1
|
Schouten TLA, Gebraad L, Noe S, Gülcher AJP, Thrastarson S, van Herwaarden DP, Fichtner A. Full-waveform inversion reveals diverse origins of lower mantle positive wave speed anomalies. Sci Rep 2024; 14:26708. [PMID: 39496714 PMCID: PMC11535529 DOI: 10.1038/s41598-024-77399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Determining Earth's structure is paramount to unravel its interior dynamics. Seismic tomography reveals positive wave speed anomalies throughout the mantle that spatially correlate with the expected locations of subducted slabs. This correlation has been widely applied in plate reconstructions and geodynamic modelling. However, global travel-time tomography typically incorporates only a limited number of easily identifiable body wave phases and is therefore strongly dependent on the source-receiver geometry. Here, we show how global full-waveform inversion is less sensitive to source-receiver geometry and reveals numerous previously undetected positive wave speed anomalies in the lower mantle. Many of these previously undetected anomalies are situated below major oceans and continental interiors, with no geologic record of subduction, such as beneath the western Pacific Ocean. Moreover, we find no statistically significant correlation positive anomalies as imaged using full-waveform inversion and past subduction. These findings suggest more diverse origins for these anomalies in Earth's lower mantle, unlocking full-waveform inversion as an indispensable tool for mantle exploration.
Collapse
Affiliation(s)
- Thomas L A Schouten
- Structural Geology and Tectonics, Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland.
| | - Lars Gebraad
- Seismology and Wave Physics, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - Sebastian Noe
- Seismology and Wave Physics, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - Anna J P Gülcher
- Planetary Interiors and Geophysics Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Solvi Thrastarson
- Seismology and Wave Physics, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - Dirk-Philip van Herwaarden
- Seismology and Wave Physics, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - Andreas Fichtner
- Seismology and Wave Physics, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| |
Collapse
|
2
|
Wang J, Lekić V, Schmerr NC, Gu YJ, Guo Y, Lin R. Mesozoic intraoceanic subduction shaped the lower mantle beneath the East Pacific Rise. SCIENCE ADVANCES 2024; 10:eado1219. [PMID: 39331711 PMCID: PMC11430487 DOI: 10.1126/sciadv.ado1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The Pacific large low-shear-velocity province (LLSVP), as revealed by cluster analysis of global tomographic models, hosts multiple internal anomalies, including a notable gap (~20° wide) between the central and eastern Pacific. The cause of the structural gap remains unconstrained. Directly above this structural gap, we identify an anomalously thick mantle transition zone east of the East Pacific Rise, the fastest-spreading ocean ridge in the world, using a dense set of SS precursors. The area of the thickened transition zone exhibits faster-than-average velocities according to recent tomographic images, suggesting perturbed postolivine phase boundaries shifting in response to lowered temperatures. We attribute this observation to episodes of Mesozoic-aged (250 to 120 million years ago) intraoceanic subduction beneath the present-day Nazca Plate. The eastern portion of the Pacific LLSVP was separated by downwelling because of this ancient oceanic slab. Our discovery provides a unique perspective on linking deep Earth structures with surface subduction.
Collapse
Affiliation(s)
- Jingchuan Wang
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Nicholas C Schmerr
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Yu J Gu
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Yi Guo
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Rongzhi Lin
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
3
|
Stagno V, Bindi L, Bonechi B, Greaux S, Aulbach S, Irifune T, Lupi S, Marras G, McCammon CA, Nazzari M, Piccirilli F, Poe B, Romano C, Scarlato P. Cubic Fe-bearing majorite synthesized at 18-25 GPa and 1000 °C: implications for element transport, subducted slab rheology and diamond formation. Sci Rep 2023; 13:15855. [PMID: 37740075 PMCID: PMC10516933 DOI: 10.1038/s41598-023-43037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The chemistry and mineralogy of slabs subducted into lower mantle control slab rheology and impact the deep volatile cycle. It is known that the metamorphism of little-altered oceanic crust results in eclogite rocks with subequal proportions of garnet and clinopyroxene. With increasing pressure, these minerals react to stabilize pyrope-rich tetragonal majoritic garnet. However, some eclogites contain higher proportions of omphacitic clinopyroxene, caused by Na- and Si-rich metasomatism on the ocean floor or during subduction. The mineralogy of such eclogites is expected to evolve differently. Here, we discuss the results of the crystallization products of omphacitic glass at ~ 18 and ~ 25 GPa and 1000 °C to simulate P-T regimes of cold subduction. The full characterization of the recovered samples indicates evidence of crystallization of Na-, Si-rich cubic instead of tetragonal majorite. This cubic majorite can incorporate large amounts of ferric iron, promoting redox reactions with surrounding volatile-bearing fluids and, ultimately, diamond formation. In addition, the occurrence of cubic majorite in the slab would affect the local density, favoring the continued buoyancy of the slab as previously proposed by seismic observations. Attention must be paid to omphacitic inclusions in sublithospheric diamonds as these might have experienced back-transformation from the HP isochemical cubic phase.
