1
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Vaidya JP, Shendruk TN, Thampi SP. Active nematics in corrugated channels. SOFT MATTER 2024; 20:8230-8245. [PMID: 39377100 DOI: 10.1039/d4sm00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Active nematic fluids exhibit complex dynamics in both bulk and in simple confining geometries. However, complex confining geometries could have substantial impact on active spontaneous flows. Using multiparticle collision dynamics simulations adapted for active nematic particles, we study the dynamic behaviour of an active nematic fluid confined in a corrugated channel. The transition from a quiescent state to a spontaneous flow state occurs from a weak swirling flow to a strong coherent flow due to the presence of curved-wall induced active flows. We show that the active nematic fluid flows in corrugated channels can be understood in two different ways: (i) as the result of an early or delayed flow transition when compared with that in a flat-walled channel of appropriate width and (ii) boundary-induced active flows in the corrugations providing an effective slip velocity to the coherent flows in the bulk. Thus, our work illustrates the crucial role of corrugations of the confining boundary in dictating the flow transition and flow states of active fluids.
Collapse
Affiliation(s)
- Jaideep P Vaidya
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Vats A, Banerjee V, Puri S. Surface-directed dynamics in living liquid crystals. Phys Rev E 2024; 110:034701. [PMID: 39425347 DOI: 10.1103/physreve.110.034701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/07/2024] [Indexed: 10/21/2024]
Abstract
We study living liquid crystals (LLCs), which are an amalgam of nematic liquid crystals (LCs) and active matter (AM). These LLCs are placed in contact with surfaces which impose planar/homeotropic boundary conditions on the director field of the LC and the polarization field of the AM. The interplay of LC-AM interactions and the surface-directed conditions yield controlled pattern dynamics in the LLC, which has important technological implications. We discuss two representative examples of this pattern dynamics.
Collapse
|
4
|
Singh K, Raman H, Tripathi S, Sharma H, Choudhary A, Mangal R. Pair Interactions of Self-Propelled SiO 2-Pt Janus Colloids: Chemically Mediated Encounters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7328-7343. [PMID: 38526954 DOI: 10.1021/acs.langmuir.3c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Driven by the necessity to achieve a thorough comprehension of the bottom-up fabrication process of functional materials, this experimental study investigates the pairwise interactions or collisions between chemically active SiO2-Pt Janus colloids. These collisions are categorized based on the Janus colloids' orientations before and after they make physical contact. In addition to the hydrodynamic interactions, the Janus colloids are also known to affect each other's chemical field, resulting in chemophoretic interactions, which depend on the degree of surface anisotropy in reactivity of Janus colloid and the solute-surface interaction at play. Our study reveals that these interactions lead to a noticeable decrease in particle speed and changes in orientation that correlate with the contact duration and yield different collision types. Distinct configurations of contact during collisions were found, whose mechanisms and likelihood are found to be dependent primarily on the chemical interactions. Such estimates of collision and their characterization in dilute suspensions shall have a key impact in determining the arrangement and time scales of dynamical structures and assemblies of denser suspensions and potentially the functional materials of the future.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Harishwar Raman
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shwetabh Tripathi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hrithik Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Akash Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Ye H, Ouyang Z, Lin J. On particle motion in a confined square domain filled with active fluids. SOFT MATTER 2024; 20:1786-1799. [PMID: 38305105 DOI: 10.1039/d3sm01321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The motion of passive particles in a confined square domain filled with active fluids has been numerically simulated using a direct-fictitious domain method. The ratio of particle diameter to the side length of the square domain (dp/L) is adopted to classify the degree of confinement (i.e., strong or weak confinement). The translational mean-squared displacement (MSDT) of weakly-confined particles scales well with the reported theoretical and experimental results in a short time and eventually reaches a plateau because of the confined environment. Additionally, the radial probability densities of the particle positions gradually increase with increasing distance from the center of the square domain at relatively high activity levels, displaying an apparent rise near the boundary and maximize near the corner. Conversely, the strongly confined particles migrate toward the center of the square domain or approach the corner with continuous rotation. In addition, the localized minima of the angular velocity of the particles show a periodic behavior, with the vortices periodically becoming more organized. Moreover, with increasing activity, two distinct linearly correlated regimes emerge in the relationship between the particle's rotational velocity and the activity. A comprehensive analysis of the collective dynamics reveals that the cutoff length is Rc ≈ 0.19(2.375dp), pointing to the distance at which the velocities of two particles are uncorrelated. Moreover, the spatial correlation function (Ip) shows a small peak at Rr ≈ 0.12(1.5dp), suggesting a relatively strong correlation between a given particle and another particle located at a distance Rr from it. Interestingly, both Rc and Rr are smaller than those observed in an unbounded flow, which indicates that boundary confinement significantly influences the ability of the particles to form coherent structures.
