1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yadav RS, Kushawaha B, Dhariya R, Swain DK, Yadav B, Anand M, Kumari P, Rai PK, Singh D, Yadav S, Garg SK. Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences. Biol Res 2024; 57:44. [PMID: 38965573 PMCID: PMC11225213 DOI: 10.1186/s40659-024-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 μg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.
Collapse
Affiliation(s)
- Rajkumar Singh Yadav
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Bhawna Kushawaha
- College of Biotechnology, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
- University of Nebraska Medical Center (UNMC), Omaha, USA.
| | - Rahul Dhariya
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Mukul Anand
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Priyambada Kumari
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | | | - Dipty Singh
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Satish Kumar Garg
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
| |
Collapse
|
3
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
4
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
5
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
6
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
7
|
Mironova GY, Haghbin N, Welsh DG. Functional tuning of Vascular L-type Ca2+ channels. Front Physiol 2022; 13:1058744. [DOI: 10.3389/fphys.2022.1058744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular smooth muscle contraction is intimately tied to membrane potential and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+ channels. While voltage is often viewed as the single critical factor gating these channels, research is starting to reveal a more intricate scenario whereby their function is markedly tuned. This emerging concept will be the focus of this three-part review, the first part articulating the mechanistic foundation of contractile development in vascular smooth muscle. Part two will extend this foundational knowledge, introducing readers to functional coupling and how neighboring L-type Ca2+ channels work cooperatively through signaling protein complexes, to facilitate their open probability. The final aspect of this review will discuss the impact of L-type Ca2+ channel trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief manuscript provides new insight into how voltage, along with channel cooperativity and number, work in concert to tune Ca2+ responses and smooth muscle contraction.
Collapse
|
8
|
Archana GM, Arunkumar RC, Omkumar RV. Assays for L-type voltage gated calcium channels. Anal Biochem 2022; 656:114827. [PMID: 35964733 DOI: 10.1016/j.ab.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Voltage gated calcium channels (VGCCs) are pursued as drug targets for neurodegenerative and cardiovascular diseases. High throughput drug screening targeting VGCCs depends on patch-clamp electrophysiology or fluorophore-based calcium imaging that requires powerful equipment and specialized expertise thus leading to cost escalation. Moreover, VGCC needs to be transfected into cell lines such as HEK-293. We report the presence of L-type VGCC (L-VGCC) subunit proteins, Cav1.2, α2δ and β in HEK-293 cells and the application of simple methods for its assay. Endogenous expression of the channel in HEK-293 cells overcomes the need for transfection. L-VGCC in HEK-293 cells was activated either by the agonist, BayK8644 or by KCl-mediated depolarization. Activity was detected using the calcium sensing probe, GCaMP6m by live imaging. L-VGCC activity induced enhancement in GCaMP6m fluorescence returned to baseline corresponding to channel-closure. Activity was also shown using a methodology involving end-point detection of the calcium dependent interaction of α-CaMKII with NMDA receptor subunit GluN2B sequence. This methodology further simplifies the assay as it eliminates the need for real time imaging. Activation was blocked by the specific L-type VGCC antagonist, nifedipine. Finding the protein and activity of L-VGCC in HEK-293 cells offers commercially viable assays for drug screening.
Collapse
Affiliation(s)
- G M Archana
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India; University of Kerala, India
| | - R C Arunkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India; University of Kerala, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India.
