1
|
Yi Z, Yang B, Wan F, Lu J, Liu D, Lin L, Xu Y, Cen Z, Fan M, Liu W, Lu Q, Jiang G, Zhang Y, Song E, Gao J, Ye D. Chinese medicine Linggui Zhugan formula protects against diabetic kidney disease in close association with inhibition of proteinase 3-mediated podocyte apoptosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118650. [PMID: 39094755 DOI: 10.1016/j.jep.2024.118650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Linggui-Zhugan (LGZG) comprises four herbs and is a classic formula in traditional Chinese medicine. There is strong clinical evidence of its pleiotropic effects in the prevention of diabetes and its related complications. Although several classes of drugs are currently available for clinical management of diabetic kidney disease (DKD), tight glycemic and/or hypertension control may not prevent disease progression. This study evaluated the therapeutic effect of the ethnopharmacological agent LGZG on DKD. AIM OF THE STUDY This study aimed to investigate the effects of LGZG formula with standard quality control on experimental DKD and its related metabolic disorders in animal model. Meanwhile, the present study aimed to investigate regulatory effects of LGZG on renal proteinase 3 (PR3) to reveal mechanisms underlying renoprotective benefits of LGZG. MATERIALS AND METHODS LGZG decoction was fingerprinted by high-performance liquid chromatography for quality control. An experimental model of DKD was induced in C57 BL/6J mice by a combination of high-fat diet feeding, uninephrectomy, and intraperitoneal injection of streptozocin. The LGZG decoction was administrated by daily oral gavage. RESULTS Treatment with LGZG formula significantly attenuated DKD-like traits (including severe albuminuria, mesangial matrix expansion, and podocyte loss) and metabolic dysfunction (disordered body composition and dyslipidemia) in mice. RNA sequencing data revealed a close association of LGZG treatment with marked modulation of signaling pathways related to podocyte injury and cell apoptosis. Mechanistically, LGZG suppressed the DKD-triggered increase in renal PR3 and podocyte apoptosis. In-vitro incubation of mouse immortalized podocytes with LGZG-medicated serum attenuated PR3-mediated apoptosis. CONCLUSION Our data demonstrated that the LGZG formula protected against DKD in mice and was closely associated with its inhibitory effects on PR3-mediated podocyte apoptosis.
Collapse
Affiliation(s)
- Zixuan Yi
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bei Yang
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangyu Wan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongyang Liu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Lin
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhikang Cen
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqi Fan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhan Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuying Zhang
- Department of Obstetrics, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Erfei Song
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, China; Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, 510630, Guangdong Province, China
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Domain R, Seren S, Jerke U, Makridakis M, Chen KJ, Zoidakis J, Rhimi M, Zhang X, Bonvent T, Croix C, Gonzalez L, Li D, Basso J, Paget C, Viaud-Massuard MC, Lalmanach G, Shi GP, Aghdassi A, Vlahou A, McDonald PP, Couillin I, Williams R, Kettritz R, Korkmaz B. Pharmacological inhibition of cathepsin S and of NSPs-AAP-1 (a novel, alternative protease driving the activation of neutrophil serine proteases). Biochem Pharmacol 2024; 229:116114. [PMID: 39455238 DOI: 10.1016/j.bcp.2024.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 10/28/2024]
Abstract
An uncontrolled activity of neutrophil serine proteases (NSPs) contributes to inflammatory diseases. Cathepsin C (CatC) is known to activate NSPs during neutrophilic differentiation and represents a promising pharmacological target in NSP-mediated diseases. In humans, Papillon-Lefèvre syndrome (PLS) patients have mutations in theirCTSC gene, resulting in the complete absence of CatC activity. Despite this, low residual NSP activities are detected in PLS neutrophils (<10% vs healthy individuals), suggesting the involvement of CatC-independent proteolytic pathway(s) in the activation of proNSPs. This prompted us to characterize CatC-independent NSP activation pathways by blocking proCatC maturation. In this study, we show that inhibition of intracellular CatS almost completely blocked CatC maturation in human promyeloid HL-60 cells. Despite this, NSP activation was not significantly reduced, confirming the presence of a CatC-independent activation pathway involving a CatC-like protease that we termed NSPs-AAP-1. Similarly, when human CD34+ progenitor cells were treated with CatS inhibitors during neutrophilic differentiation in vitro, CatC activity was nearly abrogated but ∼30% NSP activities remained, further supporting the existence of NSPs-AAP-1. Our data indicate that NSPs-AAP-1 is a cysteine protease that is inhibited by reversible nitrile compounds designed for CatC inhibition. We further established a proof of concept for the indirect, although incomplete, inhibition of NSPs by pharmacological targeting of CatC maturation using CatS inhibitors. This emphasizes the potential of CatS as a therapeutic target for inflammatory diseases. Thus, preventing proNSP maturation using a CatS inhibitor, alone or in combination with a CatC/NSPs-AAP-1 inhibitor, represents a promising approach to efficiently control the extent of tissue injury in neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Roxane Domain
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Seda Seren
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Uwe Jerke
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Kuan-Ju Chen
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Jérôme Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Moez Rhimi
- INRAE UMR-1319, Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Tillia Bonvent
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Cécile Croix
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Dedong Li
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Jessica Basso
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Christophe Paget
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Marie-Claude Viaud-Massuard
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Gilles Lalmanach
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Guo-Ping Shi
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Aghdassi
- Department of Medicine A - Gastroenterology, Nephrology, Endocrinology and Rheumatology, University Medicine Greifswald, Greifswald, Germany
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Isabelle Couillin
- CNRS UMR-7355, Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, Orleans, France
| | - Rich Williams
- The Patrick G Johnston Center for Cancer Research, Queen's University, Belfast, UK
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France.
