1
|
Yang C, Rodriguez Y Baena A, Manso BA, Hu S, Lopez-Magaña R, Ohanyan M, Ottemann KM. Helicobacter pylori luxS mutants cause hyperinflammatory responses during chronic infection. Microbiol Spectr 2024:e0107324. [PMID: 39641542 DOI: 10.1128/spectrum.01073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/30/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori infects roughly half the world's population, causing gastritis, peptic ulcers, and gastric cancer in a subset. These pathologies occur in response to a chronic inflammatory state, but it is not fully understood how H. pylori controls this process. We characterized the inflammatory response of H. pylori mutants that cannot produce the quorum sensing molecule autoinducer 2 (AI-2) by deleting the gene for the AI-2 synthase, luxS. Our work shows that H. pylori luxS mutants colonize the stomach normally but recruit high numbers of CD4+ T cells to the stomach during chronic infection. This increase in the number of CD4+ T cells correlated with elevated expression of CXCL9, a chemokine important for T cell recruitment. Together, our results suggest that H. pylori may utilize AI-2 signaling to modulate the inflammatory response during chronic infection. IMPORTANCE Many bacteria signal to each other using quorum sensing signals. One type of signal is called autoinducer 2 (AI-2), which is produced and sensed by the LuxS enzyme found in many bacteria, including the gastric pathogen Helicobacter pylori. H. pylori establishes chronic infections that last for decades and lead to serious disease outcomes. How AI-2 signaling and LuxS contribute to chronic H. pylori infection has not been studied. In this work, we analyzed how loss of H. pylori-created AI-2, via mutation of luxS, affects H. pylori chronic infection. luxS mutants did not have significant colonization defects, similar to their reported phenotype during early infection, but they did have high stomach levels of effector and regulatory T cells and T-cell-recruiting chemokines. These results suggest that H. pylori LuxS may play more of a role in modulating the immune response versus colonization.
Collapse
Affiliation(s)
- Christina Yang
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Bryce A Manso
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Raymondo Lopez-Magaña
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Mané Ohanyan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
2
|
Han L, Ren J, Xue Y, Xie G, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Palmitoleic acid inhibits Pseudomonas aeruginosa quorum sensing activation and protects lungs from infectious injury. Respir Res 2024; 25:423. [PMID: 39623416 PMCID: PMC11613874 DOI: 10.1186/s12931-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Unsaturated fatty acids targeting quorum sensing (QS) system have shown potential application in reducing bacterial virulence. We aim to investigate the effect of palmitoleic acid (PMA) on P. aeruginosa QS activation, and its impact on infection-induced lung injury. METHODS The influence of PMA on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene transcription levels were examined in wildtype PAO1 culture. The roles of PMA in reducing infection-induced injury were assessed in human bronchial epithelial BEAS-2B cells and mouse lung infection models, respectively. PMA levels and QS signaling molecule concentrations were tested in the bronchoalveolar lavage fluid (BALF) of bronchiectasis patients with first-time detection of P. aeruginosa infection. RESULTS PMA administration dose-dependently suppressed the expression of QS signaling molecules, pyocyanin, and QS genes during the logarithmic stage of bacterial growth. In BEAS-2B cells, PMA-treated PAO1 filtrates significantly reduced cell apoptosis and expression of IL-8 and IL-6. In mouse lung infection models, prophylactically oral administration of PMA significantly downregulated the expression of P. aeruginosa QS signals and QS genes (lasR, rhlR, rhlI, lasB, rhlA, phzA1, phnA) in lungs, and relieved neutrophilic airway inflammation. Finally, PMA levels were negatively correlated with the concentrations of both 3OC12-HSL and C4-HSL in BALF of bronchiectasis patients, and positively correlated with their forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0). CONCLUSION Our findings show that PMA inhibits P. aeruginosa QS activation and protects lungs from injury caused by bacterial virulence. Hence, PMA may serve as a potential anti-QS agent against P. aeruginosa infection and would help to alleviate lung injury in bronchiectasis patients.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Hibbert TM, Whiteley M, Renshaw SA, Neill DR, Fothergill JL. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 2024; 50:1037-1052. [PMID: 37999716 DOI: 10.1080/1040841x.2023.2285995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for infections in people living with chronic respiratory conditions, such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Traditionally, in people with chronic respiratory disorders, P. aeruginosa infection has been managed with a combination of inhaled and intravenous antibiotic therapies. However, due in part to the prolonged use of antibiotics in these people, the emergence of multi-drug resistant P. aeruginosa strains is a growing concern. The development of anti-virulence therapeutics may provide a new means of treating P. aeruginosa lung infections whilst also combatting the AMR crisis, as these agents are presumed to exert reduced pressure for the emergence of drug resistance as compared to antibiotics. However, the pipeline for developing anti-virulence therapeutics is poorly defined, and it is currently unclear as to whether in vivo and in vitro models effectively replicate the complex pulmonary environment sufficiently to enable development and testing of such therapies for future clinical use. Here, we discuss potential targets for P. aeruginosa anti-virulence therapeutics and the effectiveness of the current models used to study them. Focus is given to the difficulty of replicating the virulence gene expression patterns of P. aeruginosa in the CF and NCFB lung under laboratory conditions and to the challenges this poses for anti-virulence therapeutic development.
Collapse
Affiliation(s)
- Tegan M Hibbert
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Centre for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A Renshaw
- The Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Daniel R Neill
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Samreen, Ahmad I, Khan SA, Naseer A, Nazir A. Green synthesized silver nanoparticles from Phoenix dactylifera synergistically interact with bioactive extract of Punica granatum against bacterial virulence and biofilm development. Microb Pathog 2024; 192:106708. [PMID: 38782213 DOI: 10.1016/j.micpath.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 μg/mL and 250-500 μg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| | - Sarah Ahmad Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
6
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Trottier MC, de Oliveira Pereira T, Groleau MC, Hoffman LR, Dandekar AA, Déziel E. The end of the reign of a "master regulator''? A defect in function of the LasR quorum sensing regulator is a common feature of Pseudomonas aeruginosa isolates. mBio 2024; 15:e0237623. [PMID: 38315035 PMCID: PMC10936206 DOI: 10.1128/mbio.02376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa, a bacterium causing infections in immunocompromised individuals, regulates several of its virulence functions using three interlinked quorum sensing (QS) systems (las, rhl, and pqs). Despite its presumed importance in regulating virulence, dysfunction of the las system regulator LasR occurs frequently in strains isolated from various environments, including clinical infections. This newfound abundance of LasR-defective strains calls into question existing hypotheses regarding their selection. Indeed, current assumptions concerning factors driving the emergence of LasR-deficient isolates and the role of LasR in the QS hierarchy must be reconsidered. Here, we propose that LasR is not the primary master regulator of QS in all P. aeruginosa genetic backgrounds, even though it remains ecologically significant. We also revisit and complement current knowledge on the ecology of LasR-dependent QS in P. aeruginosa, discuss the hypotheses explaining the putative adaptive benefits of selecting against LasR function, and consider the implications of this renewed understanding.