| |
Collapse
|
9
|
Zhang M, Che C, Cheng J, Li P, Yang Y. Ion channels in stem cells and their roles in stem cell biology and vascular diseases. J Mol Cell Cardiol 2022; 166:63-73. [PMID: 35143836 DOI: 10.1016/j.yjmcc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Stem cell therapy may be a promising option for the treatment of vascular diseases. In recent years, significant progress has been made in stem cell research, especially in the mechanism of stem cell activation, homing and differentiation in vascular repair and reconstruction. Current research on stem cells focuses on protein expression and transcriptional networks. Ion channels are considered to be the basis for the generation of bioelectrical signals, which control the proliferation, differentiation and migration of various cell types. Although heterogeneity of multiple ion channels has been found in different types of stem cells, it is unclear whether the heterogeneous expression of ion channels is related to different cell subpopulations and/or different stages of the cell cycle. There is still a long way to go in clinical treatment by using the regulation of stem cell ion channels. In this review, we reviewed the main ion channels found on stem cells, their expression and function in stem cell proliferation, differentiation and migration, and the research status of stem cells' involvement in vascular diseases.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Chang Che
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| |
Collapse
|
10
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
12
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
13
|
Cooper G, Kang S, Perez-Rosello T, Guzman JN, Galtieri D, Xie Z, Kondapalli J, Mordell J, Silverman RB, Surmeier DJ. A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of Ca V1.3 L-Type Calcium Channels. ACS Chem Biol 2020; 15:2539-2550. [PMID: 32881483 DOI: 10.1021/acschembio.0c00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ channels with a CaV1.3 pore-forming α1 subunit have been implicated in both neurodegenerative and neuropsychiatric disorders, motivating the development of selective and potent inhibitors of CaV1.3 versus CaV1.2 channels, the calcium channels implicated in hypertensive disorders. We have previously identified pyrimidine-2,4,6-triones (PYTs) that preferentially inhibit CaV1.3 channels, but the structural determinants of their interaction with the channel have not been identified, impeding their development into drugs. By a combination of biochemical, computational, and molecular biological approaches, it was found that PYTs bind to the dihydropyridine (DHP) binding pocket of the CaV1.3 subunit, establishing them as negative allosteric modulators of channel gating. Site-directed mutagenesis, based on homology models of CaV1.3 and CaV1.2 channels, revealed that a single amino acid residue within the DHP binding pocket (M1078) is responsible for the selectivity of PYTs for CaV1.3 over CaV1.2. In addition to providing direction for chemical optimization, these results suggest that, like dihydropyridines, PYTs have pharmacological features that could make them of broad clinical utility.
Collapse
Affiliation(s)
- Garry Cooper
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Soosung Kang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Tamara Perez-Rosello
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jaime N. Guzman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniel Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jack Mordell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - D. James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
14
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
15
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51:1-12. [PMID: 31695023 PMCID: PMC6834635 DOI: 10.1038/s12276-019-0337-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.
Collapse
|
18
|
Kushner J, Ferrer X, Marx SO. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J Innov Card Rhythm Manag 2019; 10:3874-3880. [PMID: 32494407 PMCID: PMC7252866 DOI: 10.19102/icrm.2019.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation–contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xavier Ferrer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Northcutt AJ, Hough RA, Frese AN, McClellan AD, Schulz DJ. Genomic discovery of ion channel genes in the central nervous system of the lamprey Petromyzon marinus. Mar Genomics 2019; 46:29-40. [PMID: 30878501 PMCID: PMC6579644 DOI: 10.1016/j.margen.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
The lamprey is a popular animal model for a number of types of neurobiology studies, including organization and operation of locomotor and respiratory systems, behavioral recovery following spinal cord injury (SCI), cellular and synaptic neurophysiology, comparative neuroanatomy, neuropharmacology, and neurodevelopment. Yet relatively little work has been done on the molecular underpinnings of nervous system function in lamprey. This is due in part to a paucity of gene information for some of the most fundamental proteins involved in neural activity: ion channels. We report here 47 putative ion channel sequences in the central nervous system (CNS) of larval lampreys from the predicted coding sequences (CDS) discovered in the P. marinus genome. These include 32 potassium (K+) channels, six sodium (Na+) channels, and nine calcium (Ca2+) channels. Through RT-PCR, we examined the distribution of these ion channels in the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei, as well as the spinal cord (SC). This study lays the foundation for incorporating more advanced molecular techniques to investigate the role of ion channels in the neural networks of the lamprey.
