide the main inhibitory control in the brain. Their heterogeneity may make it possible to precisely target drug effects to selected neuronal populations. In situ hybridization using rat brain sections has revealed a unique expression of GABAA receptor ε and θ subunit transcripts in the locus coeruleus, where they are accompanied at least by α3, α2, β1 and β3 subunits. Here, we studied the pharmacology of the human α3β1, α3β1ε, α3β1θ and α3β1εθ receptor subtypes expressed in Xenopus oocytes and compared them with the γ2 subunit-containing receptors. Results The GABA sensitivites and effects of several positive modulators of GABAA receptors were studied in the absence and the presence of EC25 GABA using the two-electrode voltage-clamp method. We found 100-fold differences in GABA sensitivity between the receptors, α3β1ε subtype being the most sensitive and α3β1γ2 the least sensitive. Also gaboxadol dose-response curves followed the same sensitivity rank order, with EC50 values being 72 and 411 μM for α3β1ε and α3β1γ2 subtypes, respectively. In the presence of EC25 GABA, introduction of the ε subunit to the receptor complex resulted in diminished modulatory effects by etomidate, propofol, pregnanolone and flurazepam, but not by pentobarbital. Furthermore, the α3β1ε subtype displayed picrotoxin-sensitive spontaneous activity. The θ subunit-containing receptors were efficiently potentiated by the anesthetic etomidate, suggesting that θ subunit could bring the properties of β2 or β3 subunits to the receptor complex. Conclusion The ε and θ subunits bring additional features to α3β1 GABAA receptors. These receptor subtypes may constitute as novel drug targets in selected brain regions, e.g., in the brainstem locus coeruleus nuclei.
Collapse
Affiliation(s)
- Martin Ranna
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Saku T Sinkkonen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Tommi Möykkynen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Mikko Uusi-Oukari
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520 Turku, Finland
| | - Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| |
Collapse
|
31
|
Heiner I, Radukina N, Eisfeld J, Kühn F, Lückhoff A. Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:325-33. [PMID: 15841395 DOI: 10.1007/s00210-005-1033-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TRPM2 channels play an important role in the activation process of neutrophil granulocytes. One mechanism of TRPM2 channel gating is the binding of intracellular ADP ribose (ADPR) to the Nudix box domain in the C-terminal tail of TRPM2. Intracellular Ca(2+), although not an activator of TRPM2 by its own, significantly enhances TRPM2 gating by ADPR. Stimulation of neutrophil granulocytes with the chemoattractant peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) induces release of Ca(2+) ions from intracellular stores which in cooperation with endogenous ADPR levels enable Ca(2+) influx through TRPM2. Stimulation of the ectoenzyme CD38, a membrane-associated glycohydrolase with ADPR as main product, and uptake of ADPR into the cell may contribute to the effects of fMLP. Inhibition of ADPR production, of uptake and of binding to TRPM2 are all potential pharmacological principles by which a modulation of neutrophil function may become possible in future.