Collapse
Affiliation(s)
- Hao Ye
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
| | - Zhenyu Ouyang
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| | - Jianzhong Lin
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| |
Collapse
|
6
|
Cocconi L, Knight J, Roberts C. Optimal Power Extraction from Active Particles with Hidden States. PHYSICAL REVIEW LETTERS 2023; 131:188301. [PMID: 37977620 DOI: 10.1103/physrevlett.131.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/23/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
We identify generic protocols achieving optimal power extraction from a single active particle subject to continuous feedback control under the assumption that its spatial trajectory, but not its instantaneous self-propulsion force, is accessible to direct observation. Our Bayesian approach draws on the Onsager-Machlup path integral formalism and is exemplified in the cases of free run-and-tumble and active Ornstein-Uhlenbeck dynamics in one dimension. Such optimal protocols extract positive work even in models characterized by time-symmetric positional trajectories and thus vanishing informational entropy production rates. We argue that the theoretical bounds derived in this work are those against which the performance of realistic active matter engines should be compared.
Collapse
Affiliation(s)
- Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| | - Jacob Knight
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| | - Connor Roberts
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| |
Collapse
|
7
|
K V S C, Singeetham PK, Thampi SP. Active compound particles in a quadratic flow: hydrodynamics and morphology. SOFT MATTER 2023; 19:7963-7978. [PMID: 37818659 DOI: 10.1039/d3sm01225e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Generating core-shell particles with a well-controlled morphology is of great interest due to the interdependence between the morphology and different properties of these structures. These particles are often generated in microfluidic devices in a background quadratic flow. Therefore, in this study, we investigate the hydrodynamics and morphology of a concentric active compound particle, an active particle encapsulated in a fluid droplet, in an imposed quadratic flow. Governing equations for fluid flow are analytically solved in the inertia-less limit assuming that the surface tension force dominates the viscous forces (capillary number, Ca ≪ 1). Poiseuille flow deforms the compound particle into a three-lobe structure governed by the hexapolar component of the Poiseuille flow. Activity deforms the compound particle into a prolate shape owing to the velocity field of a force dipole. For an active compound particle in a Poiseuille flow, morphology is sensitive to the orientations and relative strengths of the activity and Poiseuille flow. Primarily, the presence of activity breaks the three-lobe symmetry of the drop shape and makes it more asymmetric and elongated. Moreover, the active compound particle becomes more susceptible to breakup in a quadratic flow when (i) the strength of activity is much stronger than the imposed flow strength, (ii) the active particle is oriented along the symmetry axes of the quadratic flow, (iii) the size ratio of the confining droplet to the encapsulated active particle is small and (iv) the viscosity ratio of the outer fluid to the inner fluid is small. Finally, we demonstrate that imposing the pulsatile quadratic flow prevents the breakup of an active compound particle during its generation and transport, and further assists in tuning the morphology.
Collapse
Affiliation(s)
- Chaithanya K V S
- School of Science and Engineering (Physics), University of Dundee, Dundee, DD14HN, UK.
| | - Pavan Kumar Singeetham
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-64, India.
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-36, India.
| |
Collapse
|
8
|
Ray S, Zhang J, Dogic Z. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2023; 130:238301. [PMID: 37354394 DOI: 10.1103/physrevlett.130.238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023]
Abstract
We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with dynamics and polarization of nearby +1/2 topological defects. The chirality of defect polarities and the active nematic texture around the inclusion correlate with the inclusion's instantaneous rotation rate. Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting ordered motion from their inherently chaotic motion.
Collapse
Affiliation(s)
- Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Jie Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
Patel K, Stark H. Fluid interfaces laden by force dipoles: towards active matter-driven microfluidic flows. SOFT MATTER 2023; 19:2241-2253. [PMID: 36912619 DOI: 10.1039/d3sm00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.