Collapse
Affiliation(s)
- Adam J Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Ryan A Hough
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Alexander N Frese
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
20
|
Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02289-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Aromolaran AS, Boutjdir M. Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Front Physiol 2017; 8:431. [PMID: 28680407 PMCID: PMC5479057 DOI: 10.3389/fphys.2017.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity and its associated metabolic dysregulation leading to metabolic syndrome is an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese leading to enhanced risk of cardiovascular disease (CVD) incidence and mortality. Obesity predisposes to atrial fibrillation, ventricular, and supraventricular arrhythmias; conditions that are underlain by dysfunction in electrical activity of the heart. To date, current therapeutic options for cardiomyopathy of obesity are limited, suggesting that there is considerable room for development of therapeutic interventions with novel mechanisms of action that will help normalize rhythm in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels/Ca handling proteins remain incompletely understood. Obesity is marked by accumulation of adipose tissue associated with a variety of adverse adaptations including dyslipidemia (or abnormal levels of serum free fatty acids), increased secretion of pro-inflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, that will cause electrical remodeling and thus predispose to arrhythmias. Further, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which are marked by distinct signaling mechanisms. Thus, there may also be functional differences in the outcome of regional distribution of fat deposits on ion channel/Ca handling proteins expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge about the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. The objective of this article is to review cardiac ion channel/Ca handling proteins remodeling that predispose to arrhythmias. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States.,Department of Medicine, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
22
|
Wang F, Koide M, Wellman GC. Nifedipine Inhibition of High-Voltage Activated Calcium Channel Currents in Cerebral Artery Myocytes Is Influenced by Extracellular Divalent Cations. Front Physiol 2017; 8:210. [PMID: 28439241 PMCID: PMC5383720 DOI: 10.3389/fphys.2017.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/23/2017] [Indexed: 01/10/2023] Open
Abstract
Voltage-dependent calcium channels (VDCCs) play an essential role in regulating cerebral artery diameter and it is widely appreciated that the L-type VDCC, CaV1.2, encoded by the CACNA1C gene, is a principal Ca2+ entry pathway in vascular myocytes. However, electrophysiological studies using 10 mM extracellular barium ([Ba2+]o) as a charge carrier have shown that ~20% of VDCC currents in cerebral artery myocytes are insensitive to 1,4-dihydropyridine (1,4-DHP) L-type VDDC inhibitors such as nifedipine. Here, we investigated the hypothesis that the concentration of extracellular divalent cations can influence nifedipine inhibition of VDCC currents. Whole-cell VDCC membrane currents were obtained from freshly isolated rat cerebral artery myocytes in extracellular solutions containing Ba2+ and/or Ca2+. In the absence of [Ca2+]o, both nifedipine-sensitive and -insensitive calcium currents were observed in 10 mM [Ba2+]o. However, VDCC currents were abolished by nifedipine when using a combination of 10 mM [Ba2+]o and 100 μM [Ca2+]o. VDCC currents were also completely inhibited by nifedipine in either 2 mM [Ba2+]o or 2 mM [Ca2+]o. The biophysical characteristics of all recorded VDCC currents were consistent with properties of a high-voltage activated VDCC, such as CaV1.2. Further, VDCC currents recorded in 10 mM [Ba2+]o ± 100 μM [Ca2+]o or 2 mM [Ba2+]o exhibited similar sensitivity to the benzothiazepine L-type VDCC blocker, diltiazem, with complete current inhibition at 100 μM. These data suggest that nifedipine inhibition is influenced by both Ca2+ binding to an external site(s) on these channels and surface charge effects related to extracellular divalent cations. In sum, this work demonstrates that the extracellular environment can profoundly impact VDCC current measurements.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA.,Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Masayo Koide
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA
| | - George C Wellman
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA
| |
Collapse
|
23
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Jensen LJ, Nielsen MS, Salomonsson M, Sørensen CM. T-type Ca 2+ channels and autoregulation of local blood flow. Channels (Austin) 2017; 11:183-195. [PMID: 28055302 DOI: 10.1080/19336950.2016.1273997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- a Departments of Veterinary Clinical and Animal Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Morten Schak Nielsen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Max Salomonsson
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Charlotte Mehlin Sørensen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
25
|
Li J, Zhang L, Li B. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia. Exp Ther Med 2016; 13:127-130. [PMID: 28123480 PMCID: PMC5245151 DOI: 10.3892/etm.2016.3959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia.