Collapse
Affiliation(s)
- Mylène C. Trottier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Lucas R. Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington, USA
| | - Ajai A. Dandekar
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
8
|
Galdino ACM, Vaillancourt M, Celedonio D, Huse K, Doi Y, Lee JS, Jorth P. Siderophores promote cooperative interspecies and intraspecies cross-protection against antibiotics in vitro. Nat Microbiol 2024; 9:631-646. [PMID: 38409256 PMCID: PMC11239084 DOI: 10.1038/s41564-024-01601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists β-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kara Huse
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Mould DL, Finger CE, Conaway A, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding by Pseudomonas aeruginosa supports lasR mutant fitness. mBio 2024; 15:e0127823. [PMID: 38259061 PMCID: PMC10865840 DOI: 10.1128/mbio.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.
Collapse
Affiliation(s)
- Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Carson E. Finger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico Botelho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stacie E. Stuut
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Jensen PØ, Olsen P, Dungu AM, Egelund GB, Jensen AV, Ravn P, Lindegaard B, Hertz FB, Bjarnsholt T, Faurholt-Jepsen D, Kolpen M. Bacterial aerobic respiration is a major consumer of oxygen in sputum from patients with acute lower respiratory tract infection. APMIS 2024. [PMID: 38284501 DOI: 10.1111/apm.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Bacterial aerobic respiration may determine the outcome of antibiotic treatment in experimental settings, but the clinical relevance of bacterial aerobic respiration for the outcome of antibiotic treatment has not been tested. Therefore, we hypothesized that bacterial aerobic respiration is higher in sputum from patients with acute lower respiratory tract infections (aLRTI), than in sputum from patients with chronic LRTI (cLRTI), where the bacteria persist despite antibiotic treatment. The bacterial aerobic respiration was determined according to the dynamics of the oxygen (O2 ) concentration in sputum from aLRTI patients (n = 52). This result was evaluated by comparison to previously published data from patients with cLRTI. O2 consumption resulting in anoxic zones was more frequent in sputum with detected bacterial pathogens. The bacterial aerobic respiration in aLRTI sputum approximated 55% of the total O2 consumption, which was significantly higher than previously published for cLRTI. The bacterial aerobic respiration in sputum was higher in aLRTI patients than previously seen in cLRTI patients, indicating the presence of bacteria with a sensitive physiology in aLRTI. These variations in bacterial physiology between aLRTI patients and cLRTI patients may contribute the huge difference in treatment success between the two patient groups.
Collapse
Affiliation(s)
- Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernille Olsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Gertrud Baunbaek Egelund
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Andreas Vestergaard Jensen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Pernille Ravn
- Department of Medicine Section for Infectious Diseases, Herlev- Gentofte University Hospital, Hellerup, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhao K, Yang X, Zeng Q, Zhang Y, Li H, Yan C, Li JS, Liu H, Du L, Wu Y, Huang G, Huang T, Zhang Y, Zhou H, Wang X, Chu Y, Zhou X. Evolution of lasR mutants in polymorphic Pseudomonas aeruginosa populations facilitates chronic infection of the lung. Nat Commun 2023; 14:5976. [PMID: 37749088 PMCID: PMC10519970 DOI: 10.1038/s41467-023-41704-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Chronic infection with the bacterial pathogen Pseudomonas aeruginosa often leads to coexistence of heterogeneous populations carrying diverse mutations. In particular, loss-of-function mutations affecting the quorum-sensing regulator LasR are often found in bacteria isolated from patients with lung chronic infection and cystic fibrosis. Here, we study the evolutionary dynamics of polymorphic P. aeruginosa populations using isolates longitudinally collected from patients with chronic obstructive pulmonary disease (COPD). We find that isolates deficient in production of different sharable extracellular products are sequentially selected in COPD airways, and lasR mutants appear to be selected first due to their quorum-sensing defects. Polymorphic populations including lasR mutants display survival advantages in animal models of infection and modulate immune responses. Our study sheds light on the multistage evolution of P. aeruginosa populations during their adaptation to host lungs.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China.
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Qianglin Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yige Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Heyue Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Chaochao Yan
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Jing Shirley Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liangming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Gui Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yamei Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Hui Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
12
|
Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. INFECTIOUS MEDICINE 2023; 2:178-194. [PMID: 38073886 PMCID: PMC10699684 DOI: 10.1016/j.imj.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 03/09/2024]
Abstract
Pseudomonas aeruginosa is an aerobic Gram-negative rod-shaped bacterium with a comparatively large genome and an impressive genetic capability allowing it to grow in a variety of environments and tolerate a wide range of physical conditions. This biological flexibility enables the P. aeruginosa to cause a broad range of infections in patients with serious underlying medical conditions, and to be a principal cause of health care associated infection worldwide. The clinical manifestations of P. aeruginosa include mostly health care associated infections and community-acquired infections. P. aeruginosa possesses an array of virulence factors that counteract host defence mechanisms. It can directly damage host tissue while utilizing high levels of intrinsic and acquired antimicrobial resistance mechanisms to counter most classes of antibiotics. P. aeruginosa co-regulates multiple resistance mechanisms by perpetually moving targets poses a significant therapeutic challenge. Thus, there is an urgent need for novel approaches in the development of anti-Pseudomonas agents. Here we review the principal infections caused by P. aeruginosa and we discuss novel therapeutic options to tackle antibiotic resistance and treatment of P. aeruginosa infections that may be further developed for clinical practice.