Collapse
Affiliation(s)
- Vincenzo Stagno
- Dipartimento di Scienze Della Terra, Sapienza Università di Roma, Rome, Italy.
- Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
| | - Luca Bindi
- Dipartimento di Scienze Della Terra, Università di Firenze, Firenze, Italy
| | | | - Steeve Greaux
- Geodynamic Research Center, Ehime University, Matsuyama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Sonja Aulbach
- Institute for Geosciences, Frankfurt Isotope & Element Research Center (FIERCE), Goethe University, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Tetsuo Irifune
- Geodynamic Research Center, Ehime University, Matsuyama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Stefano Lupi
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR-IOM, Area Science Park, 34012, Trieste, Italy
| | - Giulia Marras
- Dipartimento di Scienze Della Terra, Sapienza Università di Roma, Rome, Italy
| | | | | | | | - Brent Poe
- Dipartimento di Scienze, Università Di Chieti, Chieti, Italy
| | - Claudia Romano
- Dipartimento di Scienze, Università Di Roma Tre, Rome, Italy
| | | |
Collapse
|
4
|
Fei H, Ballmer MD, Faul U, Walte N, Cao W, Katsura T. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature 2023; 620:794-799. [PMID: 37407826 PMCID: PMC10447242 DOI: 10.1038/s41586-023-06215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2023] [Indexed: 07/07/2023]
Abstract
A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800-1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump1,2. The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction3, accelerates plume ascent4 and inhibits chemical mixing5. However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump1,2. The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection5-7. The high Mg:Si ratio of the upper mantle relative to chondrites8, the anomalous 142Nd:144Nd, 182W:184W and 3He:4He isotopic ratios in hot-spot magmas9,10, the plume deflection4 and slab stagnation in the mid-mantle3 as well as the sparse observations of seismic anisotropy11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth.
Collapse
Affiliation(s)
- Hongzhan Fei
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany.
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China.
| | - Maxim D Ballmer
- Department of Earth Sciences, University College London, London, UK
| | - Ulrich Faul
- Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Walte
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany
| | - Weiwei Cao
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), Orléans, France
| | - Tomoo Katsura
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| |
Collapse
|
5
|
Yu C, Goes S, Day EA, van der Hilst RD. Seismic evidence for global basalt accumulation in the mantle transition zone. SCIENCE ADVANCES 2023; 9:eadg0095. [PMID: 37256943 PMCID: PMC10413675 DOI: 10.1126/sciadv.adg0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
The mantle's compositional structure reflects the thermochemical evolution of Earth. Yet, even the radial average composition of the mantle remains debated. Here, we analyze a global dataset of shear and compressional waves reflecting off the 410- and 660-km discontinuities that is 10 times larger than any previous studies. Our array analysis retrieves globally averaged amplitude-distance trends in SS and PP precursor reflectivity from which we infer relative wavespeed and density contrasts and associated mantle composition. Our results are best matched by a basalt-enriched mantle transition zone, with higher basalt fractions near 660 (~40%) than 410 (~18-31%). These are consistent with mantle-convection/plate-recycling simulations, which predict that basaltic crust accumulates in the mantle transition zone, with basalt fractions peaking near the 660. Basalt segregation in the mantle transition zone also implies that the overall mantle is more silica enriched than the often-assumed pyrolitic mantle reference composition.