Collapse
Affiliation(s)
- Junguo Li
- Reproductive Medicine Center, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Li Zhang
- Department of Information, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Bing Li
- Department of Obstetrics and Gynecology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| |
Collapse
|
26
|
Sun XL, Yuan JF, Jin T, Cheng XQ, Wang Q, Guo J, Zhang W, Zhang Y, Lu L, Zhang Z. Physical and functional interaction of Snapin with Cav1.3 calcium channel impacts channel protein trafficking in atrial myocytes. Cell Signal 2016; 30:118-129. [PMID: 27915047 DOI: 10.1016/j.cellsig.2016.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The L-type Ca2+ channel (LTCC) Cav1.3 plays a critical role in generating electrical activity in atrial myocytes and cardiac pacemaker cells. However, the molecular and functional basis of Cav1.3 modulation in atrial myocytes has not yet been fully understood. By using the yeast two-hybrid system (Y2H), a Cav1.3-associated protein was screened, which was identified as Snapin. Physical interaction and co-localization between Snapin and Cav1.3 were then confirmed in both the heterologous expression system and mouse atrial myocytes. Direct interaction between them was additionally addressed in a GST pull down assay. Furthermore, both total and membrane expressions of Cav1.3 were significantly impaired by Snapin overexpression, resulting in the ubiquitin-proteasomal degradation of Cav1.3 and a consequent reduction of the densities of whole-cell ICa-L. Snapin-induced down-regulation of Cav1.3 was reversed by SNAP-23 competitively. What is more important is that the depressed-expression of Cav1.3 paralleled with enhanced-expression of Snapin was documented in atrial samples from atrial fibrillation (AF) patients. Our results provide the evidence of a direct regulatory role of Snapin on Cav1.3 channels in atrial myocytes, and highlight a potential role of Snapin in the regulation of Cav1.3 in atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ju-Fang Yuan
- Anesthesia Department of The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Tao Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Qing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiang Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; Department of Nephrology at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
27
|
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
28
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
29
|
Nguyen TMD, Duittoz A, Praud C, Combarnous Y, Blesbois E. Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS J 2016; 283:1902-20. [PMID: 26990886 DOI: 10.1111/febs.13710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Faculty of Biology-Agricultural Engineering, Quy Nhon University, Quy Nhon, Vietnam
| | - Anne Duittoz
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Christophe Praud
- Institut National de la Recherche Agronomique, UR083 Recherches Avicoles, Nouzilly, France
| | - Yves Combarnous
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Elisabeth Blesbois
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| |
Collapse
|
30
|
Zamponi GW, Han C, Waxman SG. Voltage-Gated Ion Channels as Molecular Targets for Pain. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
No apparent role for T-type Ca²⁺ channels in renal autoregulation. Pflugers Arch 2015; 468:541-50. [PMID: 26658945 DOI: 10.1007/s00424-015-1770-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.
Collapse
|
32
|
Sumner JA, Sheridan MA, Drury SS, Esteves KC, Walsh K, Koenen KC, McLaughlin KA. Variation in CACNA1C is Associated with Amygdala Structure and Function in Adolescents. J Child Adolesc Psychopharmacol 2015; 25:701-10. [PMID: 26401721 PMCID: PMC4653820 DOI: 10.1089/cap.2015.0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified allelic variation in CACNA1C as a risk factor for multiple psychiatric disorders associated with limbic system dysfunction, including bipolar disorder, schizophrenia, and depression. The CACNA1C gene codes for a subunit of L-type voltage-gated calcium channels, which modulate amygdala function. Although CACNA1C genotype appears to be associated with amygdala morphology and function in adults with and without psychopathology, whether genetic variation influences amygdala structure and function earlier in development has not been examined. METHODS In this first investigation of the neural correlates of CACNA1C in young individuals, we examined associations between two single nucleotide polymorphisms in CACNA1C (rs1006737 and rs4765914) with amygdala volume and activation during an emotional processing task in 58 adolescents and young adults 13-20 years of age. RESULTS Minor (T) allele carriers of rs4765914 exhibited smaller amygdala volume than major (C) allele homozygotes (β=-0.33, p=0.006). Furthermore, minor (A) allele homozygotes of rs1006737 exhibited increased blood-oxygen-level-dependent (BOLD) signal in the amygdala when viewing negative (vs. neutral) stimuli (β=0.29, p=0.040) and decreased BOLD signal in the amygdala when instructed to downregulate their emotional response to negative stimuli (β=-0.38, p=0.009). Follow-up analyses indicated that childhood trauma did not moderate the associations of CACNA1C variation with amygdala structure and function (ps>0.170). CONCLUSIONS Findings indicate that CACNA1C-related differences in amygdala structure and function are present by adolescence. However, population stratification is a concern, given the racial/ethnic heterogeneity of our sample, and our findings do not have direct clinical implications currently. Nevertheless, these results suggest that developmentally informed research can begin to shed light on the time course by which genetic liability may translate into neural differences associated with vulnerability to psychopathology.