Collapse
Affiliation(s)
- Nikhil Sathe
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Peter Beech
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Larry Croft
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, 75 Pigdons Road, Waurn Ponds Victoria 3216, Australia
| | - Arnab Kapat
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
| | - Eugene Athan
- School of Medicine, Deakin University, PO Box 281 Geelong 3220, Australia
| |
Collapse
|
13
|
Llanos A, Achard P, Bousquet J, Lozano C, Zalacain M, Sable C, Revillet H, Murris M, Mittaine M, Lemonnier M, Everett M. Higher levels of Pseudomonas aeruginosa LasB elastase expression are associated with early-stage infection in cystic fibrosis patients. Sci Rep 2023; 13:14208. [PMID: 37648735 PMCID: PMC10468528 DOI: 10.1038/s41598-023-41333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common pathogen in cystic fibrosis (CF) patients and a major contributor to progressive lung damage. P. aeruginosa elastase (LasB), a key virulence factor, has been identified as a potential target for anti-virulence therapy. Here, we sought to differentiate the P. aeruginosa isolates from early versus established stages of infection in CF patients and to determine if LasB was associated with either stage. The lasB gene was amplified from 255 P. aeruginosa clinical isolates from 70 CF patients from the Toulouse region (France). Nine LasB variants were identified and 69% of the isolates produced detectable levels of LasB activity. Hierarchical clustering using experimental and clinical data distinguished two classes of isolates, designated as 'Early' and 'Established' infection. Multivariate analysis revealed that the isolates from the Early infection class show higher LasB activity, fast growth, tobramycin susceptibility, non-mucoid, pigmented colonies and wild-type lasR genotype. These traits were associated with younger patients with polymicrobial infections and high pFEV1. Our findings show a correlation between elevated LasB activity in P. aeruginosa isolates and early-stage infection in CF patients. Hence, it is this patient group, prior to the onset of chronic disease, that may benefit most from novel therapies targeting LasB.
Collapse
Affiliation(s)
- Agustina Llanos
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France.
| | - Pauline Achard
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Justine Bousquet
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Clarisse Lozano
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Magdalena Zalacain
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Carole Sable
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène, CHU de Toulouse, Toulouse, France
- IRSD, INSERM, Université de Toulouse, INRAE, ENVT, UPS, Toulouse, France
| | - Marlène Murris
- Adult Cystic Fibrosis Centre, Pulmonology Unit, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | | | - Marc Lemonnier
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Martin Everett
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| |
Collapse
|
14
|
Perković I, Poljak T, Savijoki K, Varmanen P, Maravić-Vlahoviček G, Beus M, Kučević A, Džajić I, Rajić Z. Synthesis and Biological Evaluation of New Quinoline and Anthranilic Acid Derivatives as Potential Quorum Sensing Inhibitors. Molecules 2023; 28:5866. [PMID: 37570836 PMCID: PMC10420644 DOI: 10.3390/molecules28155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.
Collapse
Affiliation(s)
- Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | | | - Kirsi Savijoki
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
| | - Pekka Varmanen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
| | - Gordana Maravić-Vlahoviček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Anja Kučević
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Ivan Džajić
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| |
Collapse
|
15
|
Abisado-Duque RG, Townsend KA, Mckee BM, Woods K, Koirala P, Holder AJ, Craddock VD, Cabeen M, Chandler JR. An Amino Acid Substitution in Elongation Factor EF-G1A Alters the Antibiotic Susceptibility of Pseudomonas aeruginosa LasR-Null Mutants. J Bacteriol 2023; 205:e0011423. [PMID: 37191503 PMCID: PMC10294626 DOI: 10.1128/jb.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
The opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum-sensing system to increase resistance to the aminoglycoside antibiotic tobramycin. Paradoxically, lasR-null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism that permits the emergence of lasR-null mutants under tobramycin selection. We hypothesized that some other genetic mutations that emerge in these isolates might modulate the effects of lasR-null mutations on antibiotic resistance. To test this hypothesis, we inactivated lasR in several highly tobramycin-resistant isolates from long-term evolution experiments. In some of these isolates, inactivating lasR further increased resistance, compared with decreasing resistance of the wild-type ancestor. These strain-dependent effects were due to a G61A nucleotide polymorphism in the fusA1 gene encoding amino acid substitution A21T in the translation elongation factor EF-G1A. The EF-G1A mutational effects required the MexXY efflux pump and the MexXY regulator ArmZ. The fusA1 mutation also modulated ΔlasR mutant resistance to two other antibiotics, ciprofloxacin and ceftazidime. Our results identify a gene mutation that can reverse the direction of the antibiotic selection of lasR mutants, a phenomenon known as sign epistasis, and provide a possible explanation for the emergence of lasR-null mutants in clinical isolates. IMPORTANCE One of the most common mutations in Pseudomonas aeruginosa clinical isolates is in the quorum sensing lasR gene. In laboratory strains, lasR disruption decreases resistance to the clinical antibiotic tobramycin. To understand how lasR mutations emerge in tobramycin-treated patients, we mutated lasR in highly tobramycin-resistant laboratory strains and determined the effects on resistance. Disrupting lasR enhanced the resistance of some strains. These strains had a single amino acid substitution in the translation factor EF-G1A. The EF-G1A mutation reversed the selective effects of tobramycin on lasR mutants. These results illustrate how adaptive mutations can lead to the emergence of new traits in a population and are relevant to understanding how genetic diversity contributes to the progression of disease during chronic infections.
Collapse
Affiliation(s)
| | - Kade A. Townsend
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Brielle M. Mckee
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kathryn Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pratik Koirala
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Alexandra J. Holder
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Vaughn D. Craddock
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Matthew Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
16
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542973. [PMID: 37398089 PMCID: PMC10312601 DOI: 10.1101/2023.05.30.542973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
17
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542962. [PMID: 37398201 PMCID: PMC10312497 DOI: 10.1101/2023.05.30.542962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
18
|
Singh VK, Almpani M, Wheeler KM, Rahme LG. Interconnections of Pseudomonas aeruginosa Quorum-Sensing Systems in Intestinal Permeability and Inflammation. mBio 2023; 14:e0352422. [PMID: 36786582 PMCID: PMC10127598 DOI: 10.1128/mbio.03524-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Quorum sensing (QS) is a highly conserved microbial communication mechanism based on the production and sensing of secreted signaling molecules. The recalcitrant pathogen Pseudomonas aeruginosa is a problematic nosocomial pathogen with complex interconnected QS systems controlling multiple virulence functions. The relevance of QS in P. aeruginosa pathogenesis is well established; however, the regulatory interrelationships of the three major QS systems, LasR/LasI, MvfR (PqsR)/PqsABCD, and RhlR/RhlI, have been studied primarily in vitro. It is, therefore, unclear how these relationships translate to the host environment during infection. Here, we use a collection of P. aeruginosa QS mutants of the three major QS systems to assess the interconnections and contributions in intestinal inflammation and barrier function in vivo. This work reveals that MvfR, not LasR or RhlR, promotes intestinal inflammation during infection. In contrast, we find that P. aeruginosa-driven murine intestinal permeability is controlled by an interconnected QS network involving all three regulators, with MvfR situated upstream of LasR and RhlR. This study demonstrates the importance of understanding the interrelationships of the QS systems during infection and provides critical insights for developing successful antivirulence strategies. Moreover, this work provides a framework to interrogate QS systems in physiologically relevant settings. IMPORTANCE Pseudomonas aeruginosa is a common multidrug-resistant bacterial pathogen that seriously threatens critically ill and immunocompromised patients. Intestinal colonization by this pathogen is associated with elevated mortality rates. Disrupting bacterial communication is a desirable anti-infective approach since these systems coordinate multiple acute and chronic virulence functions in P. aeruginosa. Here, we investigate the role of each of the three major communication systems in the host intestinal functions. This work reveals that P. aeruginosa influences intestinal inflammation and permeability through distinct mechanisms.