Collapse
Affiliation(s)
- Chunquan Yu
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Saskia Goes
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - Elizabeth A. Day
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - Robert D. van der Hilst
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Abstract
Continental, orogenic, and oceanic lithospheric mantle embeds sizeable parcels of exotic cratonic lithospheric mantle (CLM) derived from distant, unrelated sources. This hints that CLM recycling into the mantle and its eventual upwelling and relamination at the base of younger plates contribute to the complex structure of the growing lithosphere. Here, we use numerical modeling to investigate the fate and survival of recycled CLM in the ambient mantle and test the viability of CLM relamination under Hadean to present-day mantle temperature conditions and its role in early lithosphere evolution. We show that the foundered CLM is partially mixed and homogenized in the ambient mantle; then, as thermal negative buoyancy vanishes, its long-lasting compositional buoyancy drives upwelling, relaminating unrelated growing lithospheric plates and contributing to differentiation under cratonic, orogenic, and oceanic regions. Parts of the CLM remain in the mantle as diffused depleted heterogeneities at multiple scales, which can survive for billions of years. Relamination is maximized for high depletion degrees and mantle temperatures compatible with the early Earth, leading to the upwelling and underplating of large volumes of foundered CLM, a process we name massive regional relamination (MRR). MRR explains the complex source, age, and depletion heterogeneities found in ancient cratonic lithospheric mantle, suggesting this may have been a key component of the construction of continents in the early Earth.
Collapse
|
7
|
A New Approach Determining a Phase Transition Boundary Strictly Following a Definition of Phase Equilibrium: An Example of the Post-Spinel Transition in Mg2SiO4 System. MINERALS 2022. [DOI: 10.3390/min12070820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Clapeyron slope is the slope of a phase boundary in P–T space and is essential for understanding mantle dynamics and evolution. The phase boundary is delineating instead of balancing a phase transition’s normal and reverse reactions. Many previous high pressure–temperature experiments determining the phase boundaries of major mantle minerals experienced severe problems due to instantaneous pressure increase by thermal pressure, pressure drop during heating, and sluggish transition kinetics. These complex pressure changes underestimate the transition pressure, while the sluggish kinetics require excess pressures to initiate or proceed with the transition, misinterpreting the phase stability and preventing tight bracketing of the phase boundary. Our recent study developed a novel approach to strictly determine phase stability based on the phase equilibrium definition. Here, we explain the details of this technique, using the post-spinel transition in Mg2SiO4 determined by our recent work as an example. An essential technique is to observe the change in X-ray diffraction intensity between ringwoodite and bridgmanite + periclase during the spontaneous pressure drop at a constant temperature and press load with the coexistence of both phases. This observation removes the complicated pressure change upon heating and kinetic problem, providing an accurate and precise phase boundary.
Collapse
|
8
|
Weak cubic CaSiO 3 perovskite in the Earth's mantle. Nature 2022; 603:276-279. [PMID: 35264761 DOI: 10.1038/s41586-021-04378-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022]
Abstract
Cubic CaSiO3 perovskite is a major phase in subducted oceanic crust, where it forms at a depth of about 550 kilometres from majoritic garnet1,2,28. However, its rheological properties at temperatures and pressures typical of the lower mantle are poorly known. Here we measured the plastic strength of cubic CaSiO3 perovskite at pressure and temperature conditions typical for a subducting slab up to a depth of about 1,200 kilometres. In contrast to tetragonal CaSiO3, previously investigated at room temperature3,4, we find that cubic CaSiO3 perovskite is a comparably weak phase at the temperatures of the lower mantle. We find that its strength and viscosity are substantially lower than that of bridgmanite and ferropericlase, possibly making cubic CaSiO3 perovskite the weakest lower-mantle phase. Our findings suggest that cubic CaSiO3 perovskite governs the dynamics of subducting slabs. Weak CaSiO3 perovskite further provides a mechanism to separate subducted oceanic crust from the underlying mantle. Depending on the depth of the separation, basaltic crust could accumulate at the boundary between the upper and lower mantle, where cubic CaSiO3 perovskite may contribute to the seismically observed regions of low shear-wave velocities in the uppermost lower mantle5,6, or sink to the core-mantle boundary and explain the seismic anomalies associated with large low-shear-velocity provinces beneath Africa and the Pacific7-9.