Collapse
Affiliation(s)
- Inka Heiner
- Institut für Physiologie, Medizinische Fakultät der Rheinisch-Westfälischen Technischen Hochschule, 52057, Aachen, Germany
| | | | | | | | | |
Collapse
|
32
|
Korpi ER, Sinkkonen ST. GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 2005; 109:12-32. [PMID: 15996746 DOI: 10.1016/j.pharmthera.2005.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 12/30/2022]
Abstract
The main inhibitory neurotransmitter system in the brain, the gamma-aminobutyric acid (GABA) system, is the target for many clinically used drugs to treat, for example, anxiety disorders and epilepsy and to induce sedation and anesthesia. These drugs facilitate the function of pentameric A-type GABA (GABA(A)) receptors that are extremely widespread in the brain and composed from the repertoire of 19 subunit variants. Modern genetic studies have found associations of various subunit gene polymorphisms with neuropsychiatric disorders, including alcoholism, schizophrenia, anxiety, and bipolar affective disorder, but these studies are still at their early phase because they still have failed to lead to validated drug development targets. Recent neurobiological studies on new animal models and receptor subunit mutations have revealed novel aspects of the GABA(A) receptors, which might allow selective targeting of the drug action in receptor subtype-selective fashion, either on the synaptic or extrasynaptic receptor populations. More precisely, the greatest advances have occurred in the clarification of the molecular and behavioral mechanisms of action of the GABA(A) receptor agonists already in the clinical use, such as benzodiazepines and anesthetics, rather than in the introduction of novel compounds to clinical practice. It is likely that these new developments will help to overcome the present problems of the chronic treatment with nonselective GABA(A) agonists, that is, the development of tolerance and dependence, and to focus the drug action on the neurobiologically and neuropathologically relevant substrates.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
33
|
Yuan Y, Atchison WD. Methylmercury induces a spontaneous, transient slow inward chloride current in Purkinje cells of rat cerebellar slices. J Pharmacol Exp Ther 2005; 313:751-64. [PMID: 15687375 DOI: 10.1124/jpet.104.080721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methylmercury (MeHg; 10-100 microM) induced a spontaneous, transient, slow inward current in Purkinje cells in rat cerebellar slices. Insensitivity of this current to tetrodotoxin suggests that its generation is not related to presynaptic firing. The present study was designed to attempt to identify the ionic origin of this current. Neither Gd(3+), a nonspecific cation channel blocker, nor tetrakis(2-pyridylmethyl)ethylethylenediamine, which chelates Zn(2+), could prevent this current. Following dialysis of cells with a low-[Cl(-)] pipette solution, the giant currents were inducible only when the cells were held at potentials more positive than 0 mV but not at potentials more negative than -60 mV. In addition, no giant currents were observed when cells were held at 0 mV under symmetrical [Cl(-)] conditions. Thus, this current seems to be mediated by Cl(-). However, it was insensitive to the glycine receptor antagonist strychnine. The anion channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or niflumic acid suppressed GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents. Niflumic acid also prevented appearance of this giant current; DIDS was only effective at more positive membrane potentials. Thus, this current seems to be carried by a voltage-dependent Cl(-) channel. Reducing extracellular Ca(2+) concentration and/or intracellular application of the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid seemed to be ineffective at preventing appearance of this current. Thus, these data do not seem to support the conclusion that this current is mediated by a Ca(2+)-activated Cl(-) channel. The role that this current plays in MeHg-induced neurotoxicity is unknown.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|
34
|
Babot Z, Cristòfol R, Suñol C. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAAreceptors and niflumic acid-sensitive chloride channels. Eur J Neurosci 2005; 21:103-12. [PMID: 15654847 DOI: 10.1111/j.1460-9568.2004.03848.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl(-) channels.
Collapse
Affiliation(s)
- Zoila Babot
- Department of Neurochemistry, Institut d'Investigacions Biomediques de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, IDIBAPS, Rossello 161, 08036 Barcelona, Spain
| | | | | |
Collapse
|
35
|
Hill K, Benham CD, McNulty S, Randall AD. Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 2004; 47:450-60. [PMID: 15275834 DOI: 10.1016/j.neuropharm.2004.04.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/26/2004] [Accepted: 04/29/2004] [Indexed: 11/29/2022]
Abstract
Like a number of other TRP channels, TRPM2 is a Ca(2+)-permeable non-selective cation channel, the activity of which is regulated by intracellular and extracellular Ca(2+). A unique feature of TRPM2 is its activation by ADP-ribose and chemical species that arise during oxidative stress, for example, NAD(+) and H(2)O(2). These properties have lead to proposals that this channel may play a role in the cell death produced by pathological redox states. The lack of known antagonists of this channel have made these hypotheses difficult to test. Here, we demonstrate, using patch clamp electrophysiology, that the non-steroidal anti-inflammatory compound flufenamic acid (FFA) inhibits recombinant human TRPM2 (hTRPM2) as well as currents activated by intracellular ADP-ribose in the CRI-G1 rat insulinoma cell line. All concentrations tested in a range from 50 to 1000 microM produced complete inhibition of the TRPM2-mediated current. Following FFA removal, a small (typically 10-15%) component of current was rapidly recovered (time constant approximately 3 s), considerably longer periods in the absence of FFA produced no further current recovery. Reapplication of FFA re-antagonised the recovered current and subsequent FFA washout produced recovery of only a small percentage of the reblocked current. Decreasing extracellular pH accelerated FFA inhibition of TRPM2. Additional experiments indicated hTRPM2 activation was required for FFA antagonism to occur and that the generation of irreversible antagonism was preceded by a reversible component of block. FFA inhibition could not be induced by intracellular application of FFA. ADP-ribose activated currents in the rat insulinoma cell line CRI-G1 were also antagonised by FFA with concentration- and pH-dependent kinetics. In contrast to the observations made with hTRPM2, antagonism of ADP-ribose activated currents in CRI-G1 cells could be fully reversed following FFA removal. These experiments suggest that FFA may be a useful tool antagonist for studies of TRPM2 function.