| |
Collapse
|
3
|
Blin T, Parent C, Pichon G, Guillon A, Jouan Y, Allouchi H, Aubrey N, Boursin F, Domain R, Korkmaz B, Sécher T, Heuzé-Vourc'h N. The proteolytic airway environment associated with pneumonia acts as a barrier for treatment with anti-infective antibodies. Eur J Pharm Biopharm 2024; 195:114163. [PMID: 38086491 DOI: 10.1016/j.ejpb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/29/2024]
Abstract
Like pneumonia, coronavirus disease 2019 (COVID-19) is characterized by a massive infiltration of innate immune cells (such as polymorphonuclear leukocytes) into the airways and alveolar spaces. These cells release proteases that may degrade therapeutic antibodies and thus limit their effectiveness. Here, we investigated the in vitro and ex vivo impact on anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) IgG1s and other IgG subclasses (IgG2 and IgG4) of the neutrophil elastase, proteinase 3 and cathepsin G (the three main neutrophil serine proteases) found in endotracheal aspirates from patients with severe COVID-19. Although the IgGs were sensitive to neutrophil serine proteases, IgG2 was most resistant to proteolytic degradation. The two anti-SARS CoV2 antibodies (casirivimab and imdevimab) were sensitive to the lung's proteolytic environment, although neutrophil serine protease inhibitors only partly limited the degradation. Overall, our results show that the pneumonia-associated imbalance between proteases and their inhibitors in the airways contributes to degradation of antiviral antibodies.
Collapse
Affiliation(s)
- Timothée Blin
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Department of Pulmonary Medicine, Cystic Fibrosis Resource Center, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Gabrielle Pichon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Antoine Guillon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Critical Care Department, F-37032 Tours, France
| | - Youenn Jouan
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Cardiac Surgery Department, F-37032 Tours, France
| | - Hassan Allouchi
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Pharmacy Department, F-37032 Tours, France
| | - Nicolas Aubrey
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Fanny Boursin
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Roxane Domain
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Baris Korkmaz
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France.
| |
Collapse
|
4
|
Brami I, Zuckerman T, Ram R, Avni B, Peretz G, Ostrovsky D, Lior Y, Faour C, McElvaney O, McElvaney NG, Lewis EC. Altered Serum Alpha1-Antitrypsin Protease Inhibition before and after Clinical Hematopoietic Stem Cell Transplantation: Association with Risk for Non-Relapse Mortality. Int J Mol Sci 2023; 25:422. [PMID: 38203593 PMCID: PMC10779144 DOI: 10.3390/ijms25010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
α1-Antitrypsin (AAT), an acute-phase reactant not unsimilar to C-reactive protein (CRP), is a serine protease inhibitor that harbors tissue-protective and immunomodulatory attributes. Its concentrations appropriately increase during conditions of extensive tissue injury, and it induces immune tolerance, in part, by inhibiting the enzymatic activity of the inflammatory serine protease, proteinase 3 (PR3). Typically administered to patients with genetic AAT deficiency, AAT treatment was recently shown to improve outcomes in patients with steroid-refractory graft-versus-host disease (GVHD). GVHD represents a grave outcome of allogeneic hematopoietic stem cell transplantation (HSCT), a potentially curative intervention for hematological diseases. The procedure requires radio/chemotherapy conditioning of the prospective marrow recipient, a cytotoxic process that causes vast tissue injury and, in some formats, interferes with liver production of AAT. To date, changes in the functional profile of AAT during allogeneic HSCT, and during the cytotoxic intervention that precedes HSCT, are unknown. The present study followed 53 patients scheduled for allogeneic HSCT (trial registration NCT03188601). Serum samples were tested before and after HSCT for AAT and CRP levels and for intrinsic anti-proteolytic activity. The ex vivo response to clinical-grade AAT was tested on circulating patient leukocytes and on a human epithelial cell line treated with patient sera in a gap closure assay. According to the ex vivo experiments, circulating leukocytes responded to AAT with a favorable immune-regulated profile, and epithelial gap closure was enhanced by AAT in sera from GVHD-free patients but not in sera from patients who developed GVHD. According to serum collected prior to HSCT, non-relapse mortality was reliably predicted by combining three components: AAT and CRP levels and serum anti-proteolytic activity. Taken together, HSCT outcomes are significantly affected by the anti-proteolytic function of circulating AAT, supporting early AAT augmentation therapy for allogeneic HSCT patients.