Collapse
|
9
|
Wang W, Tschauner O, Huang S, Wu Z, Meng Y, Bechtel H, Mao HK. Coupled deep-mantle carbon-water cycle: Evidence from lower-mantle diamonds. Innovation (N Y) 2021; 2:100117. [PMID: 34557764 PMCID: PMC8454732 DOI: 10.1016/j.xinn.2021.100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
Diamonds form in a variety of environments between subducted crust, lithospheric and deep mantle. Recently, deep source diamonds with inclusions of the high-pressure H2O-phase ice-VII were discovered. By correlating the pressures of ice-VII inclusions with those of other high-pressure inclusions, we assess quantitatively the pressures and temperatures of their entrapment. We show that the ice-VII-bearing diamonds formed at depths down to 800 ± 60 km but at temperatures 200–500 K below average mantle temperature that match the pressure-temperature conditions of decomposing dense hydrous mantle silicates. Our work presents strong evidence for coupled recycling of water and carbon in the deep mantle based on natural samples. A novel approach was developed to assess the pressure-temperature conditions of entrapment of inclusions in diamonds The viscoelastic relaxation of diamond has a significant effect on the evolution of pressure and temperature Ice-VII-bearing diamonds have formed in wet, cool environments at depths down to 800 km The coupled recycling of water and carbon is present in the deep mantle
Collapse
Affiliation(s)
- Wenzhong Wang
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.,Department of Earth Sciences, University College London, London WC1E 6BT, UK.,Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Oliver Tschauner
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Shichun Huang
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Zhongqing Wu
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.,CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Hefei 230026, China
| | - Yufei Meng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hans Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|
10
|
Feng J, Yao H, Wang Y, Poli P, Mao Z. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry. Nat Commun 2021; 12:2531. [PMID: 33953204 PMCID: PMC8099894 DOI: 10.1038/s41467-021-22853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
The recycling of oceanic crust, with distinct isotopic and chemical signature from the pyrolite mantle, plays a critical role in the chemical evolution of the Earth with insights into mantle circulation. However, the role of the mantle transition zone during this recycling remains ambiguous. We here combine the unique resolution reflected body waves (P410P and P660P) retrieved from ambient noise interferometry with mineral physics modeling, to shed new light on transition zone physics. Our joint analysis reveals a generally sharp 660-km discontinuity and the existence of a localized accumulation of oceanic crust at the bottom mantle transition zone just ahead of the stagnant Pacific slab. The basalt accumulation is plausibly derived from the segregation of oceanic crust and depleted mantle of the adjacent stagnant slab. Our findings provide direct evidence of segregated oceanic crust trapped within the mantle transition zone and new insights into imperfect whole mantle circulation.
Collapse
Affiliation(s)
- Jikun Feng
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China. .,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China.
| | - Huajian Yao
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China. .,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China. .,Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng, China.
| | - Yi Wang
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China
| | - Piero Poli
- University Grenoble Alpes, CNRS, ISTerre, Grenoble, France
| | - Zhu Mao
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature 2021; 589:562-566. [PMID: 33505039 DOI: 10.1038/s41586-020-03139-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
The location and degree of material transfer between the upper and lower mantle are key to the Earth's thermal and chemical evolution. Sinking slabs and rising plumes are generally accepted as locations of transfer1,2, whereas mid-ocean ridges are not typically assumed to have a role3. However, tight constraints from in situ measurements at ridges have proved to be challenging. Here we use receiver functions that reveal the conversion of primary to secondary seismic waves to image the discontinuities that bound the mantle transition zone, using ocean bottom seismic data from the equatorial Mid-Atlantic Ridge. Our images show that the seismic discontinuity at depths of about 660 kilometres is broadly uplifted by 10 ± 4 kilometres over a swath about 600 kilometres wide and that the 410-kilometre discontinuity is depressed by 5 ± 4 kilometres. This thinning of the mantle transition zone is coincident with slow shear-wave velocities in the mantle, from global seismic tomography4-7. In addition, seismic velocities in the mantle transition zone beneath the Mid-Atlantic Ridge are on average slower than those beneath older Atlantic Ocean seafloor. The observations imply material transfer from the lower to the upper mantle-either continuous or punctuated-that is linked to the Mid-Atlantic Ridge. Given the length and longevity of the mid-ocean ridge system, this implies that whole-mantle convection may be more prevalent than previously thought, with ridge upwellings having a role in counterbalancing slab downwellings.
