1
|
Luque-Sanchez K, Felix J, Bilbrey J, Restrepo L, Reeves M, McMahon LR, Wilkerson JL. Evaluation of novel epibatidine analogs in the rat nicotine drug discrimination assay and in the rat chronic constriction injury neuropathic pain model. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11622. [PMID: 38389808 PMCID: PMC10880765 DOI: 10.3389/adar.2023.11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 02/24/2024]
Abstract
Nicotine is the primary psychoactive component responsible for maintaining tobacco dependence in humans. Chronic pain is often a consequence of tobacco-related pathologies, and the development of a dual therapeutic that could treat chronic pain and tobacco dependence would be advantageous. Epibatidine reliably substitutes for nicotine in the drug discrimination assay, and is a potent analgesic, but has a side-effect profile that limits its therapeutic potential. Thus, considerable efforts to produce epibatidine derivatives are underway. Here we tested three epibatidine derivatives, 2'-fluoro-3'-(4-nitrophenyl)deschloroepibatidine (RTI-7527-102; i.e., RTI-102), 2'-fluorodeschloroepibatidine (RTI-7527-36; i.e., RTI-36), and 3'-(3″-dimethylaminophenyl)-epibatidine (RTI-7527-76; i.e., RTI-76) in both the rat nicotine drug discrimination assay as well as in the rat chronic constriction injury (CCI) of the sciatic nerve neuropathic pain model. Male and female Sprague-Dawley rats were trained on a fixed-ratio 10 schedule to discriminate nicotine (0.32 mg/kg base) from vehicle. All compounds dose-dependently substituted for nicotine, without significant decreases in response rates. In the discrimination assay the rank order potency was RTI-36 > nicotine > RTI-102 > RTI-76. Evidence suggests the α4β2* subtype is particularly important to nicotine-related abuse potential. Thus, here we utilized the antagonist dihydro-β-erythroidine (DHβE) to examine relative β2 subunit contribution. DHβE (3.2 mg/kg, s.c.) antagonized the discriminative stimulus effects of nicotine. However, relative to antagonism of nicotine, DHβE produced less antagonism of RTI-102 and RTI-76 and greater antagonism of RTI-36. It is likely that at nicotinic receptor subunits RTI-102, RTI-76 and RTI-36 possess differing activity. To confirm that the full discriminative stimulus of these compounds was due to nAChR activity beyond the β2 subunit, we examined these compounds in the presence of the non-selective nicotinic receptor antagonist mecamylamine. Mecamylamine (0.56 mg/kg, s.c.) pretreatment abolished nicotine-paired lever responding for all compounds. In a separate cohort, male and female Sprague-Dawley rats underwent CCI surgery and tested for CCI-induced mechanical allodynia via the von Frey assay. Each compound produced CCI-induced mechanical allodynia reversal. RTI-36 displayed higher potency than either RTI-102 or RTI-76. These novel epibatidine analogs may prove to be useful tools in the fight against nicotine dependence as well as novel neuropathic pain analgesics.
Collapse
Affiliation(s)
- Kevin Luque-Sanchez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jasmine Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Joshua Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Luis Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Morgan Reeves
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|
2
|
Abstract
BACKGROUND Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, USA
| | - Vijayapandi Pandy
- Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Guntur, India
| | | |
Collapse
|
3
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Du L, Xiong X, Lin Y, Zhu J, Yao Z, Wang S, Guo Y, Chen Y, Geary K, Pan Y, Zhou F, Gao S, Zhang D, Yeung SCJ, Zhang H. Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling. Oncogene 2021; 40:1974-1987. [PMID: 33603170 PMCID: PMC7979537 DOI: 10.1038/s41388-021-01682-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Liang Du
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xiao Xiong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jianlin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shuhong Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kyla Geary
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Fuyou Zhou
- The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, 455001, Henan, China
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455001, Henan, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, 471003, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Jamshed L, Perono GA, Jamshed S, Holloway AC. Early Life Exposure to Nicotine: Postnatal Metabolic, Neurobehavioral and Respiratory Outcomes and the Development of Childhood Cancers. Toxicol Sci 2020; 178:3-15. [PMID: 32766841 PMCID: PMC7850035 DOI: 10.1093/toxsci/kfaa127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking during pregnancy is associated with numerous obstetrical, fetal, and developmental complications, as well as an increased risk of adverse health consequences in the adult offspring. Nicotine replacement therapy and electronic nicotine delivery systems (e-cigarettes) have been developed as a pharmacotherapy for smoking cessation and are considered safer alternatives for women to smoke during pregnancy. The safety of nicotine replacement therapy use during pregnancy has been evaluated in a limited number of short-term human trials, but there is currently no information on the long-term effects of developmental nicotine exposure in humans. However, animal studies suggest that nicotine alone may be a key chemical responsible for many of the long-term effects associated with maternal cigarette smoking on the offspring and increases the risk of adverse neurobehavioral outcomes, dysmetabolism, respiratory illness, and cancer. This review will examine the long-term effects of fetal and neonatal nicotine exposure on postnatal health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
6
|
Guo Y, Lee H, Jeong H. Gut microbiota in reductive drug metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:61-93. [PMID: 32475528 DOI: 10.1016/bs.pmbts.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut bacteria are predominant microorganisms in the gut microbiota and have been recognized to mediate a variety of biotransformations of xenobiotic compounds in the gut. This review is focused on one of the gut bacterial xenobiotic metabolisms, reduction. Xenobiotics undergo different types of reductive metabolisms depending on chemically distinct groups: azo (-NN-), nitro (-NO2), alkene (-CC-), ketone (-CO), N-oxide (-NO), and sulfoxide (-SO). In this review, we have provided select examples of drugs in six chemically distinct groups that are known or suspected to be subjected to the reduction by gut bacteria. For some drugs, responsible enzymes in specific gut bacteria have been identified and characterized, but for many drugs, only circumstantial evidence is available that indicates gut bacteria-mediated reductive metabolism. The physiological roles of even known gut bacterial enzymes have not been well defined.
Collapse
Affiliation(s)
- Yukuang Guo
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|