Collapse
Affiliation(s)
- Ido Brami
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Tsila Zuckerman
- Hematology Department and Bone Marrow Transplantation Unit, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ron Ram
- Bone Marrow Transplantation Unit, The Division of Hematology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel;
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem 9112001, Israel;
| | - Galit Peretz
- Department of Hematology, Soroka University Medical Center, Be’er-Sheva 8410101, Israel;
| | - Daniel Ostrovsky
- Clinical Research Center, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 8410101, Israel;
| | - Yotam Lior
- Division of Anesthesiology, Pain and Intensive Care, Tel-Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel;
| | - Caroline Faour
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israeli Institute of Technology, Haifa 3109601, Israel;
| | - Oisin McElvaney
- The Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (O.M.); (N.G.M.)
| | - Noel G. McElvaney
- The Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (O.M.); (N.G.M.)
| | - Eli C. Lewis
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| |
Collapse
|
5
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
6
|
Carla Guarino, Seren S, Lemoine R, Hummel A, Margotin JE, El-Benna J, Hoarau C, Specks U, Jenne D, Korkmaz B. Constitutive and induced forms of membrane-bound proteinase 3 interact with antineutrophil cytoplasmic antibodies and promote immune activation of neutrophils. J Biol Chem 2023; 299:103072. [PMID: 36849007 PMCID: PMC10124916 DOI: 10.1016/j.jbc.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Proteinase 3 (PR3) is the main target antigen of anti-neutrophil cytoplasmic antibodies (ANCA) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor (α1PI) that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with α1PI, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pre-treatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Seda Seren
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Roxane Lemoine
- EA4245 "Transplantation, Immunology and Inflammation", University of Tours, France and Clinical immunology and allergology Service, Tours University Hospital, F-37032, Tours, France
| | - AmberM Hummel
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Jean-Edouard Margotin
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018, Paris, France
| | - Cyrille Hoarau
- EA4245 "Transplantation, Immunology and Inflammation", University of Tours, France and Clinical immunology and allergology Service, Tours University Hospital, F-37032, Tours, France
| | - Ulrich Specks
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - DieterE Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France.
| |
Collapse
|
7
|
Chu TY, Zheng-Gérard C, Huang KY, Chang YC, Chen YW, I KY, Lo YL, Chiang NY, Chen HY, Stacey M, Gordon S, Tseng WY, Sun CY, Wu YM, Pan YS, Huang CH, Lin CY, Chen TC, El Omari K, Antonelou M, Henderson SR, Salama A, Seiradake E, Lin HH. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat Commun 2022; 13:6385. [PMID: 36302784 PMCID: PMC9613636 DOI: 10.1038/s41467-022-34083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Tai-Ying Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chi Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nien-Yi Chiang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Mu Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yi-Shin Pan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Kamel El Omari
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, UK
| | | | | | - Alan Salama
- Department of Renal Medicine, Royal Free Campus, UCL, London, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan.
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
9
|
Saidi A, Wartenberg M, Madinier JB, Ilango G, Seren S, Korkmaz B, Lecaille F, Aucagne V, Lalmanach G. Monitoring Human Neutrophil Activation by a Proteinase 3 Near-Infrared Fluorescence Substrate-Based Probe. Bioconjug Chem 2021; 32:1782-1790. [PMID: 34269060 DOI: 10.1021/acs.bioconjchem.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A near-infrared fluorescent (NIRF) substrate-based probe (SBP) was conceived to monitor secreted human proteinase 3 (hPR3) activity. This probe, called pro3-SBP, is shaped by a fused peptide hairpin loop structure, which associates a hPR3 recognition domain (Val-Ala-Asp-Nva-Ala-Asp-Tyr-Gln, where Nva is norvaline) and an electrostatic zipper (consisting of complementary polyanionic (d-Glu)5 and polycationic (d-Arg)5 sequences) in close vicinity of the N- and C-terminal FRET couple (fluorescent donor, sulfoCy5.5; dark quencher, QSY21). Besides its subsequent stability, no intermolecular fluorescence quenching was detected following its complete hydrolysis by hPR3, advocating that pro3-SBP could further afford unbiased imaging. Pro3-SBP was specifically hydrolyzed by hPR3 (kcat/Km= 440 000 ± 5500 M-1·s-1) and displayed a sensitive detection threshold for hPR3 (subnanomolar concentration range), while neutrophil elastase showed a weaker potency. Conversely, pro3-SBP was not cleaved by cathepsin G. Pro3-SBP was successfully hydrolyzed by conditioned media of activated human neutrophils but not by quiescent neutrophils. Moreover, unlike unstimulated neutrophils, a strong NIRF signal was specifically detected by confocal microscopy following neutrophil ionomycin-induced degranulation. Fluorescence release was abolished in the presence of a selective hPR3 inhibitor, indicating that pro3-SBP is selectively cleaved by extracellular hPR3. Taken together, the present data support that pro3-SBP could be a convenient tool, allowing straightforward monitoring of human neutrophil activation.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Mylène Wartenberg
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Guy Ilango
- IBiSA Electron Microscopy Platform, Université de Tours, Tours 37032, France
| | - Seda Seren
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Brice Korkmaz
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Fabien Lecaille
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Vincent Aucagne
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Gilles Lalmanach
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| |
Collapse
|
10
|
Granel J, Korkmaz B, Nouar D, Weiss SAI, Jenne DE, Lemoine R, Hoarau C. Pathogenicity of Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody in Granulomatosis With Polyangiitis: Implications as Biomarker and Future Therapies. Front Immunol 2021; 12:571933. [PMID: 33679731 PMCID: PMC7930335 DOI: 10.3389/fimmu.2021.571933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.