Collapse
Affiliation(s)
- Jennifer A. Sumner
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Margaret A. Sheridan
- Developmental Medicine Center, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stacy S. Drury
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyle C. Esteves
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kate Walsh
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Karestan C. Koenen
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | | |
Collapse
|
33
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Renneberg D, Hubler F, Rey M, Hess P, Delahaye S, Gatfield J, Iglarz M, Hilpert K. Discovery of novel bridged tetrahydronaphthalene derivatives as potent T/L-type calcium channel blockers. Bioorg Med Chem Lett 2015; 25:3941-6. [DOI: 10.1016/j.bmcl.2015.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022]
|
35
|
Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients. PLoS One 2015; 10:e0125766. [PMID: 26147197 PMCID: PMC4493072 DOI: 10.1371/journal.pone.0125766] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/26/2015] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org), a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I) are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment.
Collapse
|
36
|
Zhang Q, Bai Y, Yang Z, Tian J, Meng Z. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts. Regul Toxicol Pharmacol 2015; 72:440-6. [PMID: 26015265 DOI: 10.1016/j.yrtph.2015.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/13/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022]
Abstract
Sodium metabisulfite (SMB) is used as an antioxidant and antimicrobial agent in a variety of drugs and foods. However, there are few reported studies about its side effects. This study is to investigate the SMB effects on the expression of ATP-sensitive K(+) (KATP) and L-type calcium (L-Ca(2+)) channels in rat hearts. The results show that the mRNA and protein levels of the KATP channel subunits Kir6.2 and SUR2A were increased by SMB; on the contrary, SMB at 520 mg/kg significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. This suggests that SMB can activate the expression of KATP channel by increasing the mRNA and protein levels of Kir6.2 and SUR2A, while it inhibits the expression of L-Ca(2+) channels by decreasing the mRNA and protein levels of Cav1.2 and Cav1.3 in rat hearts. Therefore, the molecular mechanism of the SMB effect on rat hearts might be related to the increased expression of KATP channels and the decreased expression of L-Ca(2+) channels.
Collapse
Affiliation(s)
- Quanxi Zhang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yunlong Bai
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jingjing Tian
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
38
|
Zhang Q, Bai Y, Tian J, Lei X, Li M, Yang Z, Meng Z. Effects of sodium metabisulfite on the expression of BK(Ca), K(ATP), and L-Ca(2+) channels in rat aortas in vivo and in vitro. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:151-162. [PMID: 25463229 DOI: 10.1016/j.jhazmat.2014.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Sodium metabisulfite (SMB) is most commonly used as the preservative in many food preparations and drugs. So far, few studies about its negative effects were reported. The purpose of this study was to investigate the effect of SMB on the expression of big-conductance Ca(2+)-activated K(+) (BKCa), ATP-sensitive K(+) (KATP), and L-type calcium (L-Ca(2+)) channels in rat aorta in vivo and in vitro. The results showed that the mRNA and protein levels of the BKCa channel subunits α and β1 of aorta in rats were increased by SMB in vivo and in vitro. Similarly, the expression of the KATP channel subunits Kir6.1, Kir6.2, and SUR2B were increased by SMB. However, SMB at the highest concentration significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. These results suggest that SMB can activate BKCa and KATP channels by increasing the expression of α, β1, and Kir6.1, Kir6.2, SUR2B respectively, while also inhibit L-Ca(2+) channels by decreasing the expression of Cav1.2 and Cav1.3 of aorta in rats. The molecular mechanism of SMB-induced vasorelaxant effect might be related to the expression changes of BKCa, KATP, and L-Ca(2+) channels subunits. Further work is needed to determine the relative contribution of each channel in SMB-mediated vasorelaxant effect.