Collapse
Affiliation(s)
- Vijay K. Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Kelsey M. Wheeler
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
20
|
Abisado-Duquea RG, McKee BM, Townsend KA, Woods K, Koirala P, Holder AJ, Craddock VD, Cabeen MT, Chandler JR. Tobramycin adaptation alters the antibiotic susceptibility of Pseudomonas aeruginosa quorum sensing-null mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523864. [PMID: 36711731 PMCID: PMC9882136 DOI: 10.1101/2023.01.13.523864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum sensing system to increase resistance to the aminioglycoside antibiotic tobramycin. Paradoxically, lasR-null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism allowing the lasR-null mutants to persist under tobramycin selection. We hypothesized that the effects of inactivating lasR on tobramycin resistance might be dependent on the presence or absence of other gene mutations in that strain, a phenomenon known as epistasis. To test this hypothesis, we inactivated lasR in several highly tobramycin-resistant isolates from long-term evolution experiments. We show that the effects of ΔlasR on tobramycin resistance are strain dependent. The effects can be attributed to a point mutation in the gene encoding the translation elongation factor fusA1 (G61A nucleotide substitution), which confers a strong selective advantage to lasR-null PA14 under tobramycin selection. This fusA1 G61A mutation results in increased activity of the MexXY efflux pump and expression of the mexXY regulator ArmZ. The fusA1 mutation can also modulate ΔlasR mutant resistance to two other antibiotics, ciprofloxacin and ceftazidime. Our results demonstrate the importance of epistatic gene interactions on antibiotic susceptibility of lasR-null mutants. These results support of the idea that gene interactions might play a significant role in the evolution of quorum sensing in P. aeruginosa.
Collapse
|
21
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Sagel SD, Kupfer O, Wagner BD, Davis SD, Dell SD, Ferkol TW, Hoppe JE, Rosenfeld M, Sullivan KM, Tiddens HAWM, Knowles MR, Leigh MW. Airway Inflammation in Children with Primary Ciliary Dyskinesia. Ann Am Thorac Soc 2023; 20:67-74. [PMID: 35984413 PMCID: PMC9819265 DOI: 10.1513/annalsats.202204-314oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Rationale: The role of airway inflammation in disease pathogenesis in children with primary ciliary dyskinesia (PCD) is poorly understood. Objectives: We investigated relationships between sputum inflammation measurements, age, lung function, bronchiectasis, airway infection, and ultrastructural defects in children with PCD. Methods: Spontaneously expectorated sputum was collected from clinically stable children and adolescents with PCD ages 6 years and older participating in a multicenter, observational study. Sputum protease and inflammatory cytokine concentrations were correlated with age, lung function, and chest computed tomography measures of structural lung disease, whereas differences in concentrations were compared between ultrastructural defect categories and between those with and without detectable bacterial infection. Results: Sputum from 77 children with PCD (39 females [51%]; mean [standard deviation] age, 13.9 [4.9] yr; mean [standard deviation] forced expiratory volume in 1 second [FEV1]% predicted, 80.8 [20.5]) was analyzed. Sputum inflammatory marker measurements, including neutrophil elastase activity, IL-1β (interleukin-1β), IL-8, and TNF-α (tumor necrosis factor α) concentrations, correlated positively with age, percentage of bronchiectasis, and percentage of total structural lung disease on computed tomography, and negatively with lung function. Correlations between neutrophil elastase concentrations and FEV1% predicted and percentage of bronchiectasis were -0.32 (95% confidence interval, -0.51 to -0.10) and 0.46 (0.14 to 0.69), respectively. Sputum neutrophil elastase, IL-1β, and TNF-α concentrations were higher in those with detectable bacterial pathogens. Participants with absent inner dynein arm and microtubular disorganization had similar inflammatory profiles compared with participants with outer dynein arm defects. Conclusions: In this multicenter pediatric PCD cohort, elevated concentrations of sputum proteases and cytokines were associated with impaired lung function and structural damage as determined by chest computed tomography, suggesting that sputum inflammatory measurements could serve as biomarkers in PCD.
Collapse
Affiliation(s)
- Scott D. Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Oren Kupfer
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | | | - Sharon D. Dell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas W. Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jordana E. Hoppe
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margaret Rosenfeld
- Department of Pediatrics, Children’s Hospital and Regional Medical Center, Seattle, Washington; and
| | - Kelli M. Sullivan
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Harm A. W. M. Tiddens
- Department of Pediatric Pulmonology and Allergology, Erasmus MC‐Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | |
Collapse
|
23
|
Tzani-Tzanopoulou P, Rozumbetov R, Taka S, Doudoulakakis A, Lebessi E, Chanishvili N, Kakabadze E, Bakuradze N, Grdzelishvili N, Goderdzishvili M, Legaki E, Andreakos E, Papadaki M, Megremis S, Xepapadaki P, Kaltsas G, Akdis CA, Papadopoulos NG. Development of an in vitro homeostasis model between airway epithelial cells, bacteria and bacteriophages: a time-lapsed observation of cell viability and inflammatory response. J Gen Virol 2022; 103. [PMID: 36748697 DOI: 10.1099/jgv.0.001819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages represent the most extensive group of viruses within the human virome and have a significant impact on general health and well-being by regulating bacterial population dynamics. Staphylococcus aureus, found in the anterior nostrils, throat and skin, is an opportunistic pathobiont that can cause a wide range of diseases, from chronic inflammation to severe and acute infections. In this study, we developed a human cell-based homeostasis model between a clinically isolated strain of S. aureus 141 and active phages for this strain (PYOSa141) isolated from the commercial Pyophage cocktail (PYO). The cocktail is produced by Eliava BioPreparations Ltd. (Tbilisi, Georgia) and is used as an add-on therapy for bacterial infections, mainly in Georgia. The triptych interaction model was evaluated by time-dependent analysis of cell death and inflammatory response of the nasal and bronchial epithelial cells. Inflammatory mediators (IL-8, CCL5/RANTES, IL-6 and IL-1β) in the culture supernatants were measured by enzyme-linked immunosorbent assay and cell viability was determined by crystal violet staining. By measuring trans-epithelial electrical resistance, we assessed the epithelial integrity of nasal cells that had differentiated under air-liquid interface conditions. PYOSa141 was found to have a prophylactic effect on airway epithelial cells exposed to S. aureus 141 by effectively down-regulating bacterial-induced inflammation, cell death and epithelial barrier disruption in a time-dependent manner. Overall, the proposed model represents an advance in the way multi-component biological systems can be simulated in vitro.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Ramazan Rozumbetov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelia Lebessi
- Department of Microbiology, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Elene Kakabadze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nata Bakuradze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nino Grdzelishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia.,Ilia State University, Tbilisi, Georgia
| | | | - Evangelia Legaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Papadaki
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
O’Connor K, Zhao CY, Mei M, Diggle SP. Frequency of quorum-sensing mutations in Pseudomonas aeruginosa strains isolated from different environments. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001265. [PMID: 36748632 PMCID: PMC10233726 DOI: 10.1099/mic.0.001265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to coordinate the expression of multiple genes necessary for establishing and maintaining infection. It has previously been shown that lasR QS mutations frequently arise in cystic fibrosis (CF) lung infections, however, there has been far less emphasis on determining whether other QS system mutations arise during infection or in other environments. To test this, we utilized 852 publicly available sequenced P. aeruginosa genomes from the Pseudomonas International Consortium Database (IPCD) to study P. aeruginosa QS mutational signatures. To study isolates by source, we focused on a subset of 654 isolates collected from CF, wounds, and non-infection environmental isolates, where we could clearly identify their source. We also worked with a small collection of isolates in vitro to determine the impact of lasR and pqs mutations on isolate phenotypes. We found that lasR mutations are common across all environments and are not specific to infection nor a particular infection type. We also found that the pqs system proteins PqsA, PqsH, PqsL and MexT, a protein of increasing importance to the QS field, are highly variable. Conversely, RsaL, a negative transcriptional regulator of the las system, was found to be highly conserved, suggesting selective pressure to repress las system activity. Overall, our findings suggest that QS mutations in P. aeruginosa are common and not limited to the las system; however, LasR is unique in the frequency of putative loss-of-function mutations.
