1
|
Pal C. Targeting mitochondria with small molecules: A promising strategy for combating Parkinson's disease. Mitochondrion 2024; 79:101971. [PMID: 39357561 DOI: 10.1016/j.mito.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
2
|
Magliocca G, Esposito E, Tufano M, Piccialli I, Rubino V, Tedeschi V, Sisalli MJ, Carriero F, Ruggiero G, Secondo A, Annunziato L, Scorziello A, Pannaccione A. Involvement of K V3.4 Channel in Parkinson's Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression? Antioxidants (Basel) 2024; 13:999. [PMID: 39199246 PMCID: PMC11351402 DOI: 10.3390/antiox13080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified KV3.4, a ROS-sensitive KV channel carrying fast-inactivating currents, as a potential therapeutic target against neurodegeneration. In fact, it has been hypothesized that KV3.4 channels could play a role in PD etiopathogenesis, controlling astrocytic activation and detrimental pathways in A53T mice, a well-known model of familial PD. Here, we showed that the A53T midbrain, primarily involved in the initial phase of PD pathogenesis, displayed an early upregulation of the KV3.4 channel at 4 months, followed by its reduction at 12 months, compared with age-matched WT. On the other hand, in the A53T striatum, the expression of KV3.4 remained high at 12 months, decreasing thereafter, in 16-month-old mice. The proteomic profile highlighted a different detrimental phenotype in A53T brain areas. In fact, the A53T striatum and midbrain differently expressed neuroprotective/detrimental pathways, with the variation of astrocytic p27kip1, XIAP, and Smac/DIABLO expression. Of note, a switch from protective to detrimental phenotype was characterized by the upregulation of Smac/DIABLO and downregulation of p27kip1 and XIAP. This occurred earlier in the A53T midbrain, at 12 months, compared with the striatum proteomic profile. In accordance, an upregulation of Smac/DIABLO and a downregulation of p27kip1 occurred in the A53T striatum only at 16 months, showing the slowest involvement of this brain area. Of interest, HIF-1α overexpression was associated with the detrimental profile in midbrain and its major vulnerability. At the cellular level, patch-clamp recordings revealed that primary A53T striatum astrocytes showed hyperpolarized resting membrane potentials and lower firing frequency associated with KV3.4 ROS-dependent hyperactivity, whereas primary A53T midbrain astrocytes displayed a depolarized resting membrane potential accompanied by a slight increase of KV3.4 currents. Accordingly, intracellular Ca2+ homeostasis was significantly altered in A53T midbrain astrocytes, in which the ER Ca2+ level was lower than in A53T striatum astrocytes and the respective littermate controls. Collectively, these results suggest that the early KV3.4 overexpression and ROS-dependent hyperactivation in astrocytes could take part in the different vulnerabilities of midbrain and striatum, highlighting astrocytic KV3.4 as a possible new therapeutic target in PD.
Collapse
Affiliation(s)
- Giorgia Magliocca
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Emilia Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Maria Jose Sisalli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| |
Collapse
|
3
|
Lei T, Li C, Liu Y, Cui Z, Deng S, Cao J, Yang H, Chen P. Microfluidics-enabled mesenchymal stem cell derived Neuron like cell membrane coated nanoparticles inhibit inflammation and apoptosis for Parkinson's Disease. J Nanobiotechnology 2024; 22:370. [PMID: 38918856 PMCID: PMC11197265 DOI: 10.1186/s12951-024-02587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Parkinson's disease (PD) is the second largest group of neurodegenerative diseases, and its existing drug treatments are not satisfactory. Natural cell membrane drugs are used for homologous targeting to enhance efficacy. In this study, microfluidic electroporation chip prepared mesenchymal stem cell-derived neuron-like cell membrane-coated curcumin PLGA nanoparticles (MM-Cur-NPs) was synthesized and explored therapeutic effect and mechanism in PD. MM-Cur-NPs can protect neuron from damage, restore mitochondrial membrane potential and reduce oxidative stress in vitro. In PD mice, it also can improve movement disorders and restore damaged TH neurons. MM-Cur-NPs was found to be distributed in the brain and metabolized with a delay within 24 h. After 1 h administration, MM-Cur-NPs were distributed in brain with a variety of neurotransmitters were significantly upregulated, such as dopamine. Differentially expressed genes of RNA-seq were enriched in the inflammation regulation, and it was found the up-expression of anti-inflammatory factors and inhibited pro-inflammatory factors in PD. Mechanically, MM-Cur-NPs can not only reduce neuronal apoptosis, inhibit the microglial marker IBA-1 and inflammation, but also upregulate expression of neuronal mitochondrial protein VDAC1 and restore mitochondrial membrane potential. This study proposes a therapeutic strategy provide neuroprotective effects through MM-Cur-NPs therapy for PD.
