1
|
Beshara GM, Surin I, Agrachev M, Eliasson H, Otroshchenko T, Krumeich F, Erni R, Kondratenko EV, Pérez-Ramírez J. Mechanochemically-derived iron atoms on defective boron nitride for stable propylene production. EES CATALYSIS 2024; 2:1263-1276. [PMID: 39148890 PMCID: PMC11320177 DOI: 10.1039/d4ey00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) via mechanochemical activation in a ball mill as an effective catalyst for propylene production via N2O-mediated oxidative propane dehydrogenation (N2O-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream. This solvent-free synthesis allows simultaneous carrier exfoliation and surface defect generation, creating anchoring sites for catalytically-active iron atoms. The incorporation of a small metal quantity (0.5 wt%) predominantly generates a mix of atomically-dispersed Fe2+ and Fe3+ species, as confirmed by combining advanced microscopy and electron paramagnetic resonance, UV-vis and X-ray photoelectron spectroscopy analyses. Single-atom iron favours selective propylene formation, while metal oxide nanoparticles yield large quantities of CO x and cracking by-products. The lack of acidic functionalities on h-BN, hindering coke formation, and firm stabilisation of Fe sites, preventing metal sintering, ensure stable operation. These findings showcase N2O-ODHP as a promising propylene production technology and foster wider adoption of mechanochemical activation as a viable method for SACs synthesis.
Collapse
Affiliation(s)
- Gian Marco Beshara
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Tatiana Otroshchenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Evgenii V Kondratenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
2
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Lu Y, Ke Z. Strategies for the Preparation of Single-Atom Catalysts Using Low-Dimensional Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403767. [PMID: 38863130 DOI: 10.1002/smll.202403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/14/2024] [Indexed: 06/13/2024]
Abstract
As single-atom catalysts are important energy materials, their preparation and synthesis methods have become particularly important. The unique structures of low-dimensional metal-organic frameworks and their derivatives provide various strategies for preparing single-atom catalysts. This paper summarizes various strategies for the preparation of single-atom catalysts based on low-dimensional metal-organic frameworks and their derivatives.
Collapse
Affiliation(s)
- Yi Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
4
|
Wang J, Kim J, Li J, Krall C, Sharma VK, Ashley DC, Huang CH. Rapid and Highly Selective Fe(IV) Generation by Fe(II)-Peroxyacid Advanced Oxidation Processes: Mechanistic Investigation via Kinetics and Density Functional Theory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39276080 PMCID: PMC11428173 DOI: 10.1021/acs.est.4c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
High-valent iron (Fe(IV/V/VI)) has been widely applied in water decontamination. However, common Fe(II)-activating oxidants including hydrogen peroxide (H2O2) and persulfate react slowly with Fe(II) and exhibit low selectivity for Fe(IV) production due to the cogeneration of radicals. Herein, we report peroxyacids (POAs; R-C(O)OOH) that can react with Fe(II) more than 3 orders of magnitude faster than H2O2, with high selectivity for Fe(IV) generation. Rapid degradation of bisphenol A (BPA, an endocrine disruptor) was achieved by the combination of Fe(II) with performic acid (PFA), peracetic acid (PAA), or perpropionic acid (PPA) within one second. Experiments with phenyl methyl sulfoxide (PMSO) and tert-butyl alcohol (TBA) revealed Fe(IV) as the major reactive species in all three Fe(II)-POA systems, with a minor contribution of radicals (i.e., •OH and R-C(O)O•). To understand the exceptionally high reactivity of POAs, a detailed computational comparison among the Fenton-like reactions with step-by-step thermodynamic evaluation was conducted. The high reactivity is attributed to the lower energy barriers for O-O bond cleavage, which is determined as the rate-limiting step for the Fenton-like reactions, and the thermodynamically favorable bidentate binding pathway of POA with iron. Overall, this study advances knowledge on POAs as novel Fenton-like reagents and sheds light on computational chemistry for these systems.
Collapse
Affiliation(s)
- Junyue Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiaqi Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K Sharma
- School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel C Ashley
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Zhang M, Xia C, Li L, Wang A, Cao D, Zhang B, Fang Q, Zhao X. Computational screening of pyrazine-based graphene-supported transition metals as single-atom catalysts for the nitrogen reduction reaction. Dalton Trans 2024; 53:14910-14921. [PMID: 39190418 DOI: 10.1039/d4dt01363h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Electrochemical synthesis of NH3 from N2 utilizing single-atom catalysts (SACs) is a promising strategy for industrial nitrogen fixation and chemical raw material production. In this work, single transition metals (TMs) anchored on pyrazine-based graphene (TM@py-GY) are systematically studied to screen potential electrocatalysts for the nitrogen reduction reaction (NRR) using first-principles calculations. Particularly, the descriptor φ related to electronegativity and valence electron number is selected to clarify the trend of NRR activity, realizing a fast-scan/estimation among various candidates. After a four-step screening process, WI@py-GY and MoII@py-GY SACs are screened with good structural stability, high selectivity, and high activity. Meanwhile, the thermodynamic stability of WI@py-GY and MoII@py-GY SACs is demonstrated to ensure their feasibility in real experimental conditions. Furthermore, electronic properties are also examined in detail to analyze activity origin. This work not only provides an effective and reliable method for screening electrochemical NRR catalysts with excellent performance but also provides guidance for the rational design of SACs.
Collapse
Affiliation(s)
- Min Zhang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Lianbi Li
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Anxiang Wang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Dezhong Cao
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Baiyu Zhang
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| | - Qinglong Fang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Xumei Zhao
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
6
|
Zhao Q, Zhao X, Liu Z, Ge Y, Ruan J, Cai H, Zhang S, Ye C, Xiong Y, Chen W, Meng G, Liu Z, Zhang J. Constructing Pd and Cu Crowding Single Atoms by Protein Confinement to Promote Sonogashira Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402971. [PMID: 39011789 DOI: 10.1002/adma.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Indexed: 07/17/2024]
Abstract
For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.
Collapse
Affiliation(s)
- Qinying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Zhiyi Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yi Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxiong Ruan
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongyi Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
Wang N, Mei R, Chen L, Yang T, Chen Z, Lin X, Liu Q. P-Bridging Asymmetry Diatomic Catalysts Sites Drive Efficient Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400327. [PMID: 38516947 DOI: 10.1002/smll.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Rechargeable zinc-air batteries (ZABs) rely on the development of high-performance bifunctional oxygen electrocatalysts to facilitate efficient oxygen reduction/evolution reactions (ORR/OER). Single-atom catalysts (SACs), characterized by their precisely defined active sites, have great potential for applications in ZABs. However, the design and architecture of atomic site electrocatalysts with both high activity and durability present significant challenges, owing to their spatial confinement and electronic states. In this study, a strategy is proposed to fabricate structurally uniform dual single-atom electrocatalyst (denoted as P-FeCo/NC) consisting of P-bridging Fe and Co bimetal atom (i.e., Fe-P-Co) decorated on N, P-co-doped carbon framework as an efficient and durable bifunctional electrocatalyst for ZABs. Experimental investigations and theoretical calculations reveal that the Fe-P-Co bridge-coupling structure enables a facile adsorption/desorption of oxygen intermediates and low activation barrier. The resultant P-FeCo/NC exhibits ultralow overpotential of 340 mV at 10 mA cm-2 for OER and high half-wave potential of 0.95 V for ORR. In addition, the application of P-FeCo/NC in rechargeable ZABs demonstrates enhanced performance with maximum power density of 115 mW cm-2 and long cyclic stability, which surpass Pt/C and RuO2 catalysts. This study provides valuable insights into the design and mechanism of atomically dispersed catalysts for energy conversion applications.