Collapse
Affiliation(s)
- Kathleen O’Connor
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Conan Y. Zhao
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Madeline Mei
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
A Model of Intracellular Persistence of Pseudomonas aeruginosa in Airway Epithelial Cells. Cell Microbiol 2022. [DOI: 10.1155/2022/5431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa (P.a.) is a major human pathogen capable of causing chronic infections in hosts with weakened barrier functions and host defenses, most notably airway infections commonly observed in individuals with the genetic disorder cystic fibrosis (CF). While mainly described as an extracellular pathogen, previous in vitro studies have described the molecular events leading to P.a. internalization in diverse epithelial cell types. However, the long-term fate of intracellular P.a. remains largely unknown. Here, we developed a model allowing for a better understanding of long-term (up to 120 h) intracellular bacterial survival in the airway epithelial cell line BEAS-2B. Using a tobramycin protection assay, we characterized the internalization, long-term intracellular survival, and cytotoxicity of the lab strain PAO1, as well as clinical CF isolates, and conducted analyses at the single-cell level using confocal microscopy and flow cytometry techniques. We observed that infection at low multiplicity of infection allows for intracellular survival up to 120 h post-infection without causing significant host cytotoxicity. Finally, infection with clinical isolates revealed significant strain-to-strain heterogeneity in intracellular survival, including a high persistence phenotype associated with bacterial replication within host cells. Future studies using this model will further elucidate the host and bacterial mechanisms that promote P. aeruginosa intracellular persistence in airway epithelial cells, a potentially unrecognized bacterial reservoir during chronic infections.
Collapse
|
26
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
27
|
Schick A, Shewaramani S, Kassen R. Genomics of diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Genome Biol Evol 2022; 14:6602282. [PMID: 35660861 PMCID: PMC9168666 DOI: 10.1093/gbe/evac074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas aeruginosa is among the most problematic opportunistic pathogens for adults with cystic fibrosis (CF), causing repeated and resilient infections in the lung and surrounding airways. Evidence suggests that long-term infections are associated with diversification into specialized types but the underlying cause of that diversification and the effect it has on the persistence of infections remains poorly understood. Here, we use evolve-and-resequence experiments to investigate the genetic changes accompanying rapid, de novo phenotypic diversification in lab environments designed to mimic two aspects of human lung ecology: spatial structure and complex nutritional content. After ∼220 generations of evolution, we find extensive genetic variation present in all environments, including those that most closely resemble the CF lung. We use the abundance and frequency of nonsynonymous and synonymous mutations to estimate the ratio of mutations that are selectively neutral (hitchhikers) to those that are under positive selection (drivers). A significantly lower proportion of driver mutations in spatially structured populations suggests that reduced dispersal generates subpopulations with reduced effective population size, decreasing the supply of beneficial mutations and causing more divergent evolutionary trajectories. In addition, we find mutations in a handful of genes typically associated with chronic infection in the CF lung, including one gene associated with antibiotic resistance. This demonstrates that many of the genetic changes considered to be hallmarks of CF lung adaptation can arise as a result of adaptation to a novel environment and do not necessarily require antimicrobial treatment, immune system suppression, or competition from other microbial species to occur.
Collapse
Affiliation(s)
- Alana Schick
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sonal Shewaramani
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rees Kassen
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
28
|
Ramond E, Lepissier A, Ding X, Bouvier C, Tan X, Euphrasie D, Monbernard P, Dupuis M, Saubaméa B, Nemazanyy I, Nassif X, Ferroni A, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Lung-adapted Staphylococcus aureus isolates with dysfunctional agr system trigger a proinflammatory response. J Infect Dis 2022; 226:1276-1285. [PMID: 35524969 DOI: 10.1093/infdis/jiac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (Sa) dominates the lung microbiota of Cystic Fibrosis (CF) children and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of Sa to the decline in respiratory function in CF children is not elucidated. METHODS To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS Using an Air-Liquid infection model, we observed a strong correlation between Sa adaption in the lung (late isolates), low toxicity and pro-inflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on Staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted Sa isolates. CONCLUSION Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a pro-inflammatory response through acquired agr dysfunction.
Collapse
Affiliation(s)
- Elodie Ramond
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Agathe Lepissier
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Epithelial channellopathies, Cystic Fibrosis and other diseases, Paris, France
| | - Xiongqi Ding
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Clémence Bouvier
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Xin Tan
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Pierre Monbernard
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging facility, INSERM US25, UMS3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Ivan Nemazanyy
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Xavier Nassif
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Agnès Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Epithelial channellopathies, Cystic Fibrosis and other diseases, Paris, France
| | - Alain Charbit
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France.,Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris, Paris, France
| |
Collapse
|
29
|
Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant. eLife 2022; 11:e76555. [PMID: 35502894 PMCID: PMC9224983 DOI: 10.7554/elife.76555] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function (LOF) mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR- derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR- lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR- lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR- cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.