Collapse
Affiliation(s)
- Tong Lei
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
- Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province, 425199, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
- Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province, 425199, China.
| |
Collapse
|
4
|
Gu Y, Liu M, Ma L, Quinn RJ. Advancing Kir4.2 Channel Ligand Identification through Collision-Induced Affinity Selection Mass Spectrometry. ACS Chem Biol 2024; 19:763-773. [PMID: 38449446 PMCID: PMC10949200 DOI: 10.1021/acschembio.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The inwardly rectifying potassium Kir4.2 channel plays a crucial role in regulating membrane potentials and maintaining potassium homeostasis. Kir4.2 has been implicated in various physiological processes, including insulin secretion, gastric acid regulation, and the pathogenesis of central nervous system diseases. Despite its significance, the number of identified ligands for Kir4.2 remains limited. In this study, we established a method to directly observe ligands avoiding a requirement to observe the high-mass ligand-membrane protein-detergent complexes. This method used collision-induced affinity selection mass spectrometry (CIAS-MS) to identify ligands dissociated from the Kir4.2 channel-detergent complex. The CIAS-MS approach integrated all stages of affinity selection within the mass spectrometer, offering advantages in terms of time efficiency and cost-effectiveness. Additionally, we explored the effect of collisional voltage ramps on the dissociation behavior of the ligand and the ligand at different concentrations, demonstrating dose dependency.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Linlin Ma
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- School
of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
5
|
Manchinu MF, Pala M, Palmas MF, Diana MA, Maschio A, Etzi M, Pisanu A, Diana FI, Marongiu J, Mansueto S, Carboni E, Fusco G, De Simone A, Carta AR. Region-specific changes in gene expression are associated with cognitive deficits in the alpha-synuclein-induced model of Parkinson's disease: A transcriptomic profiling study. Exp Neurol 2024; 372:114651. [PMID: 38092188 DOI: 10.1016/j.expneurol.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Mild cognitive impairment (MCI) is a common trait of Parkinson's disease (PD), often associated with early motor deficits, eventually evolving to PD with dementia in later disease stages. The neuropathological substrate of MCI is poorly understood, which weakens the development and administration of proper therapies. In an α-synuclein (αSyn)-based model of PD featuring early motor and cognitive impairments, we investigated the transcriptome profile of brain regions involved in PD with cognitive deficits, via a transcriptomic analysis based on RNA sequencing (RNA-seq) technology. Rats infused in the substantia nigra with human α-synuclein oligomers (H-SynOs) developed mild cognitive deficits after three months, as measured by the two-trial recognition test in a Y-maze and the novel object recognition test. RNA-seq analysis showed that 17,436 genes were expressed in the anterior cingulate cortex (ACC) and 17,216 genes in the hippocampus (HC). In the ACC, 51 genes were differentially expressed between vehicle and H-αSynOs treated samples, which showed N= 21 upregulated and N = 30 downregulated genes. In the HC, 104 genes were differentially expressed, the majority of them not overlapping with DEGs in the ACC, with N = 41 upregulated and N = 63 downregulated in H-αSynOs-treated samples. The Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, followed by the protein-protein interaction (PPI) network inspection of DEGs, revealed that in the ACC most enriched terms were related with immune functions, specifically with antigen processing/presentation via the major histocompatibility complex (MHC) class II and phagocytosis via CD68, supporting a role for dysregulated immune responses in early PD cognitive dysfunction. Immunofluorescence analysis confirmed the decreased expression of CD68 within microglial cells. In contrast, the most significantly enriched terms in the HC were mainly involved in mitochondrial homeostasis, potassium voltage-gated channel, cytoskeleton and fiber organisation, suggesting that the gene expression in the neuronal population was mostly affected in this region in early disease stages. Altogether results show that H-αSynOs trigger a region-specific dysregulation of gene expression in ACC and HC, providing a pathological substrate for MCI associated with early PD.