Collapse
Affiliation(s)
- Jérôme Granel
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| | - Dalila Nouar
- Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Stefanie A I Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Roxane Lemoine
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France
| | - Cyrille Hoarau
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
11
|
Korkmaz B, Lesner A, Marchand-Adam S, Moss C, Jenne DE. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS? J Med Chem 2020; 63:13258-13265. [PMID: 32692176 PMCID: PMC7413214 DOI: 10.1021/acs.jmedchem.0c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
| | - Adam Lesner
- Faculty of Chemistry,
University of Gdansk, 80-398 Gdansk,
Poland
| | - Sylvain Marchand-Adam
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
- Service de Pneumologie,
CHRU de Tours, 37032 Tours,
France
| | - Celia Moss
- Birmingham
Children’s Hospital and University of
Birmingham, B4 6NH Birmingham,
U.K.
| | - Dieter E. Jenne
- Comprehensive Pneumology Center,
Institute of Lung Biology and Disease, German Center for Lung Research
(DZL), Munich and Max-Planck Institute of
Neurobiology, 82152 Planegg-Martinsried,
Germany
| |
Collapse
|
12
|
Granel J, Lemoine R, Morello E, Gallais Y, Mariot J, Drapeau M, Musnier A, Poupon A, Pugnière M, Seren S, Nouar D, Gouilleux-Gruart V, Watier H, Korkmaz B, Hoarau C. 4C3 Human Monoclonal Antibody: A Proof of Concept for Non-pathogenic Proteinase 3 Anti-neutrophil Cytoplasmic Antibodies in Granulomatosis With Polyangiitis. Front Immunol 2020; 11:573040. [PMID: 33101296 PMCID: PMC7546423 DOI: 10.3389/fimmu.2020.573040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a severe autoimmune vasculitis associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA) mainly targeting proteinase 3 (PR3), a neutrophilic serine proteinase. PR3-ANCA binding to membrane-bound PR3 on neutrophils induce their auto-immune activation responsible for vascular lesions. However, the correlation between PR3-ANCA level and disease activity remains inconsistent, suggesting the existence of non-pathogenic PR3-ANCA. In order to prove their existence, we immortalized B lymphocytes from blood samples of GPA patients in remission having persistent PR3-ANCA to isolate non-activating PR3-ANCA. We obtained for the first time a non-activating human IgG1κ anti-PR3 monoclonal antibody (mAb) named 4C3. This new mAb binds soluble PR3 with a high affinity and membrane-bound PR3 on an epitope close to the PR3 hydrophobic patch and in the vicinity of the active site. 4C3 is able to bind FcγRIIA and FcγRIIIB and has a G2F glycosylation profile on asparagine 297. 4C3 did not induce activation of neutrophils and could inhibit human polyclonal PR3-ANCA-induced activation suggesting that 4C3 is non-pathogenic. This characteristic relies on the recognized epitope on PR3 rather than to the Fc portion properties. The existence of non-pathogenic PR3-ANCA, which do not activate neutrophils, could explain the persistence of high PR3-ANCA levels in some GPA patients in remission and why PR3-ANCA would not predict relapse. Finally, these results offer promising perspectives particularly regarding the understanding of PR3-ANCA pathogenicity and the development of new diagnostic and therapeutic strategies in GPA.