Collapse
Affiliation(s)
- Kuntal Patel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
10
|
de Oliveira E, Mirantsev L, Lyra M, de Oliveira I. Orientational ordering of active nematics confined to a 2D nanoscopic ring-shaped cavity. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
11
|
Joshi C, Ray S, Lemma LM, Varghese M, Sharp G, Dogic Z, Baskaran A, Hagan MF. Data-Driven Discovery of Active Nematic Hydrodynamics. PHYSICAL REVIEW LETTERS 2022; 129:258001. [PMID: 36608242 DOI: 10.1103/physrevlett.129.258001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Active nematics can be modeled using phenomenological continuum theories that account for the dynamics of the nematic director and fluid velocity through partial differential equations (PDEs). While these models provide a statistical description of the experiments, the relevant terms in the PDEs and their parameters are usually identified indirectly. We adapt a recently developed method to automatically identify optimal continuum models for active nematics directly from spatiotemporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After extensive benchmarking, we apply the method to experiments with microtubule-based active nematics, finding a surprisingly minimal description of the system. Our approach can be generalized to gain insights into active gels, microswimmers, and diverse other experimental active matter systems.
Collapse
Affiliation(s)
- Chaitanya Joshi
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 USA
| | - Graham Sharp
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
12
|
Li ZY, Zhang DQ, Lin SZ, Góźdź WT, Li B. Spontaneous organization and phase separation of skyrmions in chiral active matter. SOFT MATTER 2022; 18:7348-7359. [PMID: 36124977 DOI: 10.1039/d2sm00819j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Skyrmions are topologically protected vortex-like excitations that hold promise for applications such as information processing and electron manipulation. Here we combine theoretical analysis and numerical simulations to show that skyrmions can spontaneously emerge in chiral active matter without external confinements or regulation. Strikingly, these activity-driven skyrmions can either self-organize into a periodic, stable square lattice consisting of half Néel skyrmions and antiskyrmions, where the in-plane flows display an antiferromagnetic vortex array, or undergo phase separation between skyrmions with different topological numbers. We identify that the emerging skyrmion dynamics stems from the competition between the chiral and polar coherence length scales dictated by the interplay of intrinsic chirality, polarity, and elasticity in the system. Our results reveal unanticipated topological excitations, self-organization, and phase separation in non-equilibrium systems and also suggest a potential way towards engineering complicated bespoke skyrmionic structures through manipulating active matter.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Shao-Zhen Lin
- Aix Marseille Université, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, 13009 Marseille, France
| | - Wojciech T Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Keogh RR, Chandragiri S, Loewe B, Ala-Nissila T, Thampi SP, Shendruk TN. Helical flow states in active nematics. Phys Rev E 2022; 106:L012602. [PMID: 35974522 DOI: 10.1103/physreve.106.l012602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We show that confining extensile nematics in three-dimensional (3D) channels leads to the emergence of two self-organized flow states with nonzero helicity. The first is a pair of braided antiparallel streams-this double helix occurs when the activity is moderate, anchoring negligible, and reduced temperature high. The second consists of axially aligned counter-rotating vortices-this grinder train arises between spontaneous axial streaming and the vortex lattice. These two unanticipated helical flow states illustrate the potential of active fluids to break symmetries and form complex but organized spatiotemporal structures in 3D fluidic devices.
Collapse
Affiliation(s)
- Ryan R Keogh
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Santhan Chandragiri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Benjamin Loewe
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Tapio Ala-Nissila
- MSP Group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
14
|
Bickmann J, Bröker S, Jeggle J, Wittkowski R. Analytical approach to chiral active systems: suppressed phase separation of interacting Brownian circle swimmers. J Chem Phys 2022; 156:194904. [DOI: 10.1063/5.0085122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider chirality in active systems by exemplarily studying the phase behavior of planar systems of interacting Brownian circle swimmers with a spherical shape. For this purpose, we derive a predictive field theory that is able to describe the collective dynamics of circle swimmers. The theory yields a mapping between circle swimmers and noncircling active Brownian particles and predicts that the angular propulsion of the particles leads to a suppression of their motility-induced phase separation, being in line with recent simulation results. In addition, the theory provides analytical expressions for the spinodal corresponding to the onset of motility-induced phase separation and the associated critical point as well as for their dependence on the angular propulsion of the circle swimmers. We confirm our findings by Brownian dynamics simulations. The agreement between results from theory and simulations is found to be good.