Collapse
Affiliation(s)
- Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Medicine, Dartmouth-Hitchock Medical CenterLebanonUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
30
|
Endres A, Hügel C, Boland H, Hogardt M, Schubert R, Jonigk D, Braubach P, Rohde G, Bellinghausen C. Pseudomonas aeruginosa Affects Airway Epithelial Response and Barrier Function During Rhinovirus Infection. Front Cell Infect Microbiol 2022; 12:846828. [PMID: 35265536 PMCID: PMC8899922 DOI: 10.3389/fcimb.2022.846828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is aggravated by recurrent and ultimately chronic bacterial infections. One of the key pathogens in adult CF lung disease is P. aeruginosa (PA). In addition to bacteria, respiratory viral infections are suggested to trigger pulmonary exacerbations in CF. To date, little is known on how chronic infections with PA influence susceptibility and response to viral infection. We investigated the interactions between PA, human rhinovirus (HRV) and the airway epithelium in a model of chronic PA infection using differentiated primary bronchial epithelial cells (pBECs) and clinical PA isolates obtained from the respiratory sample of a CF patient. Cells were repeatedly infected with either a mucoid or a non-mucoid PA isolate for 16 days to simulate chronic infection, and subsequently co-infected with HRV. Key cytokines and viral RNA were quantified by cytometric bead array, ELISA and qPCR. Proteolytic degradation of IL-6 was analyzed by Western Blots. Barrier function was assessed by permeability tests and transepithelial electric resistance measurements. Virus infection stimulated the production of inflammatory and antiviral mediators, including interleukin (IL)-6, CXCL-8, tumor necrosis factor (TNF)-α, and type I/III interferons. Co-infection with a non-mucoid PA isolate increased IL-1β protein concentrations (28.88 pg/ml vs. 6.10 pg/ml), but in contrast drastically diminished levels of IL-6 protein (53.17 pg/ml vs. 2301.33 pg/ml) compared to virus infection alone. Conditioned medium obtained from co-infections with a non-mucoid PA isolate and HRV was able to rapidly degrade recombinant IL-6 in a serine protease-dependent manner, whereas medium from individual infections or co-infections with a mucoid isolate had no such effect. After co-infection with HRV and the non-mucoid PA isolate, we detected lower mRNA levels of Forkhead box J1 (FOXJ1) and Cilia Apical Structure Protein (SNTN), markers of epithelial cell differentiation to ciliated cells. Moreover, epithelial permeability was increased and barrier function compromised compared to single infections. These data show that PA infection can influence the response of bronchial epithelial cells to viral infection. Altered innate immune responses and compromised epithelial barrier function may contribute to an aggravated course of viral infection in PA-infected airways.
Collapse
Affiliation(s)
- Adrian Endres
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Hügel
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Helena Boland
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Hogardt
- Consiliary Laboratory on Cystic Fibrosis Bacteriology, Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Carla Bellinghausen
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Carla Bellinghausen,
| |
Collapse
|
31
|
Mateu-Borrás M, González-Alsina A, Doménech-Sánchez A, Querol-García J, Fernández FJ, Vega MC, Albertí S. Pseudomonas aeruginosa adaptation in cystic fibrosis patients increases C5a levels and promotes neutrophil recruitment. Virulence 2022; 13:215-224. [PMID: 35094639 PMCID: PMC8802900 DOI: 10.1080/21505594.2022.2028484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) disease is characterized by an intense airway inflammatory response mediated by neutrophils and chronic respiratory infections caused by P. aeruginosa. High levels of the complement component C5a, the strongest neutrophil chemoattractant molecule, are commonly found in the CF lung and have been associated with a worsening of the disease. In this study, we investigated how the isolates from CF patients modulate the levels of C5a and identified the bacterial factors involved. We demonstrated that most isolates from airway chronic infections induce the production and accumulation of C5a, an effect attributable to the loss of C5a cleavage by the exoproteases alkaline protease (AprA) and elastase B (LasB). Furthermore, we found that lack of the bacterial protease-dependent C5a degradation is due to mutations in the master regulator LasR. Thus, complementation of a non-C5a-cleaving CF isolate with a functional wild-type LasR restored its ability to express both proteases, cleave C5a and reduce neutrophil recruitment in vitro. These findings suggest that the non-cleaving C5a phenotype acquired by the LasR variants frequently isolated in CF patients may account for the strong neutrophilia and general neutrophil dysfunction predisposing toward increased inflammation and reduced bacterial clearance described in CF patients.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Alex González-Alsina
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Antonio Doménech-Sánchez
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| | - Javier Querol-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco J. Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mª Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación En Ciencias de La Salud, Universidad de Las Islas Baleares and Instituto de Investigación Sanitaria de Les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
32
|
Mateu-Borrás M, Zamorano L, González-Alsina A, Sánchez-Diener I, Doménech-Sánchez A, Oliver A, Albertí S. Molecular Analysis of the Contribution of Alkaline Protease A and Elastase B to the Virulence of Pseudomonas aeruginosa Bloodstream Infections. Front Cell Infect Microbiol 2022; 11:816356. [PMID: 35145924 PMCID: PMC8823171 DOI: 10.3389/fcimb.2021.816356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial bloodstream infections. This microorganism secretes two major proteases, alkaline protease A (AprA) and elastase B (LasB). Despite several in vitro studies having demonstrated that both purified proteases cleave a number of components of the immune system, their contribution to P. aeruginosa bloodstream infections in vivo remains poorly investigated. In this study, we used a set of isogenic mutants deficient in AprA, LasB or both to demonstrate that these exoproteases are sufficient to cleave the complement component C3, either soluble or deposited on the bacteria. Nonetheless, exoprotease-deficient mutants were as virulent as the wild-type strain in a murine model of systemic infection, in Caenorhabditis elegans and in Galleria mellonella. Consistently, the effect of the exoproteases on the opsonization of P. aeruginosa by C3 became evident four hours after the initial interaction of the complement with the microorganism and was not crucial to survival in blood. These results indicate that exoproteases AprA and LasB, although conferring the capacity to cleave C3, are not essential for the virulence of P. aeruginosa bloodstream infections.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Laura Zamorano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
| | - Alex González-Alsina
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Irina Sánchez-Diener
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
| | - Antonio Doménech-Sánchez
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
- Servicio de Microbiología, Hospital Son Espases, Palma de Mallorca, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- *Correspondence: Sebastián Albertí,
| |
Collapse
|
33
|
Bukharin OV, Perunova NB, Ivanova EV, Chaynikova IN, Bekpergenova AV, Bondarenko TA, Kuzmin MD. Semen microbiota and cytokines of healthy and infertile men. Asian J Androl 2021; 24:353-358. [PMID: 34806653 PMCID: PMC9295472 DOI: 10.4103/aja202169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this study, we determined the levels of cytokine secretory inhibitors and the microbiota biofilms of semen from healthy and infertile subjects. A total of 118 clinical bacterial isolates were isolated and tested. Cytokine secretory inhibitors were determined based on the difference in cytokine content between the control and experimental samples of cell-free supernatants of isolated microorganisms. Biofilm formation was studied by determining the adhesion of microorganisms to the surface of a 96-well sterile plate and expressed as the optical density at 630 nm (OD630). Cell-free supernatants of Staphylococcus contained higher levels of secretory inhibitor of cytokines in conditionally healthy than in infertile patients. In contrast, in infertile men, the ability to reduce cytokine levels was more characteristic of Enterococcus and Corynebacterium. Seminal Staphylococcus, Corynebacterium, and Enterococcus isolated from infertile subjects showed a greater ability to form biofilms than the same bacteria isolated from healthy men. Further research is needed on this topic, since it is necessary to determine the relationships between decreased secretory inhibitors of cytokines, production of biofilms by bacteria in semen, and infertility. It is likely that the ability of microorganisms to change the concentration of cytokines and increase the level of biofilm formation in semen may be associated with minimal impairments of fertilizing ability, which are not detected using other methods.