Collapse
Affiliation(s)
- Jérôme Granel
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France.,Service transversal d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Roxane Lemoine
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France
| | - Eric Morello
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France
| | - Yann Gallais
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France
| | - Julie Mariot
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France
| | - Marion Drapeau
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France
| | | | - Anne Poupon
- Physiologie de la Reproduction et des Comportements, INRA UMR 0085, CNRS UMR 7247, Université de Tours, Tours, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie, Institut Régional du Cancer, INSERM U1194, Université Montpellier, Montpellier, France
| | - Seda Seren
- Centre d'Etude des Pathologies Respiratoires, INSERM, UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Dalila Nouar
- Service transversal d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Valérie Gouilleux-Gruart
- Université de Tours, Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Hervé Watier
- Université de Tours, Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- Centre d'Etude des Pathologies Respiratoires, INSERM, UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Cyrille Hoarau
- Plateforme B Cell Ressources (BCR) EA4245, Université de Tours, Tours, France.,Service transversal d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
13
|
Zakizadeh F, Mahmoudzadeh-Sagheb H, Asemi-Rad A, Ghasemi M, Moudi B, Sheibak N, Asadikalameh Z, Heidari Z. Upregulation of elafin expression in the fallopian tube of ectopic tubal pregnancies compared to the normal tubes. J Reprod Immunol 2020; 141:103136. [PMID: 32485443 DOI: 10.1016/j.jri.2020.103136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ectopic pregnancy is one of the most important causes of maternal deaths and fallopian tubes are the location of 95% of ectopic pregnancies. Elafin is a natural antimicrobial molecule that plays an important role as an anti-inflammatory agent in mucosal surfaces and has been found in the female reproductive tract. OBJECTIVES The aim of this study was to investigate elafin expression, in the fallopian tube mucosa of ectopic pregnancies compared to the normal tubes using immunohistochemistry (IHC) techniques and quantitative reverse transcription (qRT)-PCR. METHODS In this case-control study, uterine tube samples were obtained from patients with an indication for surgical removal of the tubes. The case group (n = 20) consisted of patients who were undergoing salpingectomy due to an ectopic pregnancy, the control group (n = 20) included patients who had a salpingectomy and hysterectomy. Using qRT-PCR and IHC, the expression of elafin was investigated in both study groups. RESULTS Immunohistochemical expression of elafin in the epithelium and connective tissue was significantly increased in the implantation site of the patients in comparison with the control group (P < 0.001). The level of elafin mRNA increased in the mucous membrane of the fallopian tube from patients with the ectopic pregnancy compared to the normal mucosa (P < 0.001). CONCLUSION Increasing expression of elafin during an ectopic pregnancy may be a mechanism for enhancing innate immune response and be involved in related pathological conditions such as infection and ectopic implantation.
Collapse
Affiliation(s)
- Fatemeh Zakizadeh
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemi-Rad
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Department of Gynecology and Obstetrics, Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nadia Sheibak
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Asadikalameh
- Department of Gynecology and Obstetrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
14
|
N'Guessan K, Grzywa R, Seren S, Gabant G, Juliano MA, Moniatte M, van Dorsselaer A, Bieth JG, Kellenberger C, Gauthier F, Wysocka M, Lesner A, Sienczyk M, Cadene M, Korkmaz B. Human proteinase 3 resistance to inhibition extends to alpha-2 macroglobulin. FEBS J 2020; 287:4068-4081. [PMID: 31995266 DOI: 10.1111/febs.15229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Polymorphonuclear neutrophils contain at least four serine endopeptidases, namely neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤ 105 m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.
Collapse
Affiliation(s)
- Koffi N'Guessan
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Renata Grzywa
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Seda Seren
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Maria A Juliano
- Departamento de Biofísica, Escola Paulista Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marc Moniatte
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alain van Dorsselaer
- LSMBO, CNRS UMR-7178 (CNRS-UdS), ECPM, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Joseph G Bieth
- Laboratoire d'Enzymologie, INSERM U392, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | - Francis Gauthier
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Marcin Sienczyk
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Brice Korkmaz
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| |
Collapse
|
15
|
|
16
|
Tian S, Swedberg JE, Li CY, Craik DJ, de Veer SJ. Iterative Optimization of the Cyclic Peptide SFTI-1 Yields Potent Inhibitors of Neutrophil Proteinase 3. ACS Med Chem Lett 2019; 10:1234-1239. [PMID: 31413811 DOI: 10.1021/acsmedchemlett.9b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neutrophils produce at least four serine proteases that are packaged within azurophilic granules. These enzymes contribute to antimicrobial defense and inflammation but can be destructive if their activities are not properly regulated. Accordingly, they represent therapeutic targets for several diseases, including chronic obstructive pulmonary disease, cystic fibrosis, and rheumatoid arthritis. In this study, we focused on proteinase 3 (PR3), a neutrophil protease with elastase-like specificity, and engineered potent PR3 inhibitors based on the cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1). We used an iterative optimization approach to screen targeted substitutions at the P1, P2, P2', and P4 positions of SFTI-1, and generated several new inhibitors with K i values in the low nanomolar range. These SFTI-variants show high stability in human serum and are attractive leads for further optimization.