Collapse
Affiliation(s)
- Nan Wang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Riguo Mei
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Liqiong Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhongwei Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - Xidong Lin
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Qingxia Liu
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Waterloo, T6R1H9, Canada
| |
Collapse
|
8
|
Li Y, Xu CQ, Chen C, Zhang Y, Liu S, Zhuang Z, Zhang Y, Zhang Q, Li Z, Chen Z, Zheng L, Cheong WC, Wu K, Jiang G, Xiao H, Lian C, Wang D, Peng Q, Li J, Li Y. Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes. J Am Chem Soc 2024. [PMID: 39031766 DOI: 10.1021/jacs.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shoujie Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyuan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qiyang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Weng-Chon Cheong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Konglin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Lian
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Lyu P, Wang Z, Guo N, Su J, Li J, Qi D, Xi S, Lin H, Zhang Q, Pennycook SJ, Chen J, Zhao X, Zhang C, Loh KP, Lu J. Air-Stable Wafer-Scale Ferromagnetic Metallo-Carbon Nitride Monolayer. J Am Chem Soc 2024. [PMID: 39021150 DOI: 10.1021/jacs.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The pursuit of robust, long-range magnetic ordering in two-dimensional (2D) materials holds immense promise for driving technological advances. However, achieving this goal remains a grand challenge due to enhanced quantum and thermal fluctuations as well as chemical instability in the 2D limit. While magnetic ordering has been realized in atomically thin flakes of transition metal chalcogenides and metal halides, these materials often suffer from air instability. In contrast, 2D carbon-based materials are stable enough, yet the challenge lies in creating a high density of local magnetic moments and controlling their long-range magnetic ordering. Here, we report a novel wafer-scale synthesis of an air-stable metallo-carbon nitride monolayer (MCN, denoted as MN4/CNx), featuring ultradense single magnetic atoms and exhibiting robust room-temperature ferromagnetism. Under low-pressure chemical vapor deposition conditions, thermal dehydrogenation and polymerization of metal phthalocyanine (MPc) on copper foil at elevated temperature generate a substantial number of nitrogen coordination sites for anchoring magnetic single atoms in monolayer MN4/CNx (where M = Fe, Co, and Ni). The incorporation of densely populating MN4 sites into monolayer MCN networks leads to robust ferromagnetism up to room temperature, enabling the observation of anomalous Hall effects with excellent chemical stability. Detailed electronic structure calculations indicate that the presence of high-density metal sites results in the emergence of spin-split d-bands near the Fermi level, causing a favorable long-range ferromagnetic exchange coupling through direct exchange interactions. Our work demonstrates a novel synthesis approach for wafer-scale MCN monolayers with robust room-temperature ferromagnetism and may shed light on practical electronic and spintronic applications.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ziying Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Na Guo
- Chongqing Research Institute, National University of Singapore, Chongqing 401123, China
- Department of Physics, Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jing Li
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Dongchen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Singapore, 627833, Singapore
| | - Huihui Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qihan Zhang
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Stephen J Pennycook
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Jingsheng Chen
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Chongqing Research Institute, National University of Singapore, Chongqing 401123, China
- Department of Physics, Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| |
Collapse
|
10
|
Wang S, Wang J. Radiation-induced preparation of nanoscale CoO@graphene oxide for activating peroxymonosulfate to degrade emerging organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173211. [PMID: 38754511 DOI: 10.1016/j.scitotenv.2024.173211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
In this study, ionizing radiation was used to induce the in-situ formation of highly dispersed nanosized cobalt oxide on the surface of graphene oxide (R-Co-GO), which was highly effective for activating PMS to degrade sulfamethoxazole (SMX). R-Co-GO had the highest catalytic activity when 150 μL cobalt chloride hexahydrate solution was used in the precursor, and the pseudo first-order kinetic constant of SMX degradation was 0.07 min-1 with high mineralization efficiency (63.1 %) and high PMS utilization efficiency. The sulfate radicals and high-valent cobalt oxo were mainly responsible for SMX degradation. Mechanism analysis showed that cobalt active site dominated in PMS activation, which was responsible for the formation of sulfate radicals and high-valent cobalt oxo; while the carbon framework contributed to the formation of singlet oxygen. The R-Co-GO-150 had good catalytic activity and stability in five cycling experiments, in which SMX was completely degraded and the concentration of dissolved Co was below 0.1 mg/L. In addition, the R-Co-GO-150/PMS system could also degrade phenol, bisphenol A, atrazine and nitrobenzene effectively, confirming its wide applicability. This study provided a facile method to uniformly disperse the metal oxides on the surface of carbon materials, and an effective system for the removal of emerging organic pollutants from the actual wastewater.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
12
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
13
|
Che W, Li P, Han GF, Noh HJ, Seo JM, Jeon JP, Li C, Liu W, Li F, Liu Q, Baek JB. Out-of-Plane Single-Copper-Site Catalysts for Room-Temperature Benzene Oxidation. Angew Chem Int Ed Engl 2024; 63:e202403017. [PMID: 38429994 DOI: 10.1002/anie.202403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024]
Abstract
Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, P3N5) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)-phosphorus (P)-carbon (C) support (NPC). Rigorous analyses, including X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first-principles calculations, coupled with the climbing image nudged-elastic-band (CI-NEB) method, provide a comprehensive understanding of the structure-property-activity relationship of the distorted Cu-N2P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C-H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h-1 and mass-specific activity of 35.2 mmol g-1 h-1, surpassing the state-of-the-art benzene-to-phenol conversion catalysts to date.
Collapse
Affiliation(s)
- Wei Che
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Pai Li
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Gao-Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Changqing Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| |
Collapse
|
14
|
Wang S, Cheng B, Fang X, Cao M, Xu X, Wang X. Electronegativity-dependent Pt anchoring and molecule adsorption for graphene-based supported Pt single atom. J Mol Model 2024; 30:138. [PMID: 38639819 DOI: 10.1007/s00894-024-05908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT To unravel the effects of the C vacancy, doping N type and number, the adsorption of HCHO and O2 was investigated on the graphene (Gr)-based supported Pt single atom by density functional theory calculations. The electronegativity of the vacancy and N-doped Gr was a crucial factor both for the anchoring for a Pt and the further adsorption of HCHO and O2 on the supported Pt. The electronegativity can be tuned by the C vacancy number (1V and 2V), the doping N type (graphitic-N, pyridinic-N and pyrrolic-N) and the doping pyridinic-N number (1N ~ 4N). The high electronegativity of the vacancy and N-doped Gr favored the anchoring for a Pt compared to the Gr, while too high electronegativity was detrimental for further adsorption of adsorbates on the supported Pt. The Bader charge analysis proved that the electronegativity followed the trend as pyrrolic-N > pyridinic-N > graphitic-N, and 4N-Gr > 2V-Gr > 3N-Gr > 2N-Gr > 1N-Gr > 1V-Gr > Gr. As a result, the pyridinic-N, the 1V-Gr, 1N-Gr and 2N-Gr with the suitable electronegativity achieved both stronger anchoring for a Pt and more favorable adsorption of HCHO and O2 on the supported Pt than the pristine Gr support. METHODS Periodic DFT calculation was performed using the VASP code. The PAW method and the GGA-PBE functionals were used. Part of work was also carried out by the DSPAW procedure of Device Studio.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Boxin Cheng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Meijuan Cao
- College of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, China.