Collapse
Affiliation(s)
- Jens Bickmann
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Stephan Bröker
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Julian Jeggle
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| |
Collapse
|
15
|
Singh K, Yadav A, Dwivedi P, Mangal R. Interaction of Active Janus Colloids with Tracers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2686-2698. [PMID: 35166106 DOI: 10.1021/acs.langmuir.1c03424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the motion of artificial active swimmers in complex surroundings, such as a dense bath of passive particulate matter, is essential for their successful utilization as cargo (drug) carriers and sensors or for medical imaging, under microscopic domains. In this study, we experimentally investigated the motion of active SiO2-Pt Janus particles (JPs) in a two-dimensional bath of smaller silica tracers dispersed with varying areal densities. Our observations indicate that when an active JP undergoes a collision with an isolated tracer, their interaction can have a significant impact on the swimmer's motion. However, the overall impact of tracers on the active JPs' motion (translation and rotation) depends on the frequency of collisions and also on the nature of the collision, which is marked by the time-duration for which the particles maintain contact during the collisions. Further, in the high-density tracer bath, our experiments reveal that the motion of the active JP results in a novel organizational behavior of the tracers on the trailing Pt (depletion of tracers) and the leading SiO2 (accumulation of tracers) side. In laboratory frame the emergence and the subsequent vanishing of the depletion zone are discussed in detail.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankit Yadav
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prateek Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
16
|
Nejad MR, Yeomans JM. Active Extensile Stress Promotes 3D Director Orientations and Flows. PHYSICAL REVIEW LETTERS 2022; 128:048001. [PMID: 35148135 DOI: 10.1103/physrevlett.128.048001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director. By contrast extensile stress promotes instabilities that can turn the director out of the plane, leaving behind a population of distinct, in-plane regions that continually elongate and divide. This supports extensile forces as a mechanism for the initial stages of layer formation in living systems, and we show that a planar drop with extensile (contractile) activity grows into three dimensions (remains in two dimensions). The results also explain the propensity of disclination lines in three dimensional active nematics to be of twist type in extensile or wedge type in contractile materials.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
17
|
Chakraborty R, Maiti A, Sharma N, Dey KK. Active matter dynamics in confined microfluidic environments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:245-265. [PMID: 35033287 DOI: 10.1016/bs.pmbts.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The field of active matter is a nascent area of research in soft condensed matter physics, which is drawing on the expertise of researchers from diverse disciplines. Small scale active particles-both inorganic and biological-display non-trivial emergent dynamics and interactions that could help us understand complex biological processes and phenomena. Recently, using microfluidic technologies, several research groups have performed important experimental and theoretical studies to understand the behavior of self-propelled particles and molecular active matter within confined environments-to glean a fundamental understanding of the cellular processes occurring under ultra-low Reynolds number conditions. In this chapter, we would like to review applications of microfluidics in active matter research, highlighting a few important theoretical and experimental investigations. We will conclude the discussion with a note on the future of this field mentioning a few open questions that are at the forefront of our minds.
Collapse
Affiliation(s)
- Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Arnab Maiti
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Nikita Sharma
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Krishna Kanti Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India.
| |
Collapse
|
18
|
Mirantsev LV. Behavior of chiral active nematics confined to nanoscopic circular region. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:112. [PMID: 34476624 DOI: 10.1140/epje/s10189-021-00120-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
We performed molecular dynamic simulations of a model active nematic confined to a two-dimensional nanoscopic circular region under both tangential and radial anchoring boundary conditions. This active material is assumed to be composed of elongated chiral particles which interact with each other by means of isotropic Lennard-Jones and anisotropic Maier-Saupe-like potentials. These particles have the lateral appendage emitting a jet of some substance generated by a certain internal chemical reaction. As a result, such elongated particles are exposed to both the reactive self-propelled force and the torque that provide an additional translational movement of particles and a self-rotation with respect to their geometric centers. It has been found that the chiral active nematics under consideration form time-dependent vortex-like structures with two +1/2 topological defects which are similar to experimentally observed structures in active materials.
Collapse
Affiliation(s)
- L V Mirantsev
- Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, Bolshoi 61, V. O., St., Saint Petersburg, Russia, 199178.
| |
Collapse
|
19
|
Walton J, McKay G, Grinfeld M, Mottram NJ. Pressure-driven changes to spontaneous flow in active nematic liquid crystals. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:51. [PMID: 32743686 DOI: 10.1140/epje/i2020-11973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
We consider the effects of a pressure gradient on the spontaneous flow of an active nematic liquid crystal in a channel, subject to planar anchoring and no-slip conditions on the boundaries of the channel. We employ a model based on the Ericksen-Leslie theory of nematics, with an additional active stress accounting for the activity of the fluid. By directly solving the flow equation, we consider an asymptotic solution for the director angle equation for large activity parameter values and predict the possible values of the director angle in the bulk of the channel. Through a numerical solution of the full nonlinear equations, we examine the effects of pressure on the branches of stable and unstable equilibria, some of which are disconnected from the no-flow state. In the absence of a pressure gradient, solutions are either symmetric or antisymmetric about the channel midpoint; these symmetries are changed by the pressure gradient. Considering the activity-pressure state space allows us to predict qualitatively the extent of each solution type and to show, for large enough pressure gradients, that a branch of non-trivial director angle solutions exists for all activity values.