Collapse
Affiliation(s)
- K Hill
- Department of Neurology and GI CEDD, GlaxoSmithKline Research and Development Ltd, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | |
Collapse
|
36
|
Smith AJ, Oxley B, Malpas S, Pillai GV, Simpson PB. Compounds exhibiting selective efficacy for different beta subunits of human recombinant gamma-aminobutyric acid A receptors. J Pharmacol Exp Ther 2004; 311:601-9. [PMID: 15210837 DOI: 10.1124/jpet.104.070342] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inhibitory GABA(A) receptor modulators are widely used therapeutic agents for a variety of central nervous system disorders. Ltk(-) cells stably expressing human recombinant GABA(A) subunits (alpha1beta1-3gamma2s) were seeded into 96-well plates, loaded with chlorocoumarin-2-dimyristoyl phosphatidylethanolamine and bis(1,3-diethyl-2-thiobarbiturate)trimethineoxonol, and rapid fluorescence resonance energy transfer technique (FRET) measurements were made of GABA-evoked depolarizations in low-Cl(-) buffer using a voltage/ion probe reader. The influence of different betasubunits on the ability of agents to modulate and directly activate the ion channel was examined. GABA evoked concentration-dependent decreases in FRET, increasing fluorescence emission ratio (460/580 nm) at alpha1beta1gamma2, alpha1beta2gamma2, and alpha1beta3gamma2 receptors with similar maximal amplitude (P > 0.05, n = 17) and EC(50) values of 2.4 +/- 0.2, 2.5 +/- 0.2, and 1.3 +/- 0.1 microM, respectively. Piperidine-4-sulfonic acid and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol were less potent, with EC(50) values of 8.7 +/- 0.9, 9.2 +/- 0.5, and 11.7 +/- 1.2, and 43.7 +/- 6.4, 24.8 +/- 1.6, and 26.1 +/- 2.4 microM, respectively. Potency and maximal efficacy of propofol, methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, pentobarbital, and steroids, 5alpha-pregnan-3alpha-ol-20-one and 5beta-pregnan-3alpha-ol-20-one, were unaffected by the beta isoform present in the receptor complex. However, several compounds displayed beta2/3 subunit selectivity, notably loreclezole, R(-)-etomidate, and a group of anti-inflammatory agents including mefenamic acid, flufenamic acid, meclofenamic acid, tolfenamic acid, niflumic acid, and diflunisal. The anti-inflammatories exhibited varying levels of efficacy at beta2/3 subunits, with micromolar potency, while having antagonist or weak inverse agonist profiles at alpha1beta1gamma2. Diflunisal was the most efficacious compound, eliciting greater potentiation than loreclezole (90 +/- 14% and 109 +/- 14% at beta3 and beta2, respectively, compared with 62 +/- 6% and 56 +/- 3%), whereas niflumic acid exhibited the lowest efficacy. An additional agent, olsalazine, weakly potentiated responses at all three receptors without any selectivity. This study identifies and characterizes a variety of allosteric modulators for which betasubunits are an important determinant of efficacy and potency.
Collapse
Affiliation(s)
- Alison J Smith
- Sharp and Dohme Research Laboratories, Merck, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | |
Collapse
|