Collapse
Affiliation(s)
- Oleg V Bukharin
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Natalya B Perunova
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Elena V Ivanova
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Irina N Chaynikova
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Anastasia V Bekpergenova
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Taisiya A Bondarenko
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| | - Michael D Kuzmin
- Institute of Cellular and Intracellular Symbiosis, Ural Department of the Russian Academy of Sciences, Orenburg Federal Research Center UD of RAS, Orenburg 460014, Russia
| |
Collapse
|
34
|
Zupetic J, Peñaloza HF, Bain W, Hulver M, Mettus R, Jorth P, Doi Y, Bomberger J, Pilewski J, Nouraie M, Lee JS. Elastase Activity From Pseudomonas aeruginosa Respiratory Isolates and ICU Mortality. Chest 2021; 160:1624-1633. [PMID: 33878342 PMCID: PMC8628173 DOI: 10.1016/j.chest.2021.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is a common cause of respiratory infection and morbidity. Pseudomonas elastase is an important virulence factor regulated by the lasR gene. Whether PA elastase activity is associated with worse clinical outcomes in ICU patients is unknown. RESEARCH QUESTION Is there an association between PA elastase activity and worse host outcomes in a cohort of ICU patients? METHODS PA respiratory isolates from 238 unique ICU patients from two tertiary-care centers within the University of Pittsburgh Medical Center health system were prospectively collected and screened for total protease and elastase activity, biofilm production, antimicrobial resistance, and polymicrobial status. The association between pathogen characteristics and 30-day and 90-day mortality was calculated using logistic regression. For subgroup analysis, two patterns of early (≤72 h) and late sample (>72 h) collection from the index ICU admission were distinguished using a finite mixture model. Lung inflammation and injury was evaluated in a mouse model using a PA high elastase vs low elastase producer. RESULTS PA elastase activity was common in ICU respiratory isolates representing 75% of samples and was associated with increased 30-day mortality (adjusted OR [95% CI]: 1.39 [1.05-1.83]). Subgroup analysis demonstrated that elastase activity was a risk factor for 30- and 90-day mortality in the early sample group, whereas antimicrobial resistance was a risk factor for 90-day mortality in the late sample group. Whole genome sequencing of high and low elastase producers showed that predicted loss-of-function lasR genotypes were less common among high elastase producers. Mice infected with a high elastase producer showed increased lung bacterial burden and inflammatory profile compared with mice infected with a low elastase producer. INTERPRETATION Elastase activity is associated with 30-day ICU mortality. A high elastase producing clinical isolate confers increased lung tissue inflammation compared with a low elastase producer in vivo.
Collapse
Affiliation(s)
- Jill Zupetic
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Roberta Mettus
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jennifer Bomberger
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Pilewski
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
35
|
Groleau MC, Taillefer H, Vincent AT, Constant P, Déziel E. Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches. Environ Microbiol 2021; 24:1062-1075. [PMID: 34488244 DOI: 10.1111/1462-2920.15745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
The saprophyte Pseudomonas aeruginosa is a versatile opportunistic pathogen causing infections in immunocompromised individuals. To facilitate its adaptation to a large variety of niches, this bacterium exploits population density-dependent gene regulation systems called quorum sensing (QS). In P. aeruginosa, three distinct but interrelated QS systems (las, rhl and pqs) regulate the production of many survival and virulence functions. In prototypical strains, the las system, through its transcriptional regulator LasR, is important for the full activation of the rhl and pqs systems. Still, LasR-deficient isolates have been reported, mostly sampled from the lungs of people with cystic fibrosis, where they are considered selected by the chronic infection environment. In this study, we show that a defect in LasR activity appears to be an actually widespread mechanism of adaptation in this bacterium. Indeed, we found abundant LasR-defective isolates sampled from hydrocarbon-contaminated soils, hospital sink drains and meat/fish market environments, using an approach based on phenotypic profiling, supported by gene sequencing. Interestingly, several LasR-defective isolates maintain an active rhl system or are deficient in pqs system signalling. The high prevalence of a LasR-defective phenotype among environmental P. aeruginosa isolates questions the role of QS in niche adaptation.
Collapse
Affiliation(s)
- Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, Quebec, Canada
| | - Hélène Taillefer
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, Quebec, Canada
| | - Antony T Vincent
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
| | - Philippe Constant
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, Quebec, Canada
| |
Collapse
|
36
|
Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum. J Bacteriol 2021; 203:e0010021. [PMID: 33927050 DOI: 10.1128/jb.00100-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts, including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to those grown in control cultures but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum, indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here, we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to posttranslationally inhibit zinc metalloprotease activity and thereby affect the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment. IMPORTANCE The factors that contribute to worse outcomes in individuals with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infections are not well understood. Therefore, there is a need to understand environmental factors within the CF airway that contribute to P. aeruginosa colonization and infection. We demonstrate that growing bacteria in CF sputum induces a zinc starvation response that inversely correlates with sputum zinc levels. Additionally, both calprotectin and a chemical zinc chelator inhibit the proteolytic activities of LasA and LasB proteases, suggesting that extracellular zinc chelators can influence proteolytic activity and thus P. aeruginosa virulence and nutrient acquisition in vivo.