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | | |
Collapse
|
15
|
Yu T, Tao L, Liu Z, Zhang X, Gan T, Yan W, Zheng L, Meng G, Chen W, Liu S, Ye C, Zhang J. Oxygen Coordination Promotes Single-Atom Cu(II)-Catalyzed Azide-Alkyne Click Chemistry without Reducing Agents. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38602509 DOI: 10.1021/acsami.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lei Tao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyi Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Xuge Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
| | - Lirong Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
16
|
Chen Z, Walsh AG, Zhang P. Structural Analysis of Single-Atom Catalysts by X-ray Absorption Spectroscopy. Acc Chem Res 2024. [PMID: 38334075 DOI: 10.1021/acs.accounts.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusMetal nanoparticles (NPs) are one of the most frequently used heterogeneous catalysts. However, only the surface atoms in the NPs can participate in catalytic reactions. To maximize the atomic efficiency, the active sites can be reduced to single atoms. Generally, catalysts that have isolated metal atoms on the surface of a support are called single-atom catalysts (SACs). Many techniques have been developed and applied to probe the structures of SACs. Nevertheless, the structural characterization of SACs is still challenging as it requires the analysis of their structure and properties with atomic and sometimes even subatomic resolution. X-ray absorption spectroscopy (XAS) is a powerful tool in investigating the local coordination environment of SACs since it is element-specific and can provide accurate structural information at the subatomic level (∼0.01 Å).In this Account, we present our perspectives on the structural analysis of SACs from some unique features in the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). We first highlight the importance of the XANES peak features in the sensitive analysis of SAC structures. Such analysis is illustrated to be even more useful in the joint applications of experimental and theoretical XAS. The inspection of the metal-metal (M-M) peak in Fourier transformed EXAFS (FT-EXAFS) spectra is a widely used method to identify the single-atom structure, but this method is not always reliable. Thus, we point out the importance of fitting EXAFS and the thorough interpretation of structural parameters such as coordination numbers (CNs, the number of neighboring atoms next to a chosen atom), bond distances, and the Debye-Waller factor (σ2). The small FT-EXAFS peak for the M-M shell is often ignored in the structural analysis of SACs. Here, it is demonstrated that a careful analysis of these small peaks could help more reliably analyze the SAC structure, and it would be particularly useful in the analysis of a single-atom alloy (SAA). Next, the usefulness of bond distance and σ2 analysis is highlighted, and such analysis is shown to be particularly helpful for the analysis of SAAs, which is rarely discussed in the literature. Given the advantage that XAS data can be collected under various conditions, we show that in situ XAS can provide important information about the catalytic mechanism of the SAC catalyst. In particular, we emphasize the significance of using an advanced in situ technique to extract detailed structural information that is difficult to obtain from regular XAS experiments. Finally, we highlight the importance of jointly using XAS with other complementary methods in a more complete understanding of the structure and properties of SACs. It is anticipated that with further development of XAS techniques and improved data analysis, XAS will become even more powerful in providing insights into the structure-property relationships of SACs, which can advance their practical applications.
Collapse
Affiliation(s)
- Ziyi Chen
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew G Walsh
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
17
|
Zhao CC, Wang S, Yan LK, Su ZM. Insights into the Mechanism of Nitrobenzene Reduction to Aniline by Phosphomolybdic Acid Supported TM 1 Single-Atom Catalysts. Inorg Chem 2024; 63:1784-1792. [PMID: 38232070 DOI: 10.1021/acs.inorgchem.3c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Catalytic hydrogenation of nitrobenzene (Ph-NO2) to aniline (Ph-NH2) is a model reaction in the field of catalysis, in which the development of efficient catalysts remains a great challenge due to the lack of strategies to solve activity and selectivity problems. In this work, the mechanism of Ph-NO2 hydrogenation over Pt1 supported on phosphomolybdic acid (α-PMA) was proposed by density functional theory (DFT) calculations. The results show that the dissociation of the first and second N-O bonds is triggered by single H-induced and double H-induced mechanisms, respectively. The limiting potential of the reaction process is -0.19 V, which is the smallest potential in the field of Ph-NO2 reduction reaction to date. In the whole reaction process, the catalytic active site is the Pt atom, and polyoxometalate plays the role of an electronic sponge in the reaction. Additionally, based on experimentally confirmed Pt1/Na3PMA, the reduction capacity of Pd1/Na3PMA toward Ph-NO2 was predicted by DFT calculation. The distinctive adsorption patterns of Ph-NO2 on Pt1/Na3PMA and Pd1/Na3PMA were elucidated using the DOS diagram and fragment molecular orbital analysis. We anticipate that our theoretical calculations can provide novel perspectives for experimental researchers.
Collapse
Affiliation(s)
- Cong Cong Zhao
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Shuang Wang
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Li Kai Yan
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zhong Min Su
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China
| |
Collapse
|
18
|
Liu T, Liu B, Gao M, Yan XW, Ma F. Prediction of transition metal carbonitride monolayers MN 4C 6 (M = Cr, Mn, Fe, and Co) made up of a benzene ring and a planar MN 4 moiety. Phys Chem Chem Phys 2024; 26:3110-3116. [PMID: 38189422 DOI: 10.1039/d3cp04243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Based on first-principles calculations, we predict a class of graphene-like magnetic materials, transition metal carbonitrides MN4C6 (M = Cr, Mn, Fe, and Co), which are made up of a benzene ring and an MN4 moiety, two common planar units in the compounds. The structural stability is demonstrated by the phonon and molecular dynamics calculations, and the formation mechanism of the planar geometry of MN4C6 is ascribed to the synergistic effect of sp2 hybridization, M-N coordination bond, and π-d conjugation. The MN4C6 materials consist of only one layer of atoms and the transition metal atom is located in the planar crystal field, which is markedly different from most two-dimensional materials. The calculations indicate that MnN4C6, FeN4C6, and CoN4C6 are ferromagnetic while CrN4C6 has an antiferromagnetic ground state. The Curie temperatures are estimated by solving the anisotropic Heisenberg model with the Monte Carlo method.
Collapse
Affiliation(s)
- Tong Liu
- College of Physics and Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Bingxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Miao Gao
- Department of Physics, School of Physical Science and Technology, Ningbo University, Zhejiang 315211, China
| | - Xun-Wang Yan
- College of Physics and Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Fengjie Ma
- The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Zhang Z, Li J, Wang YG. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence. Acc Chem Res 2024; 57:198-207. [PMID: 38166366 DOI: 10.1021/acs.accounts.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
ConspectusSingle atom electrocatalysts, with noble metal-free composition, maximal atom efficiency, and exceptional reactivity toward various energy and environmental applications, have become a research hot spot in the recent decade. Their simplicity and the isolated nature of the atomic structure of their active site have also made them an ideal model catalyst system for studying reaction mechanisms and activity trends. However, the state of the single atom active sites during electrochemical reactions may not be as simple as is usually assumed. To the contrary, the single atom electrocatalysts have been reported to be under greater influence from interfacial dynamics, with solvent and electrolyte ions perpetually interacting with the electrified active center under an applied electrode potential. These complexities render the activity trends and reaction mechanisms derived from simplistic models dubious.In this Account, with a few popular single atom electrocatalysis systems, we show how the change in electrochemical potential induces nontrivial variation in the free energy profile of elemental electrochemical reaction steps, demonstrate how the active centers with different electronic structure features can induce different solvation structures at the interface even for the same reaction intermediate of the simplest electrochemical reaction, and discuss the implication of the complexities on the kinetics and thermodynamics of the reaction system to better address the activity and selectivity trends. We also venture into more intriguing interfacial phenomena, such as alternative reaction pathways and intermediates that are favored and stabilized by solvation and polarization effects, long-range interfacial dynamics across the region far beyond the contact layer, and the dynamic activation or deactivation of single atom sites under operation conditions. We show the necessity of including realistic aspects (explicit solvent, electrolyte, and electrode potential) into the model to correctly capture the physics and chemistry at the electrochemical interface and to understand the reaction mechanisms and reactivity trends. We also demonstrate how the popular simplistic design principles fail and how they can be revised by including the kinetics and interfacial factors in the model. All of these rich dynamics and chemistry would remain hidden or overlooked otherwise. We believe that the complexity at an electrochemical interface is not a curse but a blessing in that it enables deeper understanding and finer control of the potential-dependent free energy landscape of electrochemical reactions, which opens up new dimensions for further design and optimization of single atom electrocatalysts and beyond. Limitations of current methods and challenges faced by the theoretical and experimental communities are discussed, along with the possible solutions awaiting development in the future.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
20
|
Ali GK, Algethami FK, Omer KM. Gold single atom-based aptananozyme as an ultrasensitive and selective colorimetric probe for detection of thrombin and C-reactive protein. Mikrochim Acta 2023; 191:59. [PMID: 38153560 DOI: 10.1007/s00604-023-06147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
An ultra-efficient biocatalytic peroxidase-like Au-based single-atom nanozyme (Au-SAzymes) has been synthesized from isolated Au atoms on black nitrogen doped carbon (Au-N-C) using a simple complexation-adsorption-pyrolysis method. The atomic structure of AuN4 centers in black carbon was revealed by combined high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy. The Au-SAzymes showed a remarkable peroxidase activity with 1.7 nM as Michaelis-Menten constant, higher than most previously reported SAzyme activity. Density functional theory and Monte Carlo calculations revealed the adsorption of H2O2 on AuN4 with formation of OH* and O*. Molecular recognition was greatly enhanced via label-free integration of thiol-terminal aptamers on the surface of single Au atoms (Aptamer/Au-SAzyme) to design off-on ultrasensitive aptananozyme-based sensor for detecting thrombin and CRP with 550 pM and 500 pg mL-1 limits of detection, respectively. The Aptamer/Au-SAzyme showed satisfactory accuracy and precision when applied to the serum and plasma of COVID-19 patients. Due to the maximum Au atom utilization, approximately 3636 samples can be run per 1 mg of gold, highlighting the commercialization potential of the developed Aptamer/Au-SAzyme approach.