Collapse
Affiliation(s)
- Quanxi Zhang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yunlong Bai
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jingjing Tian
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Lei
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Mei Li
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
39
|
Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol 2015; 6:19. [PMID: 25698974 PMCID: PMC4313592 DOI: 10.3389/fphys.2015.00019] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 01/08/2023] Open
Abstract
Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca(2+) dynamics contribute to pacemaker activity. The functional role of voltage-gated calcium channels (VGCCs) in heart automaticity and impulse conduction has been matter of debate for 30 years. However, growing evidence shows that VGCCs are important regulators of the pacemaker mechanisms and play also a major role in atrio-ventricular impulse conduction. Incidentally, studies performed in genetically modified mice lacking L-type Cav1.3 (Cav1.3(-/-)) or T-type Cav3.1 (Cav3.1(-/-)) channels show that genetic inactivation of these channels strongly impacts pacemaking. In cardiac pacemaker cells, VGCCs activate at negative voltages at the beginning of the diastolic depolarization and importantly contribute to this phase by supplying inward current. Loss-of-function of these channels also impairs atrio-ventricular conduction. Furthermore, inactivation of Cav1.3 channels promotes also atrial fibrillation and flutter in knockout mice suggesting that these channels can play a role in stabilizing atrial rhythm. Genomic analysis demonstrated that Cav1.3 and Cav3.1 channels are widely expressed in pacemaker tissue of mice, rabbits and humans. Importantly, human diseases of pacemaker activity such as congenital bradycardia and heart block have been attributed to loss-of-function of Cav1.3 and Cav3.1 channels. In this article, we will review the current knowledge on the role of VGCCs in the generation and regulation of heart rate and rhythm. We will discuss also how loss of Ca(2+) entry through VGCCs could influence intracellular Ca(2+) handling and promote atrial arrhythmias.
Collapse
Affiliation(s)
- Pietro Mesirca
- Laboratory of Excellence in Ion Channel Science and Therapeutics, Département de Physiologie, Institut de Génomique Fonctionnelle Montpellier, France ; UMR-5203, Centre National de la Recherche Scientifique, Universités de Montpellier 1 and 2 Montpellier, France ; INSERM U 1191, Département de Physiologie, Universités de Montpellier 1 and 2 Montpellier, France
| | - Angelo G Torrente
- Laboratory of Excellence in Ion Channel Science and Therapeutics, Département de Physiologie, Institut de Génomique Fonctionnelle Montpellier, France ; UMR-5203, Centre National de la Recherche Scientifique, Universités de Montpellier 1 and 2 Montpellier, France ; INSERM U 1191, Département de Physiologie, Universités de Montpellier 1 and 2 Montpellier, France
| | - Matteo E Mangoni
- Laboratory of Excellence in Ion Channel Science and Therapeutics, Département de Physiologie, Institut de Génomique Fonctionnelle Montpellier, France ; UMR-5203, Centre National de la Recherche Scientifique, Universités de Montpellier 1 and 2 Montpellier, France ; INSERM U 1191, Département de Physiologie, Universités de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
40
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
41
|
Samios VN, Inoue T. Interleukin-1β and interleukin-6 affect electrophysiological properties of thalamic relay cells. Neurosci Res 2014; 87:16-25. [PMID: 25091392 DOI: 10.1016/j.neures.2014.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
By acknowledging the relation between brain and body in health and disease, inflammatory processes may play a key role in this reciprocal relation. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) are some of the agents involved in those processes. What exactly is their role in the CNS however is not that clear so far. To address the question of how pro-inflammatory cytokines may affect information processing at the cellular and molecular levels, relay neurons in the thalamic dorsal lateral geniculate nucleus in mouse brain slices were exposed to those cytokines and studied with the patch-clamp technique. IL-1β promoted hyperpolarization of the resting membrane potential (Vrest), decrease of input resistance (Rin), decrease of Ih rectification, decrease in action potential (AP) threshold and decrease in the number of APs in low threshold calcium spike (LTS) bursts, while IL-6 promoted decrease of Rin and decrease in the number of APs in LTS bursts. Computer simulations provided candidates for ionic conductance affected by those cytokines. Collectively, these findings demonstrate that IL-1β and IL-6 have modulatory effects on electrophysiological properties of thalamic neurons, implying that the thalamic functions may be affected by systemic disorders that present with high levels of those cytokines.