Collapse
Affiliation(s)
- Sixin Tian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J. de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Maximova K, Reuter N, Trylska J. Peptidomimetic inhibitors targeting the membrane-binding site of the neutrophil proteinase 3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1502-1509. [DOI: 10.1016/j.bbamem.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
|
18
|
Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol 2018; 145:383-392. [PMID: 30467633 DOI: 10.1007/s00432-018-2799-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Elastin is a signature protein of lungs. Increased elastin turnover driven by altered proteolytic activity is an important part of lung tumorigenesis. Elastin-derived fragments have been shown to be pro-tumorigenic, however, little is known regarding the biomarker potential of such elastin fragments. Here, we present an elastin turnover profile by non-invasively quantifying five specific elastin degradation fragments generated by different proteases. METHODS Elastin fragments were assessed in serum from patients with stage I-IV non-small cell lung cancer (NSCLC) (n = 40) and healthy controls (n = 30) using competitive ELISAs targeting different protease-generated fragments of elastin: ELM12 (generated by matrix metalloproteinase MMP-9 and -12), ELM7 (MMP-7), EL-NE (neutrophil elastase), EL-CG (cathepsin G) and ELP-3 (proteinase 3). RESULTS ELM12, ELM7, EL-NE and EL-CG were all significantly elevated in NSCLC patients (n = 40) when compared to healthy controls (n = 30) (ELM12, p = 0.0191; ELM7, p < 0.0001; EL-NE, p < 0.0001; EL-CG, p < 0.0001). ELP-3 showed no significant difference between patients and controls (p = 0.8735). All fragments correlated positively (Spearman, r: 0.69-0.81) when compared pairwise, except ELM12 (Spearman, r: 0.042-0.097). In general, all fragments were detectable across all stages of the disease. CONCLUSIONS Elastin fragments generated by different proteases are elevated in lung cancer patients compared to healthy controls but differ in their presence. This demonstrates non-invasive biomarker potential of elastin fragments in serum from lung cancer patients and suggests that different pathological mechanisms may be responsible for the elastin turnover, warranting further validation in clinical trials.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Stephanie Nina Kehlet
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Sarah Rank Rønnow
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
19
|
Charest-Morin X, Hébert J, Rivard GÉ, Bonnefoy A, Wagner E, Marceau F. Comparing Pathways of Bradykinin Formation in Whole Blood From Healthy Volunteers and Patients With Hereditary Angioedema Due to C1 Inhibitor Deficiency. Front Immunol 2018; 9:2183. [PMID: 30333824 PMCID: PMC6176197 DOI: 10.3389/fimmu.2018.02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple pathways have been proposed to generate bradykinin (BK)-related peptides from blood. We applied various forms of activation to fresh blood obtained from 10 healthy subjects or 10 patients with hereditary angioedema (HAE-1 or −2 only) to investigate kinin formation. An enzyme immunoassay for BK was applied to extracts of citrated blood incubated at 37°C under gentle agitation for 0–2 h in the presence of activators and/or inhibitory agents. Biologically active kinins in extracts were corroborated by c-Fos accumulation in HEK 293a cells that express either recombinant human B2 or B1 receptors (B2R, B1R). Biological evidence of HAE diagnostic and blood cell activation was also obtained. The angiotensin converting enzyme inhibitor enalaprilat, without any effect per se, increased immunoreactive BK (iBK) concentration under active stimulation of blood. Tissue kallikrein (KLK-1) and Kontact-APTT, a particulate material that activates the contact system, rapidly (5 min) and intensely (>100 ng/mL) induced similar iBK generation in the blood of control or HAE subjects. Tissue plasminogen activator (tPA) slowly (≥1 h) induced iBK generation in control blood, but more rapidly and intensely so in that of HAE patients. Effects of biotechnological inhibitors indicate that tPA recruits factor XIIa (FXIIa) and plasma kallikrein to generate iBK. KLK-1, independent of the contact system, is the only stimulus leading to an inconsistent B1R stimulation. Stimulating neutrophils or platelets did not generate iBK. In the HAE patients observed during remission, iBK formation capability coupled to B2R stimulation appears largely intact. However, a selective hypersensitivity to tPA in the blood of HAE patients suggests a role of plasmin-activated FXIIa in the development of attacks. Proposed pathways of kinin formation dependent on blood cell activation were not corroborated.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Arnaud Bonnefoy
- Division of Hematology/Oncology, CHU Sainte-Justine, Montréal, QC, Canada
| | - Eric Wagner
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res 2018; 19:180. [PMID: 30236095 PMCID: PMC6149181 DOI: 10.1186/s12931-018-0883-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common, multifactorial lung disease which results in significant impairment of patients' health and a large impact on society and health care burden. It is believed to be the result of prolonged, destructive neutrophilic inflammation which results in progressive damage to lung structures. During this process, large quantities of neutrophil serine proteinases (NSPs) are released which initiate the damage and contribute towards driving a persistent inflammatory state.Neutrophil elastase has long been considered the key NSP involved in the pathophysiology of COPD. However, in recent years, a significant role for Proteinase 3 (PR3) in disease development has emerged, both in COPD and other chronic inflammatory conditions. Therefore, there is a need to investigate the importance of PR3 in disease development and hence its potential as a therapeutic target. Research into PR3 has largely been confined to its role as an autoantigen, but PR3 is involved in triggering inflammatory pathways, disrupting cellular signalling, degrading key structural proteins, and pathogen response.This review summarises what is presently known about PR3, explores its involvement particularly in the development of COPD, and indicates areas requiring further investigation.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK.