Collapse
|
12
|
Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite. Proc Natl Acad Sci U S A 2020; 117:27899-27905. [PMID: 33093206 DOI: 10.1073/pnas.1917096117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determination of the chemical composition of the Earth's mantle is of prime importance to understand the evolution, dynamics, and origin of the Earth. However, there is a lack of experimental data on sound velocity of iron-bearing Bridgmanite (Brd) under relevant high-pressure conditions of the whole mantle, which prevents constraints on the mineralogical model of the lower mantle. To uncover these issues, we have conducted sound-velocity measurement of iron-bearing Brd in a diamond-anvil cell (DAC) up to 124 GPa using Brillouin scattering spectroscopy. Here we show that the sound velocities of iron-bearing Brd throughout the whole pressure range of lower mantle exhibit an apparent linear reduction with the iron content. Our data fit remarkably with the seismic structure throughout the lower mantle with Fe2+-enriched Brd, indicating that the greater part of the lower mantle could be occupied by Fe2+-enriched Brd. Our lower-mantle model shows a distinctive Si-enriched composition with Mg/Si of 1.14 relative to the upper mantle (Mg/Si = 1.25), which implies that the mantle convection has been inefficient enough to chemically homogenize the Earth's whole mantle.
Collapse
|
13
|
Thomson AR, Crichton WA, Brodholt JP, Wood IG, Siersch NC, Muir JMR, Dobson DP, Hunt SA. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 2019; 572:643-647. [DOI: 10.1038/s41586-019-1483-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/06/2019] [Indexed: 11/09/2022]
|
14
|
Sampling the volatile-rich transition zone beneath Bermuda. Nature 2019; 569:398-403. [PMID: 31092940 DOI: 10.1038/s41586-019-1183-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/18/2019] [Indexed: 11/08/2022]
Abstract
Intraplate magmatic provinces found away from plate boundaries provide direct sampling of the composition and heterogeneity of the Earth's mantle. The chemical heterogeneities that have been observed in the mantle are usually attributed to recycling during subduction1-3, which allows for the addition of volatiles and incompatible elements into the mantle. Although many intraplate volcanoes sample deep-mantle reservoirs-possibly at the core-mantle boundary4-not all intraplate volcanoes are deep-rooted5, and reservoirs in other, shallower boundary layers are likely to participate in magma generation. Here we present evidence that suggests Bermuda sampled a previously unknown mantle domain, characterized by silica-undersaturated melts that are substantially enriched in incompatible elements and volatiles, and a unique, extreme isotopic signature. To our knowledge, Bermuda records the most radiogenic 206Pb/204Pb isotopes that have been documented in an ocean basin (with 206Pb/204Pb ratios of 19.9-21.7) using high-precision methods. Together with low 207Pb/204Pb ratios (15.5-15.6) and relatively invariant Sr, Nd, and Hf isotopes, the data suggest that this source must be less than 650 million years old. We therefore interpret the Bermuda source as a previously unknown, transient mantle reservoir that resulted from the recycling and storage of incompatible elements and volatiles6-8 in the transition zone (between the upper and lower mantle), aided by the fractionation of lead in a mineral that is stable only in this boundary layer, such as K-hollandite9,10. We suggest that recent recycling into the transition zone, related to subduction events during the formation of Pangea, is the reason why this reservoir has only been found in the Atlantic Ocean. Our geodynamic models suggest that this boundary layer was sampled by disturbances related to mantle flow. Seismic studies and diamond inclusions6,7 have shown that recycled materials can be stored in the transition zone11. For the first time, to our knowledge, we show geochemical evidence that this storage is key to the generation of extreme isotopic domains that were previously thought to be related only to deep recycling.