Collapse
Affiliation(s)
- Joshua Walton
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, UK
| | - Geoffrey McKay
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, UK.
| | - Michael Grinfeld
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, UK
| | - Nigel J Mottram
- School of Mathematics and Statistics, University of Glasgow, University Place, G12 8SU, Glasgow, UK
| |
Collapse
|
20
|
Kawai T, Matsunaga D, Meng F, Yeomans JM, Golestanian R. Degenerate states, emergent dynamics and fluid mixing by magnetic rotors. SOFT MATTER 2020; 16:6484-6492. [PMID: 32658231 DOI: 10.1039/d0sm00454e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the collective motion of magnetic rotors suspended in a viscous fluid under a uniform rotating magnetic field. The rotors are positioned on a square lattice, and low Reynolds hydrodynamics is assumed. For a 3 × 3 array of magnets, we observe three characteristic dynamical patterns as the external field strength is varied: a synchronized pattern, an oscillating pattern, and a chessboard pattern. The relative stability of these depends on the competition between the energy due to the external magnetic field and the energy of the magnetic dipole-dipole interactions among the rotors. We argue that the chessboard pattern can be understood as an alternation in the stability of two degenerate states, characterized by striped and spin-ice configurations, as the applied magnetic field rotates. For larger arrays, we observe propagation of slip waves that are similar to metachronal waves. The rotor arrays have potential as microfluidic devices that can mix fluids and create vortices of different sizes.
Collapse
Affiliation(s)
- Takuma Kawai
- Graduate School of Engineering Science, Osaka University, Toyonaka 5608531, Japan.
| | - Daiki Matsunaga
- Graduate School of Engineering Science, Osaka University, Toyonaka 5608531, Japan. and Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK and CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China. and Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK and Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
| |
Collapse
|
21
|
Pan JX, Wei H, Qi MJ, Wang HF, Zhang JJ, Tian WD, Chen K. Vortex formation of spherical self-propelled particles around a circular obstacle. SOFT MATTER 2020; 16:5545-5551. [PMID: 32510067 DOI: 10.1039/d0sm00277a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A vortex is a common ratchet phenomenon in active systems. The spatial symmetry is usually broken by introducing asymmetric shapes or spontaneously by collective motion in the presence of hydrodynamic interactions or other alignment effects. Unexpectedly, we observe, by simulations, the formation of a vortex in the simplest model of a circular obstacle immersed in a bath of spherical self-propelled particles. No symmetry-breaking factors mentioned above are included in this model. The vortex forms only when the particle activity is high, i.e. large persistence. The obstacle size is also a key factor and the vortex only forms in a limited range of obstacle sizes. The sustainment of the vortex originates from the bias of the rotating particle cluster around the obstacle in accepting the incoming particles based on their propelling directions. Our results provide new understanding of and insights into the spontaneous symmetry-breaking and ratchet phenomena in active matter.
Collapse
Affiliation(s)
- Jun-Xing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
23
|
Napoli G, Turzi S. Spontaneous helical flows in active nematics lying on a cylindrical surface. Phys Rev E 2020; 101:022701. [PMID: 32168710 DOI: 10.1103/physreve.101.022701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Within the framework of the two-dimensional Ericksen-Leslie model, we explore the effect of geometric confinement on the spontaneous flow of active nematic gels. The nematic particles are assumed to flow on a cylindrical surface, while a degenerate tangential anchoring is enforced. Using the linear approximation of the motion equations, we show that there is a close interplay among extrinsic curvature, flow, director alignment, and activity. We find that the extrinsic curvature promotes the director alignment parallel to the cylindrical axis and is responsible for raising the critical threshold with respect to the flat case. Our analysis reveals a very rich scenario where the key quantities are the activity coefficient, the tumbling parameter, and the anisotropic viscosity ratio. Thus, solutions can exhibit a double periodicity in both the azimuthal and axial variables. As a consequence, the velocity field can make a finite angle with the cylinder axis and the active flow winds on the surface with a helical pattern, while the director oscillates around the cylinder generators. Our results can be validated on thin layers of nematic gels placed between two concentric cylinders and suggest which material properties are most suited for the design of active microfluidic devices.