Collapse
Affiliation(s)
- Gona K Ali
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq.
| |
Collapse
|
21
|
Yang N, Zhu H, Sun X, Wu Y, Ding D, Chen Y. Surface-Immobilized ZnN x Sites as High-Performance Catalysts for Continuous Flow Knoevenagel Condensation in Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59502-59511. [PMID: 38086739 DOI: 10.1021/acsami.3c14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
By immobilizing the metal complex on the substrate surface, our previous results have demonstrated that heterogeneous catalysts with well-dispersed active MNC (metal-nitrogen-carbon) sites can be prepared in a rational and efficient manner. In this study, we employed agarose aerogel (AA) as the substrate to illustrate a straightforward strategy for immobilizing ZnNx sites on the surface. Under relatively low temperatures, the amine group of the ligand condenses with the surface carbonyl group generated in situ, resulting in the surface immobilized Zn sites. This can be supported by the IR, PXRD, and XPS data. Comprehensive characterization methods, including synchrotron powder XRD and spherical aberration-corrected TEM, confirmed the absence of ZnNx site aggregation in the surface immobilization process, even with a high Zn content (up to 8 wt %). The immobilized ZnNx sites exhibited high catalytic performance in Knoevenagel condensation, and α,β-unsaturated compounds were obtained with high yield in both batch and continuous flow reactions. AA-ZnNx-200 showed the best catalytic activity, which was processed under 200 °C with a Zn content of 4.62 wt %. The immobilized ZnNx sites activated both the aldehyde and nitrile substrates, which were quantitatively converted into the corresponding α,β-unsaturated compounds, with water as the solvent at room temperature. In continuous flow reaction conditions, a conversion rate up to 99% can be achieved with malononitrile. This heterogeneous catalyst can be facilely produced with quantitative yield in a large scale from cheap starting material under mild conditions. No catalyst deactivation was observed after seven batch reaction cycles or 80 h of continuous flow reaction, indicating its high robustness under catalytic reaction conditions. This catalyst enables a separation-free, energy-saving, and environment-friendly production process, offering a practical way for the industrial production.
Collapse
Affiliation(s)
- Nan Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hongyan Zhu
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaoxu Sun
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuewei Wu
- Shaanxi Electric Power Research Institute, Xi'an, Shanxi 710054, China
| | - De Ding
- Shaanxi Electric Power Research Institute, Xi'an, Shanxi 710054, China
| | - Yin Chen
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
22
|
da Silva MAR, Tarakina NV, Filho JBG, Cunha CS, Rocha GFSR, Diab GAA, Ando RA, Savateev O, Agirrezabal-Telleria I, Silva IF, Stolfi S, Ghigna P, Fagnoni M, Ravelli D, Torelli P, Braglia L, Teixeira IF. Single-Atoms on Crystalline Carbon Nitrides for Selective C─H Photooxidation: A Bridge to Achieve Homogeneous Pathways in Heterogeneous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304152. [PMID: 37986204 DOI: 10.1002/adma.202304152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Indexed: 11/22/2023]
Abstract
Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.
Collapse
Affiliation(s)
- Marcos A R da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - José B G Filho
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Carla S Cunha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Guilherme F S R Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Gabriel A A Diab
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering of the Bilbao Engineering School, University of Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ingrid F Silva
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Sara Stolfi
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Davide Ravelli
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Piero Torelli
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Luca Braglia
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
23
|
Scalfi L, Becker MR, Netz RR, Bocquet ML. Enhanced interfacial water dissociation on a hydrated iron porphyrin single-atom catalyst in graphene. Commun Chem 2023; 6:236. [PMID: 37919471 PMCID: PMC10622426 DOI: 10.1038/s42004-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.
Collapse
Affiliation(s)
- Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian R Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
24
|
Gu CH, Wang S, Zhang AY, Liu C, Jiang J, Yu HQ. Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis. Proc Natl Acad Sci U S A 2023; 120:e2311585120. [PMID: 37844255 PMCID: PMC10614618 DOI: 10.1073/pnas.2311585120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Single-atom Fenton-like catalysis has attracted significant attention, yet the quest for controllable synthesis of single-atom catalysts (SACs) with modulation of electron configuration is driven by the current disadvantages of poor activity, low selectivity, narrow pH range, and ambiguous structure-performance relationship. Herein, we devised an innovative strategy, the slow-release synthesis, to fabricate superior Cu SACs by facilitating the dynamic equilibrium between metal precursor supply and anchoring site formation. In this strategy, the dynamics of anchoring site formation, metal precursor release, and their binding reaction kinetics were regulated. Bolstered by harmoniously aligned dynamics, the selective and specific monatomic binding reactions were ensured to refine controllable SACs synthesis with well-defined structure-reactivity relationship. A copious quantity of monatomic dispersed metal became deposited on the C3N4/montmorillonite (MMT) interface and surface with accessible exposure due to the convenient mass transfer within ordered MMT. The slow-release effect facilitated the generation of targeted high-quality sites by equilibrating the supply and demand of the metal precursor and anchoring site and improved the utilization ratio of metal precursors. An excellent Fenton-like reactivity for contaminant degradation was achieved by the Cu1/C3N4/MMT with diminished toxic Cu liberation. Also, the selective ·OH-mediated reaction mechanism was elucidated. Our findings provide a strategy for regulating the intractable anchoring events and optimizing the microenvironment of the monatomic metal center to synthesize superior SACs.
Collapse
Affiliation(s)
- Chao-Hai Gu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Ai-Yong Zhang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei230009, China
| | - Chang Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
25
|
Baruah DJ, Thakur A, Roy E, Roy K, Basak S, Neog D, Bora HK, Konwar R, Chaturvedi V, Shelke MV, Das MR. Atomically Dispersed Manganese on Graphene Nanosheets as Biocompatible Nanozyme for Glutathione Detection in Liver Tissue Lysate Using Microfluidic Paper-based Analytical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47902-47920. [PMID: 37812745 DOI: 10.1021/acsami.3c08762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (μPADs). GSH is successfully detected on the fabricated μPADs coated with only 6.0 μg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 μM with a limit of detection of 1.23 μM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using μPADs, which paves the way to develop μPADs for point-of-care testing.
Collapse
Affiliation(s)
- Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esha Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kallol Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumanjita Basak
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dipankar Neog
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rituraj Konwar
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Chen C, Li Y, Huang A, Liu X, Li J, Zhang Y, Chen Z, Zhuang Z, Wu Y, Cheong WC, Tan X, Sun K, Xu Z, Liu D, Wang Z, Zhou K, Chen C. Engineering Molecular Heterostructured Catalyst for Oxygen Reduction Reaction. J Am Chem Soc 2023; 145:21273-21283. [PMID: 37729633 DOI: 10.1021/jacs.3c05371] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Introducing a second metal species into atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts to construct diatomic sites (DASs) is an effective strategy to elevate their activities and stabilities. However, the common pyrolysis-based method usually leads to substantial uncertainty for the formation of DASs, and the precise identification of the resulting DASs is also rather difficult. In this regard, we developed a two-step specific-adsorption strategy (pyrolysis-free) and constructed a DAS catalyst featuring FeCo "molecular heterostructures" (FeCo-MHs). In order to rule out the possibility of the two apparently neighboring (in the electron microscopy image) Fe/Co atoms being dispersed respectively on the top/bottom surfaces of the carbon support and thus forming "false" MHs, we conducted in situ rotation (by 8°, far above the critical angle of 5.3°) and directly identified the individual FeCo-MHs. The formation of FeCo-MHs could modulate the magnetic moments of the metal centers and increase the ratio of low-spin Fe(II)-N4 moiety; thus the intrinsic activity could be optimized at the apex of the volcano-plot (a relationship as a function of magnetic moments of metal-phthalocyanine complexes and catalytic activities). The FeCo-MHs catalyst displays an exceptional ORR activity (E1/2 = 0.95 V) and could be used to construct high-performance cathodes for hydroxide exchange membrane fuel cells and zinc-air batteries.