Collapse
|
15
|
Wu W, Ni S, Irving JCE. Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography. Science 2019; 363:736-740. [PMID: 30765566 DOI: 10.1126/science.aav0822] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/02/2019] [Indexed: 11/02/2022]
Abstract
Topography, or depth variation, of certain interfaces in the solid Earth can provide important insights into the dynamics of our planet interior. Although the intermediate- and long-range topographic variation of the 660-kilometer boundary between Earth's upper and lower mantle is well studied, small-scale measurements are far more challenging. We found a surprising amount of topography at short length scale along the 660-kilometer boundary in certain regions using scattered P'P' seismic waves. Our observations required chemical layering in regions with high short-scale roughness. By contrast, we did not see such small-scale topography along the 410-kilometer boundary in the upper mantle. Our findings support the concept of partially blocked or imperfect circulation between the upper and lower mantle.
Collapse
Affiliation(s)
- Wenbo Wu
- State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.,Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Jessica C E Irving
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Sci Rep 2019; 9:2053. [PMID: 30765772 PMCID: PMC6376055 DOI: 10.1038/s41598-018-38449-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022] Open
Abstract
The viscosity of Earth’s lower mantle is poorly constrained due to the lack of knowledge on some fundamental variables that affect the deformation behaviour of its main mineral phases. This study focuses on bridgmanite, the main lower mantle constituent, and assesses its rheology by developing an approach based on mineral physics. Following and revising the recent advances in this field, pure climb creep controlled by diffusion is identified as the key mechanism driving deformation in bridgmanite. The strain rates of this phase under lower mantle pressures, temperatures and stresses are thus calculated by constraining diffusion and implementing a creep theoretical model. The viscosity of MgSiO3 bridgmanite resulting from pure climb creep is consequently evaluated and compared with the viscosity profiles available from the literature. We show that the inferred variability of viscosity in these profiles can be fully accounted for with the chosen variables of our calculation, e.g., diffusion coefficients, vacancy concentrations and applied stresses. A refinement of these variables is advocated in order to further constrain viscosity and match the observables.
Collapse
|
17
|
Faccenda M, Ferreira AMG, Tisato N, Lithgow‐Bertelloni C, Stixrude L, Pennacchioni G. Extrinsic Elastic Anisotropy in a Compositionally Heterogeneous Earth's Mantle. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2019; 124:1671-1687. [PMID: 31008001 PMCID: PMC6472509 DOI: 10.1029/2018jb016482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/29/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Several theoretical studies indicate that a substantial fraction of the measured seismic anisotropy could be interpreted as extrinsic anisotropy associated with compositional layering in rocks, reducing the significance of strain-induced intrinsic anisotropy. Here we quantify the potential contribution of grain-scale and rock-scale compositional anisotropy to the observations by (i) combining effective medium theories with realistic estimates of mineral isotropic elastic properties and (ii) measuring velocities of synthetic seismic waves propagating through modeled strain-induced microstructures. It is shown that for typical mantle and oceanic crust subsolidus compositions, rock-scale compositional layering does not generate any substantial extrinsic anisotropy (<1%) because of the limited contrast in isotropic elastic moduli among different rocks. Quasi-laminated structures observed in subducting slabs using P and S wave scattering are often invoked as a source of extrinsic anisotropy, but our calculations show that they only generate minor seismic anisotropy (<0.1-0.2% of Vp and Vs radial anisotropy). More generally, rock-scale compositional layering, when present, cannot be detected with seismic anisotropy studies but mainly with wave scattering. In contrast, when grain-scale layering is present, significant extrinsic anisotropy could exist in vertically limited levels of the mantle such as in a mid-ocean ridge basalt-rich lower transition zone or in the uppermost lower mantle where foliated basalts and pyrolites display up to 2-3% Vp and 3-6% Vs radial anisotropy. Thus, seismic anisotropy observed around the 660-km discontinuity could be possibly related to grain-scale shape-preferred orientation. Extrinsic anisotropy can form also in a compositionally homogeneous mantle, where velocity variations associated with major phase transitions can generate up to 1% of positive radial anisotropy.