Collapse
Affiliation(s)
- Gaetano Napoli
- Dipartimento di Matematica e Fisica "E. De Giorgi," Università del Salento, Lecce 73100, Italy
| | - Stefano Turzi
- Dipartimento di Matematica, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
24
|
Zhang L, Xiao Z, Chen X, Chen J, Wang W. Confined 1D Propulsion of Metallodielectric Janus Micromotors on Microelectrodes under Alternating Current Electric Fields. ACS NANO 2019; 13:8842-8853. [PMID: 31265246 DOI: 10.1021/acsnano.9b02100] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is mounting interest in synthetic microswimmers ("micromotors") as microrobots as well as a model system for the study of active matters, and spatial navigation is critical for their success. Current navigational technologies mostly rely on magnetic steering or guiding with physical boundaries, yet limitations with these strategies are plenty. Inspired by an earlier work with magnetic domains on a garnet film as predefined tracks, we present an interdigitated microelectrodes (IDE) system where, upon the application of AC electric fields, metallodielectric (e.g., SiO2-Ti) Janus particles are hydrodynamically confined and electrokinetically propelled in one dimension along the electrode center lines with tunable speeds. In addition, comoving micromotors moved in single files, while those moving in opposite directions primarily reoriented and moved past each other. At high particle densities, turbulence-like aggregates formed as many-body interactions became complicated. Furthermore, a micromotor made U-turns when approaching an electrode closure, while it gradually slowed down at the electrode opening and was collected in large piles. Labyrinth patterns made of serpentine chains of Janus particles emerged by modifying the electrode configuration. Most of these observations can be qualitatively understood by a combination of electroosmotic flows pointing inward to the electrodes, and asymmetric electrical polarization of the Janus particles under an AC electric field. Emerging from these observations is a strategy that not only powers and confines micromotors on prefabricated tracks in a contactless, on-demand manner, but is also capable of concentrating active particles at predefined locations. These features could prove useful for designing tunable tracks that steer synthetic microrobots, as well as to enable the study of single file diffusion, active turbulence, and other collective behaviors of active matters.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Xi Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Jingyuan Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
- IBS Center for Soft and Living Matter , Institute of Basic Science , Ulsan 44919 , Republic of Korea
| |
Collapse
|
25
|
Torrenegra JD, Agudelo-Morimitsu LC, Márquez-Godoy MA, Hernández-Ortiz JP. Active fluid with Acidithiobacillus ferrooxidans: correlations between swimming and the oxidation route. J Biol Phys 2019; 45:193-211. [PMID: 31073789 PMCID: PMC6548800 DOI: 10.1007/s10867-019-09524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
To explore engineering platforms towards 'active bacterial baths', we grow and characterize native and commercial strains of Acidithiobacillus ferrooxidans to promote swimming locomotion. Three different energy sources were used, namely elemental sulfur, ferrous sulfate, and pyrite. The characteristics of the culture, such as pH, Eh, and the concentration of cells and ions, are monitored to seek correlations between the oxidation route and the transport mechanism. We found that only elemental sulfur induces swimming mobility in the commercial DSMZ - 24,419 strain, while ferrous sulfate and the sulfide mineral, pyrite, did not activate swimming on any strain. The bacterial mean squared displacement and the mean velocity are measured to provide a quantitative description of the bacterial mobility. We found that, even if the A. ferrooxidans strain is grown in a sulfur-rich environment, it preferentially oxidizes iron when an iron-based material is included in the media. Similar to other species, once the culture pH decreases below 1.2, the active locomotion is inhibited. The engineering control and activation of swimming in bacterial cultures offer fertile grounds towards applications of active suspensions such as energy-efficient bioleaching, mixing, drug delivery, and bio-sensing.
Collapse
Affiliation(s)
- Juan D Torrenegra
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034
| | - Liliam C Agudelo-Morimitsu
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034
| | - Marco A Márquez-Godoy
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
| | - Juan P Hernández-Ortiz
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034.
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034.
- The Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706-1691, USA.
| |
Collapse
|
26
|
Beppu K, Izri Z, Maeda YT, Sakamoto R. Geometric Effect for Biological Reactors and Biological Fluids. Bioengineering (Basel) 2018; 5:E110. [PMID: 30551608 PMCID: PMC6316181 DOI: 10.3390/bioengineering5040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023] Open
Abstract
As expressed "God made the bulk; the surface was invented by the devil" by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.