Collapse
Affiliation(s)
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| |
Collapse
|
42
|
Neely A, Hidalgo P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 2014; 5:209. [PMID: 24917826 PMCID: PMC4042065 DOI: 10.3389/fphys.2014.00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
Collapse
Affiliation(s)
- Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso and Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Patricia Hidalgo
- Forschungszentrum Jülich, Institute of Complex Systems 4, Zelluläre Biophysik Jülich, Germany
| |
Collapse
|
43
|
Napier TC, Chen L, Kashanchi F, Hu XT. Repeated cocaine treatment enhances HIV-1 Tat-induced cortical excitability via over-activation of L-type calcium channels. J Neuroimmune Pharmacol 2014; 9:354-68. [PMID: 24567038 PMCID: PMC4019717 DOI: 10.1007/s11481-014-9524-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/20/2014] [Indexed: 01/20/2023]
Abstract
The prefrontal cortex (PFC) is dysregulated in neuroAIDS and during cocaine abuse. Repeated cocaine treatment upregulates voltage gated L-type Ca(2+) channels in pyramidal neurons within the rat medial PFC (mPFC). L-type Ca(2+) channels are also upregulated by the HIV-1 neurotoxic protein, Tat, but the role of Tat in pyramidal cell function is unknown. This represents a major knowledge gap as PFC pyramidal neurons are important mediators of behaviors that are disrupted in neuroAIDS and by chronic cocaine exposure. To determine if L-channel-mediated Ca(2+) dysregulation in mPFC pyramidal neurons are a common neuropathogenic site for Tat and chronic cocaine, we evaluated the electrophysiological effects of recombinant Tat on these neurons in forebrain slices taken from rats 1-3 days after five, once-daily treatments of cocaine (15 mg/kg, ip) or saline. In saline-treated rats, bath-applied Tat facilitated membrane depolarization and firing. Ca(2+) influx was increased (indicated by prolonged Ca(2+) spikes) with low concentrations of Tat (10-40nM), but reduced by higher concentrations (80-160nM), the latter likely reflecting dysfunction associated with excessive excitation. Tat-mediated effects were detected during NMDA/AMPA receptor blockade, and abolished by blocking activated L-channels with diltiazem. In neurons from cocaine-treated rats, the Tat-induced effects on evoked firing and Ca(2+) spikes were significantly enhanced above that obtained with Tat in slices from saline-treated rats. Thus, glutamatergic receptor-independent over-activation of L-channels contributed to the Tat-induced hyper-reactivity of mPFC pyramidal neurons to excitatory stimuli, which was exacerbated in rats repeatedly exposed to cocaine. Such effects may contribute to the exaggerated neuropathology reported for HIV(+) cocaine-abusing individuals.
Collapse
Affiliation(s)
- T. Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive
Behavior and Addiction, Rush University Medical Center, 1735W. Harrison
Street, Cohn Research Building, Rm. 424, Chicago, IL 60612, USA
| | - Lihua Chen
- Department of Pharmacology, Center for Compulsive Behavior and
Addiction, Rush University Medical Center, 1735 W. Harrison Street, Cohn
Research Building, Rm. 414, Chicago, IL 60612, USA
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George
Mason University, Discovery Hall, Room 306, 10900 University, Blvd. MS 1H8,
Manassas, VA 20110, USA
| | - Xiu-Ti Hu
- Department of Pharmacology, Center for Compulsive Behavior and
Addiction, Rush University Medical Center, 1735 W. Harrison Street, Cohn
Research Building, Rm. 414, Chicago, IL 60612, USA
| |
Collapse
|
44
|
Petersen O. Can specific calcium channel blockade be the basis for a drug-based treatment of acute pancreatitis? Expert Rev Gastroenterol Hepatol 2014; 8:339-41. [PMID: 24580045 DOI: 10.1586/17474124.2014.896192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ole Petersen
- Cardiff University - Cardiff School of Biosciences, The Sir Martin Evans Building Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
45
|
Siwek ME, Müller R, Henseler C, Broich K, Papazoglou A, Weiergräber M. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep 2014; 37:881-92. [PMID: 24790266 DOI: 10.5665/sleep.3652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. METHODS The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. RESULTS CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. CONCLUSIONS Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra-thalamocortical circuitries substantially regulate rodent sleep architecture thus representing a novel potential target for pharmacological treatment of sleep disorders in the future.
Collapse
Affiliation(s)
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Karl Broich
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Anna Papazoglou
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Marco Weiergräber
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany ; Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Li L, Liu J, Li J, Ye Z. Pharmacological investigation of voltage-dependent Ca2+ channels in human ejaculatory sperm in vitro. ACTA ACUST UNITED AC 2013; 26:607-9. [PMID: 17219982 DOI: 10.1007/s11596-006-0534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The types of the voltage-dependent calcium channels (VDCCs) in human ejaculatory sperm and the effects of calcium channel blocker (CCB) on human sperm motility parameters in vitro were investigated. The human sperm motility parameters in vitro in response to the pharmacological agents nifedipine (NIF, inhibitor of L-type VDCC) and co-conotoxin (GVIA, inhibitor of N-type VDCC) were compared and analyzed statistically. The results showed that NIF (1, 5, 10 micromol/L) could not only significantly affect human sperm's shape but also spermatozoa motility after incubated at least 10 min in vitro (P<0.001). GVIA (0.1, 0.5 and 1 micromol/L) could just only significantly affect human sperm's progressive motility (a %+b %) after incubated for 20 min in vitro (P<0.01), but they both could not significantly affect spermic abnormality rate. It is suggested that L-type VDCC, non L-type VDCCs and isoform of L-type VDCC exist in the cell membrane of human sperm solely or together, and they participate in the spermic physiological processes especially the spermic motility.