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| |
Collapse
|
22
|
Seren S, Rashed Abouzaid M, Eulenberg-Gustavus C, Hirschfeld J, Nasr Soliman H, Jerke U, N'Guessan K, Dallet-Choisy S, Lesner A, Lauritzen C, Schacher B, Eickholz P, Nagy N, Szell M, Croix C, Viaud-Massuard MC, Al Farraj Aldosari A, Ragunatha S, Ibrahim Mostafa M, Giampieri F, Battino M, Cornillier H, Lorette G, Stephan JL, Goizet C, Pedersen J, Gauthier F, Jenne DE, Marchand-Adam S, Chapple IL, Kettritz R, Korkmaz B. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis. J Biol Chem 2018; 293:12415-12428. [PMID: 29925593 DOI: 10.1074/jbc.ra118.001922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Membrane-bound proteinase 3 (PR3m) is the main target antigen of anti-neutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis, a systemic small-vessel vasculitis. Binding of ANCA to PR3m triggers neutrophil activation with the secretion of enzymatically active PR3 and related neutrophil serine proteases, thereby contributing to vascular damage. PR3 and related proteases are activated from pro-forms by the lysosomal cysteine protease cathepsin C (CatC) during neutrophil maturation. We hypothesized that pharmacological inhibition of CatC provides an effective measure to reduce PR3m and therefore has implications as a novel therapeutic approach in granulomatosis with polyangiitis. We first studied neutrophilic PR3 from 24 patients with Papillon-Lefèvre syndrome (PLS), a genetic form of CatC deficiency. PLS neutrophil lysates showed a largely reduced but still detectable (0.5-4%) PR3 activity when compared with healthy control cells. Despite extremely low levels of cellular PR3, the amount of constitutive PR3m expressed on the surface of quiescent neutrophils and the typical bimodal membrane distribution pattern were similar to what was observed in healthy neutrophils. However, following cell activation, there was no significant increase in the total amount of PR3m on PLS neutrophils, whereas the total amount of PR3m on healthy neutrophils was significantly increased. We then explored the effect of pharmacological CatC inhibition on PR3 stability in normal neutrophils using a potent cell-permeable CatC inhibitor and a CD34+ hematopoietic stem cell model. Human CD34+ hematopoietic stem cells were treated with the inhibitor during neutrophil differentiation over 10 days. We observed strong reductions in PR3m, cellular PR3 protein, and proteolytic PR3 activity, whereas neutrophil differentiation was not compromised.
Collapse
Affiliation(s)
- Seda Seren
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | | | - Claudia Eulenberg-Gustavus
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Josefine Hirschfeld
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Hala Nasr Soliman
- Medical Molecular Genetics, National Research Centre, Cairo 12622, Egypt
| | - Uwe Jerke
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Koffi N'Guessan
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Sandrine Dallet-Choisy
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Adam Lesner
- the Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Beate Schacher
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Peter Eickholz
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Nikoletta Nagy
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Marta Szell
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Cécile Croix
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Marie-Claude Viaud-Massuard
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Abdullah Al Farraj Aldosari
- the Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Shivanna Ragunatha
- the Department of Dermatology, Venereology, and Leprosy, ESIC Medical College and PGIMSR Rajajinagar, Bengaluru, Karnataka 560010, India
| | | | - Francesca Giampieri
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Maurizio Battino
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Hélène Cornillier
- Service de Dermatologie, Centre Hospitalier Universitaire de Tours, Université de Tours, 37000 Tours, France
| | - Gérard Lorette
- UMR-INRA1282 "Laboratoire de Virologie et Immunologie Moléculaires," Université de Tours, 37000 Tours, France
| | - Jean-Louis Stephan
- the Service d'Hématologie Immunologie et Rhumatologie Pédiatrique, Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez, France
| | - Cyril Goizet
- INSERM U-1211, Rare Diseases, Genetic and Metabolism, MRGM Laboratory, Pellegrin Hospital and University, 33000 Bordeaux, France
| | | | - Francis Gauthier
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Dieter E Jenne
- the Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich, Germany.,the Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany, and
| | - Sylvain Marchand-Adam
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Iain L Chapple
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Ralph Kettritz
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany.,the Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Brice Korkmaz
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France,
| |
Collapse
|
23
|