Collapse
Affiliation(s)
- Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xuerui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiazhan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Chen
- Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing Institute of Aerospace Testing Technology, Beijing 100048, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yue Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weng-Chon Cheong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kaian Sun
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Di Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiguo Wang
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kebin Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Shen T, Song Z, Li J, Bai S, Liu G, Sun X, Li S, Chen W, Zheng L, Song YF. Enabling Specific Benzene Oxidation by Tuning the Adsorption Behavior on Au Loaded MgAl Layered Double Hydroxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303420. [PMID: 37312653 DOI: 10.1002/smll.202303420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1 -MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x-ray-absorption fine-structure (EXAFS)and density-functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1 -MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1 -MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.
Collapse
Affiliation(s)
- Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoquan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
28
|
Xiang T, Liang Y, Zeng Y, Deng J, Yuan J, Xiong W, Song B, Zhou C, Yang Y. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303732. [PMID: 37300329 DOI: 10.1002/smll.202303732] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of nitrate in the environment will affect human health. To combat nitrate pollution, chemical, biological, and physical technologies have been developed recently. The researcher favors electrocatalytic reduction nitrate reaction (NO3 RR) because of the low post-treatment cost and simple treatment conditions. Single-atom catalysts (SACs) offer great activity, exceptional selectivity, and enhanced stability in the field of NO3 RR because of their high atomic usage and distinctive structural characteristics. Recently, efficient transition metal-based SACs (TM-SACs) have emerged as promising candidates for NO3 RR. However, the real active sites of TM-SACs applied to NO3 RR and the key factors controlling catalytic performance in the reaction process remain ambiguous. Further understanding of the catalytic mechanism of TM-SACs applied to NO3 RR is of practical significance for exploring the design of stable and efficient SACs. In this review, from experimental and theoretical studies, the reaction mechanism, rate-determining steps, and essential variables affecting activity and selectivity are examined. The performance of SACs in terms of NO3 RR, characterization, and synthesis is then discussed. In order to promote and comprehend NO3 RR on TM-SACs, the design of TM-SACs is finally highlighted, together with the current problems, their remedies, and the way forward.
Collapse
Affiliation(s)
- Tianyi Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
29
|
Yang J, Liu Q, Chen S, Ding X, Chen Y, Cai D, Wang X. Single-Atom and Dual-Atom Electrocatalysts: Synthesis and Applications. Chempluschem 2023; 88:e202300407. [PMID: 37666797 DOI: 10.1002/cplu.202300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Distinguishing themselves from nanostructured catalysts, single-atom catalysts (SACs) typically consist of positively charged single metal and coordination atoms without any metal-metal bonds. Dual-atom catalysts (DACs) have emerged as extended family members of SACs in recent years. Both SACs and DACs possess characteristics that combine both homogeneous and heterogeneous catalysis, offering advantages such as uniform active sites and adjustable interactions with ligands, while also inheriting the high stability and recyclability associated with heterogeneous catalyst systems. They offer numerous advantages and are extensively utilized in the field of electrocatalysis, so they have emerged as one of the most prominent material research platforms in the direction of electrocatalysis. This review provides a comprehensive review of SACs and DACs in the field of electrocatalysis: encompassing economic production, elucidating electrocatalytic reaction pathways and associated mechanisms, uncovering structure-performance relationships, and addressing major challenges and opportunities within this domain. Our objective is to present novel ideas for developing advanced synthesis strategies, precisely controlling the microstructure of catalytic active sites, establishing accurate structure-activity relationships, unraveling potential mechanisms underlying electrocatalytic reactions, identifying more efficient reaction paths, and enhancing overall performance in electrocatalytic reactions.
Collapse
Affiliation(s)
- Jianjian Yang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Qiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shian Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xiangnong Ding
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yuqi Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Dongsong Cai
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xi Wang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
30
|
Zhao X, Fang R, Wang F, Li Y. Integrating Dual-Single-Atom Moieties with N, S Co-Coordination Configurations for Oxidative Cascaded Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304053. [PMID: 37357174 DOI: 10.1002/smll.202304053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Oxidation reaction is of critical importance in chemical industry, in which the primary O2 activation step still calls for high-performance catalysts. Here, a newly developed precise locating carbonization strategy for the fabrication of 21 kinds of dual-metal single-atom catalysts with N, S co-coordinated configurations is reported. As is exemplified by CoN3 S1 /CuN4 @NC, systematical characterizations and in situ observations imply the atomic CoN3 S1 and CuN4 sites immobilized on N-doped carbon, over which the remarkable electron redistribution originating from their unsymmetrical coordination configurations. Impressively, the obtained CoN3 S1 /CuN4 @NC exhibits unprecedented capability in O2 activation and enables a spontaneous process through its dynamic configuration, significantly outperforming the CoN4 /CuN4 @NC and CoN3 S1 @NC counterparts. Hence, the CoN3 S1 /CuN4 @NC shows attractive performance in domino synthesis of natural flavone and 19 kinds of derivatives from benzyl alcohol, 2'-hydroxyacetophenone, and corresponding substituted substrates via aerobic oxidative coupling-dehydrogenation. Detailed reaction mechanisms and molecule behaviors over CoN3 S1 /CuN4 @NC are also investigated through in situ experiments and simulations.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, China
| |
Collapse
|
31
|
Yang D, Dong F, Han W, Zhang J, Tang Z. Significant Enhanced SO 2 Resistance of Pt/SiO 2 Catalysts by Building the Ultrathin Metal Oxide Shell for Benzene Catalytic Combustion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42541-42556. [PMID: 37665651 DOI: 10.1021/acsami.3c07515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A noble metal catalyst shows excellent low-temperature oxidation activity in the catalytic combustion of benzene but has the problem of SO2 poisoning. We all know that SO2 easily competes with the reactant molecules for adsorption of the active site and has electronic effects on the active site to deactivate the catalyst. Therefore, the sulfur resistance of catalysts is the key problem to be solved in the process of catalytic combustion of benzene. Herein, the Pt/SiO2 catalyst with an ordered mesoporous structure was prepared by a one-step hydrothermal method, and MgO, ZnO, and MnOx were, respectively, coated on the surface of Pt/SiO2 as ultrathin shells to improve the sulfur resistance of Pt/SiO2. We observed that the sulfur resistance of the Pt/SiO2 catalyst was significantly improved due to the protective effect of the metal oxide shell. By comparing the three core-shell catalysts, it was found that the Pt/SiO2@MnOx catalyst coated with a MnOx shell had the best performance. The reason was that the MnOx shell not only protected the Pt active site but also had a good electron transfer effect on the core Pt, so it could effectively avoid the rapid adsorption poisoning of SO2 on the active Pt0 site. In addition, it was verified that the excellent redispersion of MnOx species in a SO2 atmosphere could increase the low-temperature oxidation activity of the Pt/SiO2@MnOx catalyst. Meanwhile, in situ DRIFT results also confirmed that the MnOx shell could significantly promote the oxidation of benzene molecules in the SO2 atmosphere.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weigao Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiyi Zhang
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
32
|
Xu X, Zhang S, Wang Y, Lin Y, Guan Q, Chen C. Identifying the Role of Surface Hydroxyl on FeOCl in Bridging Electron Transfer toward Efficient Persulfate Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12922-12930. [PMID: 37580903 DOI: 10.1021/acs.est.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
FeOCl is a highly effective candidate material for advanced oxidation process (AOP) catalysts, but there remain enormous uncertainties about the essence of its outstanding activity. Herein, we clearly elucidate the mechanism involved in the FeOCl-catalyzed perdisulfate (PDS) activation, and the role of surface hydroxyls in bridging the electron transfer between Fe sites and PDS onto the FeOCl/H2O interface is highlighted. ATR-FTIR and Raman analyses reveal that phosphate could suppress the activity of FeOCl via substituting its surface hydroxyls, demonstrating the essential role of hydroxyl in PDS activation. By the use of X-ray absorption fine structure and density functional theory calculations, we found that the polar surface of FeOCl experienced prominent hydrolyzation, which enriched abundant electrons within the microarea around the Fe site, leading to a stronger attraction between FeOCl and PDS. As a result, PDS adsorption onto the FeOCl/H2O interface was obviously enhanced, the bond length of O-O in adsorbed PDS was lengthened, and the electron transfer from Fe atoms to O-O was also promoted. This work proposed a new strategy for PDS-based AOP development and a hint of building efficient heterogeneous AOP catalysts via regulating the hydroxylation of active sites.