Collapse
Affiliation(s)
- Kazusa Beppu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ziane Izri
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ryota Sakamoto
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
27
|
Engineering bacterial vortex lattice via direct laser lithography. Nat Commun 2018; 9:4486. [PMID: 30367049 PMCID: PMC6203773 DOI: 10.1038/s41467-018-06842-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
A suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a class of systems transducing stored energy into mechanical motion. Collective swimming of hydrodynamically interacting bacteria resembles turbulent flow. This seemingly chaotic motion can be rectified by a geometrical confinement. Here we report on self-organization of a concentrated suspension of motile bacteria Bacillus subtilis constrained by two-dimensional (2D) periodic arrays of microscopic vertical pillars. We show that bacteria self-organize into a lattice of hydrodynamically bound vortices with a long-range antiferromagnetic order controlled by the pillars’ spacing. The patterns attain their highest stability and nearly perfect order for the pillar spacing comparable with an intrinsic vortex size of an unconstrained bacterial turbulence. We demonstrate that the emergent antiferromagnetic order can be further manipulated and turned into a ferromagnetic state by introducing chiral pillars. This strategy can be used to control a wide class of active 2D systems. Geometrically confined suspensions of swimming bacteria can self-organize into an ordered state. Here, the authors use tiny pillars to trigger organization of bacterial motion into a stable lattice of vortices with a long-range antiferromagnetic order and control vortex direction through pillar chirality.
Collapse
|
28
|
Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. Active nematics. Nat Commun 2018; 9:3246. [PMID: 30131558 PMCID: PMC6104062 DOI: 10.1038/s41467-018-05666-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Active matter extracts energy from its surroundings at the single particle level and transforms it into mechanical work. Examples include cytoskeleton biopolymers and bacterial suspensions. Here, we review experimental, theoretical and numerical studies of active nematics - a type of active system that is characterised by self-driven units with elongated shape. We focus primarily on microtubule-kinesin mixtures and the hydrodynamic theories that describe their properties. An important theme is active turbulence and the associated motile topological defects. We discuss ways in which active turbulence may be controlled, a pre-requisite to harvesting energy from active materials, and we consider the appearance, and possible implications, of active nematics and topological defects to cellular systems and biological processes.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK.
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Norton MM, Baskaran A, Opathalage A, Langeslay B, Fraden S, Baskaran A, Hagan MF. Insensitivity of active nematic liquid crystal dynamics to topological constraints. Phys Rev E 2018; 97:012702. [PMID: 29448352 DOI: 10.1103/physreve.97.012702] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 11/07/2022]
Abstract
Confining a liquid crystal imposes topological constraints on the orientational order, allowing global control of equilibrium systems by manipulation of anchoring boundary conditions. In this article, we investigate whether a similar strategy allows control of active liquid crystals. We study a hydrodynamic model of an extensile active nematic confined in containers, with different anchoring conditions that impose different net topological charges on the nematic director. We show that the dynamics are controlled by a complex interplay between topological defects in the director and their induced vortical flows. We find three distinct states by varying confinement and the strength of the active stress: A topologically minimal state, a circulating defect state, and a turbulent state. In contrast to equilibrium systems, we find that anchoring conditions are screened by the active flow, preserving system behavior across different topological constraints. This observation identifies a fundamental difference between active and equilibrium materials.
Collapse
Affiliation(s)
- Michael M Norton
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arvind Baskaran
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Achini Opathalage
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Blake Langeslay
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
30
|
Meng F, Matsunaga D, Golestanian R. Clustering of Magnetic Swimmers in a Poiseuille Flow. PHYSICAL REVIEW LETTERS 2018; 120:188101. [PMID: 29775341 DOI: 10.1103/physrevlett.120.188101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
We investigate the collective behavior of magnetic swimmers, which are suspended in a Poiseuille flow and placed under an external magnetic field, using analytical techniques and Brownian dynamics simulations. We find that the interplay between intrinsic activity, external alignment, and magnetic dipole-dipole interactions leads to longitudinal structure formation. Our work sheds light on a recent experimental observation of a clustering instability in this system.
Collapse
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Daiki Matsunaga
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
31
|
Elementary Flow Field Profiles of Micro-Swimmers in Weakly Anisotropic Nematic Fluids: Stokeslet, Stresslet, Rotlet and Source Flows. FLUIDS 2018. [DOI: 10.3390/fluids3010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Guillamat P, Hardoüin J, Prat BM, Ignés-Mullol J, Sagués F. Control of active turbulence through addressable soft interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:504003. [PMID: 29125475 DOI: 10.1088/1361-648x/aa99c8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an experimental study of a kinesin/tubulin active nematic formed at different oil interfaces. By tuning the interfacial rheology of the contacting oil, we have been able to condition and control the seemingly chaotic motion that characterizes the self-sustained active flows in our preparations. The active nematic is inherently unstable and spontaneously develops defects from an initial homogeneous state. We show that the steady state and, in particular, the density and dynamics of the defects strongly depends on the rheology of the contacting oil. Using a smectic-A thermotropic liquid crystal as the oil phase, we pattern the interface thanks to the anisotropy of the shear viscosity in this material. The geometry of the active nematic adapts to the boundary conditions at the interface by changing from the so-called active turbulent regime to laminar flows along the easy flow directions. The latter can be either a lattice of self-assembled circular paths or reconfigurable homogeneous orientations that can be addressed by means of an external magnetic field. We show that, under all confinement conditions, the spatiotemporal modes exhibited by the active liquid are consistent with a single intrinsic length scale, which can be tuned by the material parameters, and obey basic topological requirements imposed on the defects that drive the active flows. Future control strategies, including a tunable depleting agent, are discussed.