Collapse
|
37
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
38
|
Ahmed SAKS, Rudden M, Elias SM, Smyth TJ, Marchant R, Banat IM, Dooley JSG. Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRI quorum sensing. Sci Rep 2021; 11:5729. [PMID: 33707533 PMCID: PMC7970962 DOI: 10.1038/s41598-021-85100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.
Collapse
Affiliation(s)
- Syed A K Shifat Ahmed
- School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth, York, YO10 5DD, UK
| | - Sabrina M Elias
- School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Thomas J Smyth
- School of Science, Institute of Technology Sligo, Sligo, Ireland
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - James S G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
39
|
LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog 2021; 17:e1009375. [PMID: 33690714 PMCID: PMC7984618 DOI: 10.1371/journal.ppat.1009375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/22/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.
Collapse
|
40
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Montefusco-Pereira CV, Carvalho-Wodarz CDS, Seeger J, Kloft C, Michelet R, Lehr CM. Decoding (patho-)physiology of the lung by advanced in vitro models for developing novel anti-infectives therapies. Drug Discov Today 2020; 26:148-163. [PMID: 33232842 DOI: 10.1016/j.drudis.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Advanced lung cell culture models provide physiologically-relevant and complex data for mathematical models to exploit host-pathogen responses during anti-infective drug testing.
Collapse
Affiliation(s)
- Carlos Victor Montefusco-Pereira
- Department of Pharmacy, Saarland University, Saarbruecken, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | | | - Johanna Seeger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken, Germany; Department of Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
42
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
43
|
Abstract
Variation in the genome of Pseudomonas aeruginosa, an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of P. aeruginosa isolates based on their genomic content. We applied a machine learning approach to a genetically and phenotypically diverse collection of 115 clinical P. aeruginosa isolates using genomic information and corresponding virulence phenotypes in a mouse model of bacteremia. We defined the accessory genome of these isolates through the presence or absence of accessory genomic elements (AGEs), sequences present in some strains but not others. Machine learning models trained using AGEs were predictive of virulence, with a mean nested cross-validation accuracy of 75% using the random forest algorithm. However, individual AGEs did not have a large influence on the algorithm's performance, suggesting instead that virulence predictions are derived from a diffuse genomic signature. These results were validated with an independent test set of 25 P. aeruginosa isolates whose virulence was predicted with 72% accuracy. Machine learning models trained using core genome single-nucleotide variants and whole-genome k-mers also predicted virulence. Our findings are a proof of concept for the use of bacterial genomes to predict pathogenicity in P. aeruginosa and highlight the potential of this approach for predicting patient outcomes.IMPORTANCE Pseudomonas aeruginosa is a clinically important Gram-negative opportunistic pathogen. P. aeruginosa shows a large degree of genomic heterogeneity both through variation in sequences found throughout the species (core genome) and through the presence or absence of sequences in different isolates (accessory genome). P. aeruginosa isolates also differ markedly in their ability to cause disease. In this study, we used machine learning to predict the virulence level of P. aeruginosa isolates in a mouse bacteremia model based on genomic content. We show that both the accessory and core genomes are predictive of virulence. This study provides a machine learning framework to investigate relationships between bacterial genomes and complex phenotypes such as virulence.
Collapse
|
44
|
Peignier A, Parker D. Pseudomonas aeruginosa Can Degrade Interferon λ, Thereby Repressing the Antiviral Response of Bronchial Epithelial Cells. J Interferon Cytokine Res 2020; 40:429-431. [PMID: 32672514 DOI: 10.1089/jir.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
45
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
46
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 958] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
47
|
Robitaille S, Groleau M, Déziel E. Swarming motility growth favours the emergence of a subpopulation ofPseudomonas aeruginosaquorum‐sensing mutants. Environ Microbiol 2020; 22:2892-2906. [DOI: 10.1111/1462-2920.15042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Sophie Robitaille
- Centre Armand‐Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531 Boulevard des Prairies, Laval QC H7V 1B7 Canada
| | - Marie‐Christine Groleau
- Centre Armand‐Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531 Boulevard des Prairies, Laval QC H7V 1B7 Canada
| | - Eric Déziel
- Centre Armand‐Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531 Boulevard des Prairies, Laval QC H7V 1B7 Canada
| |
Collapse
|
48
|
Skin Microbiome in Cutaneous T-Cell Lymphoma by 16S and Whole-Genome Shotgun Sequencing. J Invest Dermatol 2020; 140:2304-2308.e7. [PMID: 32353450 DOI: 10.1016/j.jid.2020.03.951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
|
49
|
Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A, Brown SP, Diggle SP. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME JOURNAL 2020; 14:1929-1942. [PMID: 32341475 DOI: 10.1038/s41396-020-0652-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant β-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to β-lactam antibiotics.
Collapse
Affiliation(s)
- Sheyda Azimi
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aled E L Roberts
- Microbiology & Infectious Diseases Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
50
|
Cao Q, Ma K, Nie M, Dong Y, Lu C, Liu Y. Role of luxS in immune evasion and pathogenicity of piscine Streptococcus agalactiae is not dependent on autoinducer-2. FISH & SHELLFISH IMMUNOLOGY 2020; 99:274-283. [PMID: 32058098 DOI: 10.1016/j.fsi.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
luxS-mediated autoinducer 2 (AI-2)-dependent quorum sensing (QS) has been demonstrated to affect many bacterial phenotypes, including virulence. Streptococcus agalactiae harbors a functional luxS gene required for the biosynthesis of AI-2. In this study, we investigated the regulation effect and mechanism of the luxS/AI-2 QS system in the pathogenicity of the piscine S. agalactiae strain GD201008-001. We found that inactivation of luxS caused a marked decrease in biofilm formation, hemolytic activity, antiphagocytosis and intracellular survival of S. agalactiae. Except for hemolytic activity, the altered phenotypes due to the luxS deletion were AI-2-independent. Further investigation indicated that high levels of the proinflammatory cytokines IL-1β and IL-6 could be induced in macrophages co-incubated with the luxS deletion mutant and synthetic AI-2, single or combined. Also, the results of tilapia infection showed that inactivation of luxS significantly decreased the virulence of S. agalactiae but upregulated the expression of cytokines in spleens and brains. Increased proinflammatory effects of the luxS mutant were restored in the luxS complemented strain but could not be restored by AI-2 addition. All the findings suggest that luxS is involved in virulence-associated phenotypes and immunological evasion of S. agalactiae, and furthermore, this involvement is mostly AI-2-independent. This study will provide valuable insights into our understanding of the role of the LuxS/AI-2 QS system in the pathogenesis of S. agalactiae.
Collapse
Affiliation(s)
- Qing Cao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng Nie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|