Collapse
Affiliation(s)
- Ximeng Xu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, China
| | - Shujing Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, China
| | - Yuhao Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, China
| | - Yangqian Lin
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Li G, Liu H, Hu T, Pu F, Ren J, Qu X. Dimensionality Engineering of Single-Atom Nanozyme for Efficient Peroxidase-Mimicking. J Am Chem Soc 2023. [PMID: 37487021 DOI: 10.1021/jacs.3c05162] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In nature, enzymatic reactions occur in well-functioning catalytic pockets, where substrates bind and react by properly arranging the catalytic sites and amino acids in a three-dimensional (3D) space. Single-atom nanozymes (SAzymes) are a new type of nanozymes with active sites similar to those of natural metalloenzymes. However, the catalytic centers in current SAzymes are two-dimensional (2D) architectures and the lack of collaborative substrate-binding features limits their catalytic activity. Herein, we report a dimensionality engineering strategy to convert conventional 2D Fe-N-4 centers into 3D structures by integrating oxidized sulfur functionalities onto the carbon plane. Our results suggest that oxidized sulfur functionalities could serve as binding sites for assisting substrate orientation and facilitating the desorption of H2O, resulting in an outstanding specific activity of up to 119.77 U mg-1, which is 6.8 times higher than that of conventional FeN4C SAzymes. This study paves the way for the rational design of highly active single-atom nanozymes.
Collapse
Affiliation(s)
- Guangming Li
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hao Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
34
|
Wang X, Zhang C, Li D, Sun Y, Ren J, Sun J, Yang D. Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131469. [PMID: 37116331 DOI: 10.1016/j.jhazmat.2023.131469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Tuning the electronic structure of single atom catalysts (SACs) is an effective strategy to promote the catalytic activity in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Herein, a series of Fe-based SACs with S1/2/3/4-coordination numbers on graphene were designed to regulate the electronic structural of SACs at molecular level, and their effects on PMS activation were investigated via density function theory (DFT). The calculation results demonstrate that the electron structure of the active center can be adjusted by coordination environment, which further affects the activation of PMS. Among the studied Fe-SX-C4-X catalysts, with the increase of the S coordination number, the electron density of the Fe-SX-C4-X active center was optimized. The active center of the Fe-S4-C0 catalyst has a largest positive charge density, exhibiting the highest number of electron transfer. It also has a lower kinetic energy barrier (0.28 eV) for PMS dissociation. Organic pollutant such as bisphenol A (BPA) can achieve stable adsorption on Fe-SX-C4-X catalysts, which is conducive to subsequent oxidation by radicals. The dual index ∆f(r) indicates that the para-carbon atom of the hydroxyl group on the benzene ring of BPA is vulnerable to radical attack. This study highlights a theoretical support and a certain guide for designing efficient SACs to activate PMS.
Collapse
Affiliation(s)
- Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Daohao Li
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, China
| | - Jin Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
35
|
Pérez Mayoral E, Godino Ojer M, Ventura M, Matos I. New Insights into N-Doped Porous Carbons as Both Heterogeneous Catalysts and Catalyst Supports: Opportunities for the Catalytic Synthesis of Valuable Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2013. [PMID: 37446528 DOI: 10.3390/nano13132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Among the vast class of porous carbon materials, N-doped porous carbons have emerged as promising materials in catalysis due to their unique properties. The introduction of nitrogen into the carbonaceous matrix can lead to the creation of new sites on the carbon surface, often associated with pyridinic or pyrrolic nitrogen functionalities, which can facilitate various catalytic reactions with increased selectivity. Furthermore, the presence of N dopants exerts a significant influence on the properties of the supported metal or metal oxide nanoparticles, including the metal dispersion, interactions between the metal and support, and stability of the metal nanoparticles. These effects play a crucial role in enhancing the catalytic performance of the N-doped carbon-supported catalysts. Thus, N-doped carbons and metals supported on N-doped carbons have been revealed to be interesting heterogeneous catalysts for relevant synthesis processes of valuable compounds. This review presents a concise overview of various methods employed to produce N-doped porous carbons with distinct structures, starting from diverse precursors, and showcases their potential in various catalytic processes, particularly in fine chemical synthesis.
Collapse
Affiliation(s)
- Elena Pérez Mayoral
- Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Urbanización Monte Rozas, Avda. Esparta s/n Ctra. de Las Rozas al Escorial Km 5, Las Rozas, 28232 Madrid, Spain
| | - Marina Godino Ojer
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Márcia Ventura
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ines Matos
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
36
|
Dai Y, Li H, Wang C, Xue W, Zhang M, Zhao D, Xue J, Li J, Luo L, Liu C, Li X, Cui P, Jiang Q, Zheng T, Gu S, Zhang Y, Xiao J, Xia C, Zeng J. Manipulating local coordination of copper single atom catalyst enables efficient CO 2-to-CH 4 conversion. Nat Commun 2023; 14:3382. [PMID: 37291114 PMCID: PMC10250324 DOI: 10.1038/s41467-023-39048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Electrochemical CO2 conversion to methane, powered by intermittent renewable electricity, provides an entrancing opportunity to both store renewable electric energy and utilize emitted CO2. Copper-based single atom catalysts are promising candidates to restrain C-C coupling, suggesting feasibility in further protonation of CO* to CHO* for methane production. In theoretical studies herein, we find that introducing boron atoms into the first coordination layer of Cu-N4 motif facilitates the binding of CO* and CHO* intermediates, which favors the generation of methane. Accordingly, we employ a co-doping strategy to fabricate B-doped Cu-Nx atomic configuration (Cu-NxBy), where Cu-N2B2 is resolved to be the dominant site. Compared with Cu-N4 motifs, as-synthesized B-doped Cu-Nx structure exhibits a superior performance towards methane production, showing a peak methane Faradaic efficiency of 73% at -1.46 V vs. RHE and a maximum methane partial current density of -462 mA cm-2 at -1.94 V vs. RHE. Extensional calculations utilizing two-dimensional reaction phase diagram analysis together with barrier calculation help to gain more insights into the reaction mechanism of Cu-N2B2 coordination structure.
Collapse
Grants
- Professor Zeng acknowledges National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), NSFC (U19A2015, 22221003, 22250007), Fundamental Research Funds for the Central Universities, Provincial Key Research and Development Program of Anhui (202004a05020074), K. C. Wong Education (GJTD-2020-15), and the DNL Cooperation Fund, CAS (DNL202003).