Guarino C, Gruba N, Grzywa R, Dyguda-Kazimierowicz E, Hamon Y, Łȩgowska M, Skoreński M, Dallet-Choisy S, Marchand-Adam S, Kellenberger C, Jenne DE, Sieńczyk M, Lesner A, Gauthier F, Korkmaz B. Exploiting the S4-S5 Specificity of Human Neutrophil Proteinase 3 to Improve the Potency of Peptidyl Di(chlorophenyl)-phosphonate Ester Inhibitors: A Kinetic and Molecular Modeling Analysis. J Med Chem 2018; 61:1858-1870. [PMID: 29442501 DOI: 10.1021/acs.jmedchem.7b01416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neutrophilic serine protease proteinase 3 (PR3) is involved in inflammation and immune response and thus appears as a therapeutic target for a variety of infectious and inflammatory diseases. Here we combined kinetic and molecular docking studies to increase the potency of peptidyl-diphenyl phosphonate PR3 inhibitors. Occupancy of the S1 subsite of PR3 by a nVal residue and of the S4-S5 subsites by a biotinylated Val residue as obtained in biotin-VYDnVP(O-C6H4-4-Cl)2 enhanced the second-order inhibition constant kobs/[I] toward PR3 by more than 10 times ( kobs/[I] = 73000 ± 5000 M-1 s-1) as compared to the best phosphonate PR3 inhibitor previously reported. This inhibitor shows no significant inhibitory activity toward human neutrophil elastase and resists proteolytic degradation in sputa from cystic fibrosis patients. It also inhibits macaque PR3 but not the PR3 from rodents and can thus be used for in vivo assays in a primate model of inflammation.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Natalia Gruba
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Renata Grzywa
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Edyta Dyguda-Kazimierowicz
- Faculty of Chemistry, Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Yveline Hamon
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Monika Łȩgowska
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Marcin Skoreński
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Sandrine Dallet-Choisy
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Sylvain Marchand-Adam
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques , CNRS-Unité Mixte de Recherche (UMR) , 13288 Marseille , France
| | - Dieter E Jenne
- Institute of Lung Biology and Disease, German Center for Lung Research (DZL) , Comprehensive Pneumology Center Munich and Max Planck Institute of Neurobiology , 82152 Planegg-Martinsried , Germany
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Adam Lesner
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Francis Gauthier
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Brice Korkmaz
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| |
Collapse
|
24
|
Kouznetsov VV, Galvis CEP. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Maximova K, Venken T, Reuter N, Trylska J. d-Peptides as inhibitors of PR3-membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:458-466. [PMID: 29132840 DOI: 10.1016/j.bbamem.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023]
Abstract
Proteinase 3 (PR3) is a neutrophil serine protease present in cytoplasmic granules but also expressed at the neutrophil surface where it mediates proinflammatory effects. Studies of the underlying molecular mechanisms have been hampered by the lack of inhibitors of the PR3 membrane anchorage. Indeed while there exist inhibitors of the catalytic activity of PR3, its membrane interfacial binding site (IBS) is distinct from its catalytic site. The IBS has been characterized both by mutagenesis experiments and molecular modeling. Through docking and molecular dynamics simulations we have designed d-peptides targeting the PR3 IBS. We used surface plasmon resonance to evaluate their effect on the binding of PR3 to phospholipid bilayers. Next, we verified their ability of binding to PR3 via fluorescence spectroscopy and isothermal titration calorimetry. The designed peptides did not affect the catalytic activity of PR3. A few peptides bound to PR3 hydrophobic pockets and inhibited PR3 binding to lipids. While the (KFF)3K d-peptide inconveniently showed a significant affinity for the lipids, another d-peptide (SAKEAFFKLLAS) did not and it inhibited the PR3-membrane binding site with IC50 of about 40μM. Our work puts forward d-peptides as promising inhibitors of peripheral protein-membrane interactions, which remain high-hanging fruits in drug design.
Collapse
Affiliation(s)
- Ksenia Maximova
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Tom Venken
- Department of Molecular Biology, University of Bergen, 5008 Bergen, Norway; Flemish Institute for Technological Research, VITO, B-2400 Mol, Belgium
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, 5008 Bergen, Norway.
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
26
|
Identification and phenotyping of circulating autoreactive proteinase 3-specific B cells in patients with PR3-ANCA associated vasculitis and healthy controls. J Autoimmun 2017; 84:122-131. [DOI: 10.1016/j.jaut.2017.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022]
|
27
|
ANCA-associated vasculitis - clinical utility of using ANCA specificity to classify patients. Nat Rev Rheumatol 2016; 12:570-9. [PMID: 27464484 DOI: 10.1038/nrrheum.2016.123] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a heterogeneous group of rare syndromes characterized by necrotizing inflammation of small and medium-sized blood vessels and the presence of ANCAs. Several clinicopathological classification systems exist that aim to define homogeneous groups among patients with AAV, the main syndromes being microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA) and eosinophilic GPA (EGPA). Two main types of ANCA can be detected in patients with AAV. These ANCAs are defined according to their autoantigen target, namely leukocyte proteinase 3 (PR3) and myeloperoxidase (MPO). Patients with GPA are predominantly PR3-ANCA-positive, whereas those with MPA are predominantly MPO-ANCA-positive, although ANCA specificity overlaps only partially with these clinical syndromes. Accumulating evidence suggests that ANCA specificity could be better than clinical diagnosis for defining homogeneous groups of patients, as PR3-ANCA and MPO-ANCA are associated with different genetic backgrounds and epidemiology. ANCA specificity affects the phenotype of clinical disease, as well as the patient's initial response to remission-inducing therapy, relapse risk and long-term prognosis. Thus, the classification of AAV by ANCA specificity rather than by clinical diagnosis could convey clinically useful information at the time of diagnosis.
Collapse
|