Collapse
Affiliation(s)
- P Guillamat
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, Catalonia. Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
33
|
Wu KT, Hishamunda JB, Chen DTN, DeCamp SJ, Chang YW, Fernández-Nieves A, Fraden S, Dogic Z. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 2017; 355:355/6331/eaal1979. [PMID: 28336609 DOI: 10.1126/science.aal1979] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 01/04/2023]
Abstract
Transport of fluid through a pipe is essential for the operation of macroscale machines and microfluidic devices. Conventional fluids only flow in response to external pressure. We demonstrate that an active isotropic fluid, composed of microtubules and molecular motors, autonomously flows through meter-long three-dimensional channels. We establish control over the magnitude, velocity profile, and direction of the self-organized flows and correlate these to the structure of the extensile microtubule bundles. The inherently three-dimensional transition from bulk-turbulent to confined-coherent flows occurs concomitantly with a transition in the bundle orientational order near the surface and is controlled by a scale-invariant criterion related to the channel profile. The nonequilibrium transition of confined isotropic active fluids can be used to engineer self-organized soft machines.
Collapse
Affiliation(s)
- Kun-Ta Wu
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | - Daniel T N Chen
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Stephen J DeCamp
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Ya-Wen Chang
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30339, USA
| | | | - Seth Fraden
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
34
|
Wang L, Huang Y. Intrinsic flow structure and multifractality in two-dimensional bacterial turbulence. Phys Rev E 2017; 95:052215. [PMID: 28618644 DOI: 10.1103/physreve.95.052215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 11/07/2022]
Abstract
The active interaction between the bacteria and fluid generates turbulent structures even at zero Reynolds number. The velocity of such a flow obtained experimentally has been quantitatively investigated based on streamline segment analysis. There is a clear transition at about 16 times the organism body length separating two different scale regimes, which may be attributed to the different influence of the viscous effect. Surprisingly the scaling extracted from the streamline segment indicates the existence of scale similarity even at the zero Reynolds number limit. Moreover, the multifractal feature can be quantitatively described via a lognormal formula with the Hurst number H=0.76 and the intermittency parameter μ=0.20, which is coincidentally in agreement with the three-dimensional hydrodynamic turbulence result. The direction of cascade is measured via the filter-space technique. An inverse energy cascade is confirmed. For the enstrophy, a forward cascade is observed when r/R≤3, and an inverse one is observed when r/R>3, where r and R are the separation distance and the bacteria body size, respectively. Additionally, the lognormal statistics is verified for the coarse-grained energy dissipation and enstrophy, which supports the lognormal formula to fit the measured scaling exponent.
Collapse
Affiliation(s)
- Lipo Wang
- UM-SJTU Joint Institute, Shanghai JiaoTong University, Shanghai 200240, People's Republic of China
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
35
|
Shendruk TN, Doostmohammadi A, Thijssen K, Yeomans JM. Dancing disclinations in confined active nematics. SOFT MATTER 2017; 13:3853-3862. [PMID: 28345089 DOI: 10.1039/c6sm02310j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spontaneous emergence of collective flows is a generic property of active fluids and often leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their orientation field. However, the ability to achieve structured flows and ordered disclinations is of particular importance in the design and control of active systems. By confining an active nematic fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they continually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We anticipate that this biomimetic ability to self-assemble organised topological disclinations and dynamically structured flow fields in engineered geometries will pave the road towards establishing new active topological microfluidic devices.
Collapse
Affiliation(s)
- Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK.
| | | | | | | |
Collapse
|
36
|
Woodhouse FG, Dunkel J. Active matter logic for autonomous microfluidics. Nat Commun 2017; 8:15169. [PMID: 28440273 PMCID: PMC5414041 DOI: 10.1038/ncomms15169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/06/2017] [Indexed: 01/24/2023] Open
Abstract
Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.
Collapse
Affiliation(s)
- Francis G. Woodhouse
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|