Collapse
Affiliation(s)
- Yizhou Dai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuanhao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Weiqing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Menglu Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Songqi Gu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
37
|
Li C, Lepre E, Bi M, Antonietti M, Zhu J, Fu Y, López-Salas N. Oxygen-Rich Carbon Nitrides from an Eutectic Template Strategy Stabilize Ni, Fe Nanosites for Electrocatalytic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300526. [PMID: 37246284 PMCID: PMC10401138 DOI: 10.1002/advs.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Indexed: 05/30/2023]
Abstract
Functionalized porous carbons are central to various important applications such as energy storage and conversion. Here, a simple synthetic route to prepare oxygen-rich carbon nitrides (CNOs) decorated with stable Ni and Fe-nanosites is demonstrated. The CNOs are prepared via a salt templating method using ribose and adenine as precursors and CaCl2 ·2H2 O as a template. The formation of supramolecular eutectic complexes between CaCl2 ·2H2 O and ribose at relatively low temperatures facilitates the formation of a homogeneous starting mixture, promotes the condensation of ribose through the dehydrating effect of CaCl2 ·2H2 O to covalent frameworks, and finally generates homogeneous CNOs. As a specific of the recipe, the condensation of the precursors at higher temperatures and the removal of water promotes the recrystallization of CaCl2 (T < Tm = 772 °C), which then acts as a hard porogen. Due to salt catalysis, CNOs with oxygen and nitrogen contents as high as 12 and 20 wt%, respectively, can be obtained, while heteroatom content stayed about unchanged even at higher temperatures of synthesis, pointing to the extraordinarily high stability of the materials. After decorating Ni and Fe-nanosites onto the CNOs, the materials exhibit high activity and stability for electrochemical oxygen evolution reaction with an overpotential of 351 mV.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Enrico Lepre
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Min Bi
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
38
|
Li Y, Qiao L, Yin S, Cheng X, Wang CT, Jiang Y, Sun S. A plasma-assisted approach to enhance density of accessible FeN 4 sites for proton exchange membrane fuel cells. J Colloid Interface Sci 2023; 647:224-232. [PMID: 37247485 DOI: 10.1016/j.jcis.2023.05.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Enhancing the density and utilization of FeN4 sites can serve as a viable approach to enhance the catalytic efficacy of iron nitrogen carbon (FeNC) catalysts for oxygen reduction reaction (ORR). Herein, we present a plasma-assisted method for enhancing the porosity of nitrogen-doped carbon. Our findings indicate that the ideal ratio of mesopore to micropore area is 0.463. This ratio not only promotes the diffusion of Fe3+ but also creates additional active sites for Fe3+ loading, leading to an increase in the number of available FeN4 sites in FeNC electrocatalysts during pyrolysis. The density (76.5 μmol g-1) and utilization (21.08 %) of d-FeNC-30 are significantly higher than those of FeNC without plasma treatment, with a 2.8-fold and 2-fold increase, respectively. Remarkably, it displays outstanding performance, evidenced by a half-wave potential of 0.835 V (vs. RHE) in a 0.1 M HClO4 solution and a power density of 0.860 W cm-2 in proton exchange membrane fuel cells (PEMFCs). The developed plasma-assisted approach for improving the site density (SD) and utilization of FeN4 provides a new perspective for high-performance ORR FeNC catalysts.
Collapse
Affiliation(s)
- Yanrong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China
| | - Liqing Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China
| | - Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China
| | - Chong-Tai Wang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Haikou 571158, PR China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China.
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
39
|
Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, Ni Q, Zhang L. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 2023; 13:2721-2733. [PMID: 37215581 PMCID: PMC10196836 DOI: 10.7150/thno.83543] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Myocardial injury triggers intense oxidative stress, inflammatory response, and cytokine release, which are essential for myocardial repair and remodeling. Excess reactive oxygen species (ROS) scavenging and inflammation elimination have long been considered to reverse myocardial injuries. However, the efficacy of traditional treatments (antioxidant, anti-inflammatory drugs and natural enzymes) is still poor due to their intrinsic defects such as unfavorable pharmacokinetics and bioavailability, low biological stability, and potential side effects. Nanozyme represents a candidate to effectively modulate redox homeostasis for the treatment of ROS related inflammation diseases. Methods: We develop an integrated bimetallic nanozyme derived from metal-organic framework (MOF) to eliminate ROS and alleviate inflammation. The bimetallic nanozyme (Cu-TCPP-Mn) is synthesized by embedding manganese and copper into the porphyrin followed by sonication, which could mimic the cascade activities of superoxide dismutase (SOD) and catalase (CAT) to transform oxygen radicals to hydrogen peroxide, followed by the catalysis of hydrogen peroxide into oxygen and water. Enzyme kinetic analysis and oxygen-production velocities analysis were performed to evaluate the enzymatic activities of Cu-TCPP-Mn. We also established myocardial infarction (MI) and myocardial ischemia-reperfusion (I/R) injury animal models to verify the ROS scavenging and anti-inflammation effect of Cu-TCPP-Mn. Results: As demonstrated by kinetic analysis and oxygen-production velocities analysis, Cu-TCPP-Mn nanozyme possesses good performance in both SOD- and CAT-like activities to achieve synergistic ROS scavenging effect and provide protection for myocardial injury. In both MI and I/R injury animal models, this bimetallic nanozyme represents a promising and reliable technology to protect the heart tissue from oxidative stress and inflammation-induced injury, and enables the myocardial function to recover from otherwise severe damage. Conclusions: This research provides a facile and applicable method to develop a bimetallic MOF nanozyme, which represents a promising alternative to the treatment of myocardial injuries.
Collapse
Affiliation(s)
- Kaiyan Xiang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haoguang Wu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Liu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueling Li
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yunming Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Long Ma
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001 China
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Longjiang Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
41
|
Hu J, Zou Y, Li Y, Xiao Y, Li M, Lin L, Li B, Li XY. Efficacy and mechanism of peroxymonosulfate activation by single-atom transition metal catalysts for the oxidation of organic pollutants: Experimental validation and theoretical calculation. J Colloid Interface Sci 2023; 645:1-11. [PMID: 37126999 DOI: 10.1016/j.jcis.2023.04.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Single-atom catalysts can activate peroxymonosulfate (PMS) to enhance its oxidation of organic pollutants in water treatment. We synthesized a series of carbon-supported single-atom transition metal catalysts (MnN@C, FeN@C, CoN@C, NiN@C, and CuN@C) with similar compositions and structures. Their catalytic activity toward PMS activation and oxidation mechanisms were investigated using acid orange 7 (AO7) as a model pollutant. The degradation rate (min-1·mol-1·g·m-2) of AO7 followed order: FeN@C/PMS (7.576 × 103) > MnN@C/PMS (5.104 × 103) > CoN@C/PMS (1.919 × 103) ≫ NiN@C/PMS (0.058 × 103) > CuN@C/PMS (0.035 × 103). Electron transfer mediated by surface-activated PMS was found to be the main regime of AO7 oxidation in the catalytic systems. Density functional theory calculations indicated that the degradation of AO7 was promoted by the intense adsorption of PMS and the electron transfer between AO7 and the surface-activated PMS on the catalyst. The cleavage of the naphthalene ring and the azo group was the primary degradation pathway. The toxicity of the products was significantly reduced. This research provides valuable findings for preparing highly efficient single-atom transition metal catalysts for PMS-based degradation of toxic and refractory organic pollutants from water.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yubin Zou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yanan Xiao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Mu Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Xiao-Yan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Yi H, Almatrafi E, Ma D, Huo X, Qin L, Li L, Zhou X, Zhou C, Zeng G, Lai C. Spatial confinement: A green pathway to promote the oxidation processes for organic pollutants removal from water. WATER RESEARCH 2023; 233:119719. [PMID: 36801583 DOI: 10.1016/j.watres.2023.119719] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Organic pollutants removal from water is pressing owing to the great demand for clean water. Oxidation processes (OPs) are the commonly used method. However, the efficiency of most OPs is limited owing to the poor mass transfer process. Spatial confinement is a burgeoning way to solve this limitation by use of nanoreactor. Spatial confinement in OPs would (i) alter the transport characteristics of protons and charges; (ii) bring about molecular orientation and rearrangement; (iii) cause the dynamic redistribution of active sites in catalyst and reduce the entropic barrier that is high in unconfined space. So far, spatial confinement has been utilized for various OPs, such as Fenton, persulfate, and photocatalytic oxidation. A comprehensive summary and discussion on the fundamental mechanisms of spatial confinement mediated OPs is needed. Herein, the application, performance and mechanisms of spatial confinement mediated OPs are overviewed firstly. Subsequently, the features of spatial confinement and their effects on OPs are discussed in detail. Furthermore, environmental influences (including environmental pH, organic matter and inorganic ions) are studied with analyzing their intrinsic connection with the features of spatial confinement in OPs. Lastly, challenges and future development direction of spatial confinement mediated OPs are proposed.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xiuqing Huo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
43
|
Hou Q, Liu K, Al-Maksoud W, Huang Y, Ding D, Lei Y, Zhang Y, Lin B, Zheng L, Liu M, Basset JM, Chen Y. Atomically Dispersed NiN x Site with High Oxygen Electrocatalysis Performance Facilely Produced via a Surface Immobilization Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16809-16817. [PMID: 36972197 DOI: 10.1021/acsami.3c01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonprecious-metal heterogeneous catalysts with atomically dispersed active sites demonstrated high activity and selectivity in different reactions, and the rational design and large-scale preparation of such catalysts are of great interest but remain a huge challenge. Current approaches usually involve extremely high-temperature and tedious procedures. Here, we demonstrated a straightforward and scalable preparation strategy. In two simple steps, the atomically dispersed Ni electrocatalyst can be synthesized in a tens grams scale with quantitative yield under mild conditions, and the active Ni sites were produced by immobilizing preorganized NiNx complex on the substrate surface via organic thermal reactions. This catalyst exhibits excellent catalysis performances in both oxygen evolution and reduction reactions. It also exhibited tunable catalysis activity, high catalysis reproducibility, and high stability. The atomically dispersed NiNx sites are tolerant at high Ni concentration, as the random reactions and metal nanoparticle formation that generally occurred at high temperatures were avoided. This strategy illustrated a practical and green method for the industrial manufacture of nonprecious-metal single-site catalysts with a predictable structure.