Collapse
Affiliation(s)
| | - Mauro Pala
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | | | - Maria Antonietta Diana
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Andrea Maschio
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, 09040 Cagliari, Italy
| | | | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Silvia Mansueto
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy.
| |
Collapse
|
6
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
7
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Roles of Potassium and Calcium Currents in the Bistable Firing Transition. Brain Sci 2023; 13:1347. [PMID: 37759949 PMCID: PMC10527161 DOI: 10.3390/brainsci13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (I). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and I) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil
| | | | - Diogo L. M. Souza
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Conrado F. Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Enrique C. Gabrick
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Lucas E. Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - José D. Szezech
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Antonio M. Batista
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Iberê L. Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
10
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Role of Potassium and Calcium Currents in the Bistable Firing Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553625. [PMID: 37645875 PMCID: PMC10462112 DOI: 10.1101/2023.08.16.553625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slowwave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking cells (RS) with frequency adaptation and do not exhibit bursts in current-clamp experiments ( in vitro ). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings ( g syn ) and external current inputs ( I ). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold ( I L ) and low-threshold ( I T ) ion channels play a role in increasing and decreasing the parameter conditions ( g syn and I ) in which bistable dynamics occur, respectively. For high values of I L conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance I T increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, 09606-045 São Bernardo do Campo, SP, Brazil
| | | | - Diogo L M Souza
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Conrado F Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Enrique C Gabrick
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Lucas E Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - José D Szezech
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Antonio M Batista
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Rodrigo F O Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
11
|
Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, Acuña-Castroviejo D, Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett 2023; 28:51. [PMID: 37370025 DOI: 10.1186/s11658-023-00462-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines interleukin (IL)-1β and IL-18. Multiple studies have demonstrated the importance of the NLRP3 inflammasome in the development of immune and inflammation-related diseases, including arthritis, Alzheimer's disease, inflammatory bowel disease, and other autoimmune and autoinflammatory diseases. This review first explains the activation and regulatory mechanism of the NLRP3 inflammasome. Secondly, we focus on the role of the NLRP3 inflammasome in various inflammation-related diseases. Finally, we look forward to new methods for targeting the NLRP3 inflammasome to treat inflammation-related diseases, and provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyan Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain
- Ibs. Granada and CIBERfes, Granada, Spain
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Xin Zhang
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Meng Li
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Tong Jing
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain.
- Ibs. Granada and CIBERfes, Granada, Spain.
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.
| |
Collapse
|
12
|
Tang T, Jian B, Liu Z. Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson's Disease. Biomolecules 2023; 13:biom13050802. [PMID: 37238672 DOI: 10.3390/biom13050802] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Lysosomes are membrane-bound organelles with an acidic lumen and are traditionally characterized as a recycling center in cells. Lysosomal ion channels are integral membrane proteins that form pores in lysosomal membranes and allow the influx and efflux of essential ions. Transmembrane protein 175 (TMEM175) is a unique lysosomal potassium channel that shares little sequence similarity with other potassium channels. It is found in bacteria, archaea, and animals. The prokaryotic TMEM175 consists of one six-transmembrane domain that adopts a tetrameric architecture, while the mammalian TMEM175 is comprised of two six-transmembrane domains that function as a dimer in lysosomal membranes. Previous studies have demonstrated that the lysosomal K+ conductance mediated by TMEM175 is critical for setting membrane potential, maintaining pH stability, and regulating lysosome-autophagosome fusion. AKT and B-cell lymphoma 2 regulate TMEM175's channel activity through direct binding. Two recent studies reported that the human TMEM175 is also a proton-selective channel under normal lysosomal pH (4.5-5.5) as the K+ permeation dramatically decreased at low pH while the H+ current through TMEM175 greatly increased. Genome-wide association studies and functional studies in mouse models have established that TMEM175 is implicated in the pathogenesis of Parkinson's disease, which sparks more research interests in this lysosomal channel.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|