Collapse
Affiliation(s)
- Lu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | |
Collapse
|
47
|
Tolerability and pharmacokinetics of ACT-280778, a novel nondihydropyridine dual L/T-type calcium channel blocker: early clinical studies in healthy male subjects using adaptive designs. J Cardiovasc Pharmacol 2013; 63:120-31. [PMID: 24126567 DOI: 10.1097/fjc.0000000000000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ACT-280778 is a novel nondihydropyridine dual L/T-type calcium channel blocker. Two clinical studies (AC-067-101 and AC-067-102) were conducted to characterize its safety, tolerability, and pharmacokinetics in healthy male subjects after oral administration of single and multiple doses. Both trials were single-center, randomized, double-blind, placebo-controlled, adaptive design, ascending-dose studies, in which ACT-280778 was administrated as single doses of 2, 5, 15, or 40 mg, or as once-daily doses of 5 or 15 mg for 7 days. Single and multiple doses up to and including 15 mg were well tolerated, and no serious or severe adverse event was reported in either study. A single dose of 40 mg was associated with abnormal electrocardiogram findings resulting in the discontinuation of further treatment at this dose or higher doses. ACT-280778 was rapidly absorbed, and larger than dose-proportional increases of the maximum plasma concentration and area under the plasma concentration-time curve were observed. Food intake delayed the time to maximum plasma concentration and doubled exposure. Urinary excretion of unchanged ACT-280778 was negligible, and accumulation at steady state was modest. Overall, pharmacokinetic and tolerability profiles of ACT-280778 observed in these 2 studies warranted further evaluation of ACT-280778 in a proof-of-concept study in patients with hypertension.
Collapse
|
48
|
Esposti F, Johnston J, Rosa JM, Leung KM, Lagnado L. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 2013; 79:97-110. [PMID: 23849198 PMCID: PMC3710973 DOI: 10.1016/j.neuron.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/11/2023]
Abstract
Cross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.5 in ganglion cells. The food-related amino acid methionine reduced the gain and increased sensitivity of responses to luminance and contrast transmitted through OFF bipolar cells but not ON. The effects of olfactory stimulus were blocked by inhibiting dopamine uptake and release. Activation of dopamine receptors increased the gain of synaptic transmission in vivo and potentiated synaptic calcium currents in isolated bipolar cells. These results indicate that olfactory stimuli alter the sensitivity of the retina through the dopaminergic regulation of presynaptic calcium channels that control the gain of synaptic transmission through OFF bipolar cells. Olfactory stimuli regulate transmission of signals through retinal bipolar cells Modulation of synaptic gain and sensitivity occur in OFF bipolar cells but not ON An inhibitor of dopamine uptake blocks odor-induced changes in synaptic gain Dopamine potentiates presynaptic calcium channels in isolated bipolar cells
Collapse
Affiliation(s)
- Federico Esposti
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
49
|
Fedosov AÉ, Moshkovskiĭ SA, Kuznetsova KG, Olivera BM. [Conotoxins: from the biodiversity of gastropods to new drugs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2013; 59:267-94. [PMID: 23987066 DOI: 10.18097/pbmc20135903267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A review describes general trends in research of conotoxins that are peptide toxins isolated from sea gastropods of the Conus genus, since the toxins were discovered in 1970th. There are disclosed a conotoxin classification, their structure diversity and different ways of action to their molecular targets, mainly, ion channels. In the applied aspect of conotoxin research, drug discovery and development is discussed, the drugs being based on conotoxin structure. A first exemplary drug is a ziconotide, which is an analgesic of new generation.
Collapse
|
50
|
Kang S, Cooper G, Dunne SF, Luan CH, James Surmeier D, Silverman RB. Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyridine mimics. Bioorg Med Chem 2013; 21:4365-73. [DOI: 10.1016/j.bmc.2013.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
|