Collapse
Affiliation(s)
- Qiankun Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Kang Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Walid Al-Maksoud
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yuchang Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - De Ding
- Shaanxi Electric Power Research Institute, Xi'an, Shanxi 710054, People's Republic of China
| | - Yongpeng Lei
- Powder Metallurgy Research Institute, Central South University, Changsha, Hunan 410083, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Min Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Jean-Marie Basset
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
44
|
Zhang YX, Zhang S, Huang H, Liu X, Li B, Lee Y, Wang X, Bai Y, Sun M, Wu Y, Gong S, Liu X, Zhuang Z, Tan T, Niu Z. General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach. J Am Chem Soc 2023; 145:4819-4827. [PMID: 36790150 DOI: 10.1021/jacs.2c13886] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Heterogeneous catalysts containing diatomic sites are often hypothesized to have distinctive reactivity due to synergistic effects, but there are limited approaches that enable the convenient production of diatomic catalysts (DACs) with diverse metal combinations. Here, we present a general synthetic strategy for constructing a DAC library across a wide spectrum of homonuclear (Fe2, Co2, Ni2, Cu2, Mn2, and Pd2) and heteronuclear (Fe-Cu, Fe-Ni, Cu-Mn, and Cu-Co) bimetal centers. This strategy is based on an encapsulation-pyrolysis approach, wherein a porous material-encapsulated macrocyclic complex mediates the structure of DACs by preserving the main body of the molecular framework during pyrolysis. We take the oxygen reduction reaction (ORR) as an example to show that this DAC library can provide great opportunities for electrocatalyst development by unlocking an unconventional reaction pathway. Among all investigated sites, Fe-Cu diatomic sites possess exceptional high durability for ORR because the Fe-Cu pairs can steer elementary steps in the catalytic cycle and suppress the troublesome Fenton-like reactions.
Collapse
Affiliation(s)
- Yu-Xiao Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shengbo Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Beibei Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiyang Lee
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Bai
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Mingze Sun
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuyan Gong
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Duan J, Zhou Y, Ren Y, Liu F, Deng P, Yang M, Ge H, Gao J, Yang J, Qin Y. Effect of Electronic Structure over Late Transition-Metal M 1–N 4 Single-Atom Sites on Hydroxyl Radical-Induced Oxidations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Jianglin Duan
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanan Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fenli Liu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Pengcheng Deng
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Man Yang
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
46
|
Liu X, Li J, Zitolo A, Gao M, Jiang J, Geng X, Xie Q, Wu D, Zheng H, Cai X, Lu J, Jaouen F, Li R. Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD + Supplementation in Mammals. J Am Chem Soc 2023; 145:3108-3120. [PMID: 36700857 DOI: 10.1021/jacs.2c12336] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jingkun Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Andrea Zitolo
- L'orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, Gif-sur-Yvette91192, France
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiangtian Geng
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Frédéric Jaouen
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier34293, France
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| |
Collapse
|
47
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
48
|
Yan M, Wei Z, Gong Z, Johannessen B, Ye G, He G, Liu J, Zhao S, Cui C, Fei H. Sb 2S 3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H 2O 2 electrosynthesis. Nat Commun 2023; 14:368. [PMID: 36690634 PMCID: PMC9871021 DOI: 10.1038/s41467-023-36078-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Selective two-electron (2e-) oxygen reduction reaction (ORR) offers great opportunities for hydrogen peroxide (H2O2) electrosynthesis and its widespread employment depends on identifying cost-effective catalysts with high activity and selectivity. Main-group metal and nitrogen coordinated carbons (M-N-Cs) are promising but remain largely underexplored due to the low metal-atom density and the lack of understanding in the structure-property correlation. Here, we report using a nanoarchitectured Sb2S3 template to synthesize high-density (10.32 wt%) antimony (Sb) single atoms on nitrogen- and sulfur-codoped carbon nanofibers (Sb-NSCF), which exhibits both high selectivity (97.2%) and mass activity (114.9 A g-1 at 0.65 V) toward the 2e- ORR in alkaline electrolyte. Further, when evaluated with a practical flow cell, Sb-NSCF shows a high production rate of 7.46 mol gcatalyst-1 h-1 with negligible loss in activity and selectivity in a 75-h continuous electrolysis. Density functional theory calculations demonstrate that the coordination configuration and the S dopants synergistically contribute to the enhanced 2e- ORR activity and selectivity of the Sb-N4 moieties.
Collapse
Affiliation(s)
- Minmin Yan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Gonglan Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Guanchao He
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingjing Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Chunyu Cui
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China.
| |
Collapse
|
49
|
Bu F, Chen C, Yu Y, Hao W, Zhao S, Hu Y, Qin Y. Boosting Benzene Oxidation with a Spin-State-Controlled Nuclearity Effect on Iron Sub-Nanocatalysts. Angew Chem Int Ed Engl 2023; 62:e202216062. [PMID: 36412226 DOI: 10.1002/anie.202216062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
A fundamental understanding of the nature of nuclearity effects is important for the rational design of superior sub-nanocatalysts with low nuclearity, but remains a long-standing challenge. Using atomic layer deposition, we precisely synthesized Fe sub-nanocatalysts with tunable nuclearity (Fe1 -Fe4 ) anchored on N,O-co-doped carbon nanorods (NOC). The electronic properties and spin configuration of the Fe sub-nanocatalysts were nuclearity dependent and dominated the H2 O2 activation modes and adsorption strength of active O species on Fe sites toward C-H oxidation. The Fe1 -NOC single atom catalyst exhibits state-of-the-art activity for benzene oxidation to phenol, which is ascribed to its unique coordination environment (Fe1 N2 O3 ) and medium spin state (t2g 4 eg 1 ); turnover frequencies of 407 h-1 at 25 °C and 1869 h-1 at 60 °C were obtained, which is 3.4, 5.7, and 13.6 times higher than those of Fe dimer, trimer, and tetramer catalysts, respectively.
Collapse
Affiliation(s)
- Fanle Bu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China.,State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Yu
- Department of Materials Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Wentao Hao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yongfeng Hu
- University of Saskatchewan, Saskatoon, Canada
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Tabe H, Seki Y, Yamane M, Nakazono T, Yamada Y. Synergistic Effect of Fe II and Mn II Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. J Phys Chem Lett 2023; 14:158-163. [PMID: 36579843 DOI: 10.1021/acs.jpclett.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cyano-bridged heterometallic coordination polymer with partial deficiencies of CN- ligands, [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)], forms open metal sites both on MnII and FeII ions by liberation of monodentate ligands such as NH3 and H2O. [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] exhibits high catalytic activity and selectivity of benzene oxygenation to phenol in the presence of m-chloroperoxybenzoic acid as an oxidant. The postcatalytic spectroscopy of [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] and catalysis comparison with a physical mixture of [MnII(H2O)3]2[FeII(CN)6] and [Fe(H2O)3/2]4/3[Fe(CN)6], which has open metal sites on both MnII and Fe ions separately, indicated that the high activity resulted from high oxidation ability and phenol adsorption ability of FeII and MnII ions, respectively.
Collapse
Affiliation(s)
- Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study (IAS), Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Seki
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mari Yamane
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|