Collapse
Affiliation(s)
| | - Ana M. G. Ferreira
- Department of Earth SciencesUniversity College LondonLondonUK
- CERIS, Instituto Superior TecnicoUniversidade de LisboaLisbonPortugal
| | - Nicola Tisato
- Department of Geological Sciences, Jackson School of GeosciencesUniversity of TexasAustinTXUSA
- Department of Civil EngineeringUniversity of TorontoTorontoOntarioCanada
| | | | - Lars Stixrude
- Department of Earth SciencesUniversity College LondonLondonUK
| | | |
Collapse
|
18
|
Gréaux S, Irifune T, Higo Y, Tange Y, Arimoto T, Liu Z, Yamada A. Sound velocity of CaSiO 3 perovskite suggests the presence of basaltic crust in the Earth's lower mantle. Nature 2019; 565:218-221. [PMID: 30626940 DOI: 10.1038/s41586-018-0816-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 11/12/2018] [Indexed: 11/10/2022]
Abstract
Laboratory measurements of sound velocities of high-pressure minerals provide crucial information on the composition and constitution of the deep mantle via comparisons with observed seismic velocities. Calcium silicate (CaSiO3) perovskite (CaPv) is a high-pressure phase that occurs at depths greater than about 560 kilometres in the mantle1 and in the subducting oceanic crust2. However, measurements of the sound velocity of CaPv under the pressure and temperature conditions that are present at such depths have not previously been performed, because this phase is unquenchable (that is, it cannot be physically recovered to room conditions) at atmospheric pressure and adequate samples for such measurements are unavailable. Here we report in situ X-ray diffraction and ultrasonic-interferometry sound-velocity measurements at pressures of up to 23 gigapascals and temperatures of up to 1,700 kelvin (similar to the conditions at the bottom of the mantle transition region) using sintered polycrystalline samples of cubic CaPv converted from bulk glass and a multianvil apparatus. We find that cubic CaPv has a shear modulus of 126 ± 1 gigapascals (uncertainty of one standard deviation), which is about 26 per cent lower than theoretical predictions3,4 (about 171 gigapascals). This value leads to substantially lower sound velocities of basaltic compositions than those predicted for the pressure and temperature conditions at depths between 660 and 770 kilometres. This suggests accumulation of basaltic crust in the uppermost lower mantle, which is consistent with the observation of low-seismic-velocity signatures below 660 kilometres5,6 and the discovery of CaPv in natural diamond of super-deep origin7. These results could contribute to our understanding of the existence and behaviour of subducted crust materials in the deep mantle.
Collapse
Affiliation(s)
- Steeve Gréaux
- Geodynamics Research Center, Ehime University, Matsuyama, Japan. .,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| | - Tetsuo Irifune
- Geodynamics Research Center, Ehime University, Matsuyama, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuji Higo
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo, Japan
| | - Yoshinori Tange
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo, Japan
| | - Takeshi Arimoto
- Geodynamics Research Center, Ehime University, Matsuyama, Japan
| | - Zhaodong Liu
- Geodynamics Research Center, Ehime University, Matsuyama, Japan
| | - Akihiro Yamada
- Geodynamics Research Center, Ehime University, Matsuyama, Japan.,Center for the Glass Science and Technology, The University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
19
|
High-pressure experiments cast light on deep-Earth mineralogy. Nature 2019; 565:168-170. [DOI: 10.1038/d41586-018-07864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat Commun 2018; 9:385. [PMID: 29374158 PMCID: PMC5786065 DOI: 10.1038/s41467-017-02709-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022] Open
Abstract
Seismic tomography indicates that flow is commonly deflected in the mid-mantle. However, without a candidate mineral phase change, causative mechanisms remain controversial. Deflection of flow has been linked to radial changes in viscosity and/or composition, but a lack of global observations precludes comprehensive tests by seismically detectable features. Here we perform a systematic global-scale interrogation of mid-mantle seismic reflectors with lateral size 500–2000 km and depths 800–1300 km. Reflectors are detected globally with variable depth, lateral extent and seismic polarity and identify three distinct seismic domains in the mid-mantle. Near-absence of reflectors in seismically fast regions may relate to dominantly subvertical heterogeneous slab material or small impedance contrasts. Seismically slow thermochemical piles beneath the Pacific generate numerous reflections. Large reflectors at multiple depths within neutral regions possibly signify a compositional or textural transition, potentially linked to long-term slab stagnation. This variety of reflector properties indicates widespread compositional heterogeneity at mid-mantle depths. The Earth’s mantle undergoes changes as temperature and pressure increase with depth. Here, the authors present a global interrogation of reflectors in the Earth’s mid-mantle revealing a significant variation in their properties, with widespread compositional heterogeneity and seismic velocity in the mid-mantle, which signify contrasting styles of mantle flow.
Collapse
|
21
|
Borgeaud AFE, Kawai K, Konishi K, Geller RJ. Imaging paleoslabs in the D″ layer beneath Central America and the Caribbean using seismic waveform inversion. SCIENCE ADVANCES 2017; 3:e1602700. [PMID: 29209659 PMCID: PMC5710186 DOI: 10.1126/sciadv.1602700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.
Collapse
Affiliation(s)
- Anselme F. E. Borgeaud
- Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo, Japan
| | - Kenji Kawai
- Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo, Japan
| | - Kensuke Konishi
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Robert J. Geller
- Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Shephard GE, Matthews KJ, Hosseini K, Domeier M. On the consistency of seismically imaged lower mantle slabs. Sci Rep 2017; 7:10976. [PMID: 28887461 PMCID: PMC5591187 DOI: 10.1038/s41598-017-11039-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
The geoscience community is increasingly utilizing seismic tomography to interpret mantle heterogeneity and its links to past tectonic and geodynamic processes. To assess the robustness and distribution of positive seismic anomalies, inferred as subducted slabs, we create a set of vote maps for the lower mantle with 14 global P-wave or S-wave tomography models. Based on a depth-dependent threshold metric, an average of 20% of any given tomography model depth is identified as a potential slab. However, upon combining the 14 models, the most consistent positive wavespeed features are identified by an increasing vote count. An overall peak in the most robust anomalies is found between 1000-1400 km depth, followed by a decline to a minimum around 2000 km. While this trend could reflect reduced tomographic resolution in the middle mantle, we show that it may alternatively relate to real changes in the time-dependent subduction flux and/or a mid-lower mantle viscosity increase. An apparent secondary peak in agreement below 2500 km depth may reflect the degree-two lower mantle slow seismic structures. Vote maps illustrate the potential shortcomings of using a limited number or type of tomography models and slab threshold criteria.
Collapse
Affiliation(s)
- G E Shephard
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.
| | - K J Matthews
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - K Hosseini
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - M Domeier
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Domeier M, Doubrovine PV, Torsvik TH, Spakman W, Bull AL. Global correlation of lower mantle structure and past subduction. GEOPHYSICAL RESEARCH LETTERS 2016; 43:4945-4953. [PMID: 31413424 PMCID: PMC6686211 DOI: 10.1002/2016gl068827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 06/07/2023]
Abstract
Advances in global seismic tomography have increasingly motivated identification of subducted lithosphere in Earth's deep mantle, creating novel opportunities to link plate tectonics and mantle evolution. Chief among those is the quest for a robust subduction reference frame, wherein the mantle assemblage of subducted lithosphere is used to reconstruct past surface tectonics in an absolute framework anchored in the deep Earth. However, the associations heretofore drawn between lower mantle structure and past subduction have been qualitative and conflicting, so the very assumption of a correlation has yet to be quantitatively corroborated. Here we show that a significant, time-depth progressive correlation can be drawn between reconstructed subduction zones of the last 130 Myr and positive S wave velocity anomalies at 600-2300 km depth, but that further correlation between greater times and depths is not presently demonstrable. This correlation suggests that lower mantle slab sinking rates average between 1.1 and 1.9 cm yr-1.
Collapse
Affiliation(s)
- Mathew Domeier
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
| | | | - Trond H Torsvik
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
- Geodynamics Geological Survey of Norway Trondheim Norway
- School of Geosciences University of Witswatersrand Johannesburg South Africa
| | - Wim Spakman
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
- Department of Earth Sciences University of Utrecht Utrecht Netherlands
| | - Abigail L Bull
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
| |
Collapse
|