1
|
Peng S, Yan L, You R, Lu Y, Liu Y, Li L. Cationic cellulose dispersed Ag NCs/C-CNF paper-based SERS substrate with high homogeneity for creatinine and uric acid detection. Int J Biol Macromol 2024; 282:136724. [PMID: 39437960 DOI: 10.1016/j.ijbiomac.2024.136724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
To overcome the problems of easy aggregation, poor reproducibility and homogeneity of metal nanosols, a SERS substrate with good sensitivity, homogeneity and reproducibility was designed and prepared for the detection of disease markers in urine. Silver nanocubes (Ag NCs) were firstly prepared and then dispersed in cationic cellulose (C-CNF) to form a homogeneous gel, which was dropped on a filter paper to develop a substrate with good SERS activity. This substrate combines the superior SERS properties of Ag NCs with the stability of C-CNF and has a minimum detection concentration of 10-9 M for R6G. The homogeneity of this substrate was good and the RSD value was much <20 %. The SERS substrate was employed for the quantification of creatinine and uric acid, with linear ranges were 5 × 10-3-5 × 10-7 M and 10-2-10-6 M. The recoveries of creatinine and uric acid were calculated to be 98.3 % ∼ 103.12 % and 96.72 % ∼ 104.48 %, respectively, in the spike recovery experiments, with the relative standard deviations of <10 %. The experimental results show that the method can provide a scientific and reliable experimental basis for screening, condition monitoring and treatment of kidney and other diseases.
Collapse
Affiliation(s)
- Shirun Peng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Linjun Yan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
2
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
3
|
Pham AT, Bui HN, Thanh NT, Bach TN, Mai QD, Le AT. Flexible SERS chips for rapid on-site detection of tricyclazole pesticide in agricultural products. Mikrochim Acta 2024; 191:652. [PMID: 39373744 DOI: 10.1007/s00604-024-06682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
A flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO2/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO2 nanomaterials (f-TiO2). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method. Despite its straightforward fabrication process via a solvent immersion method, the intrinsic smart surface properties of the TiO2 bridging material - both hydrophilic and hydrophobic - enable the uniform and dense self-assembly of hydrophilic Ag nanoparticles (NPs) on the cellulose fiber paper substrate. This innovative design provides superior sensing efficiency for TCZ molecules with a detection limit reaching 2.1 × 10-9 M, a remarkable improvement compared to Paper/Ag substrates lacking f-TiO2 nanomaterials, which register at 10-5 M. This flexible SERS substrate also exhibits very high reliability as indicated by its excellent reproducibility and repeatability with relative standard deviations (RSD) of only 5.93% and 4.73%, respectively. Characterized by flexibility and a water-attractive yet non-soluble surface, the flexible Paper/f-TiO2/Ag chips offer the convenience of direct immersion into the analytical sample, facilitating seamless target molecule collection while circumventing interference signals. Termed the "dip and dry" technique, its advantages in field analysis are indisputable, boasting in situ deployment, simplicity, and high efficiency, while minimizing interference signals to negligible levels. Through the application of this advanced technique, we have successfully detected TCZ in two high-value crops, ST25 rice and dragon fruit, achieving excellent recovery values ranging from 90 to 128%. This underscores its immense potential in ensuring food quality and safety. As a proof of concept, flexible Paper/f-TiO2/Ag SERS chips, with a simple fabrication process, advanced analytical technique, and superior sensing efficiency, bring SERS one step closer to field applications beyond the laboratory.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hanh Nhung Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Nguyen Trung Thanh
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Ta Ngoc Bach
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Quan-Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
4
|
Sharma A, Ramanaiah Dantham V. Observation of reversible and irreversible charge transfer processes in dye-monolayer graphene systems using Raman spectroscopy as a tool. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124431. [PMID: 38739985 DOI: 10.1016/j.saa.2024.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Herein, we report the Raman spectroscopy of crystal violet (CV) and IR-780 Iodide molecules dispersed on the monolayer graphene film (MGF). In the CV-MGF system, the enhancement in the Raman scattering of CV molecules is observed irrespective of the location probed during the spectral measurements. This enhancement is due to the charge transfer from the MGF to CV molecules. However, in the case of the IR-780 Iodide - MGF system, the enhancement of Raman scattering of dye molecules or MGF is observed strongly depending upon the probed location. These observations indicate that the charge transfer is irreversible and reversible in the CV-MGF and IR-780 Iodide-MGF systems, respectively. Importantly, for the first time, this experimental study revealed that enhancing the Raman scattering of MGF is possible through the "chemical mechanism" with suitable dye molecules apart from the "electromagnetic mechanism" with plasmonic hot spots of the metal nanoparticles and photonic nanojets of single dielectric microparticles.
Collapse
Affiliation(s)
- Anamika Sharma
- Department of Physics, Indian Institute of Technology Patna, Bihar 801103, India
| | | |
Collapse
|
5
|
Wang S, Wei Y, Zheng S, Zhang Z, Tang X, Liang L, Zang Z, Qian Q. Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering. Anal Chem 2024; 96:9917-9926. [PMID: 38837181 DOI: 10.1021/acs.analchem.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Two-dimensional (2D) materials have been extensively implemented as surface-enhanced Raman scattering (SERS) substrates, enabling trace-molecule detection for broad applications. However, the accurate understanding of the mechanism remains elusive because most theoretical explanations are still phenomenological or qualitative based on simplified models and rough assumptions. To advance the development of 2D material-assisted SERS, it is vital to attain a comprehensive understanding of the enhancement mechanism and a quantitative assessment of the enhancement performance. Here, the microscopic chemical mechanism of 2D material-assisted SERS is quantitatively investigated. The frequency-dependent Raman scattering cross sections suggest that the 2D materials' SERS performance is strongly dependent on the excitation wavelengths and the molecule types. By analysis of the microscopic Raman scattering processes, the comprehensive contributions of SERS can be revealed. Beyond the widely postulated charge transfer mechanisms, the quantitative results conclusively demonstrate that the resonant transitions within 2D materials alone are also capable of enhancing the molecular Raman scattering through the diffusive scattering of phonons. Furthermore, all of these scattering routines will interfere with each other and determine the final SERS performance. Our results not only provide a complete picture of the SERS mechanisms but also demonstrate a systematic and quantitative approach to theoretically understand, predict, and promote the 2D materials SERS toward analytical applications.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Optoelectronic Technology and System (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Youchao Wei
- Key Laboratory of Optoelectronic Technology and System (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Siyang Zheng
- Key Laboratory of Optoelectronic Technology and System (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| | - Xi Tang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and System (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Qingkai Qian
- Key Laboratory of Optoelectronic Technology and System (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Pinto de Sousa B, Fateixa S, Trindade T. Surface-Enhanced Raman Scattering Using 2D Materials. Chemistry 2024; 30:e202303658. [PMID: 38530022 DOI: 10.1002/chem.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The use of surface-enhanced Raman scattering (SERS) as a technique for detecting small amounts of (bio)chemical analytes has become increasingly popular in various fields. While gold and silver nanostructures have been extensively studied as SERS substrates, the availability of other types of substrates is currently expanding the applications of this spectroscopic method. Recently, researchers have begun exploring two-dimensional (2D) materials (e. g., graphene-like nanostructures) as substrates for SERS analysis. These materials offer unique optical properties, a well-defined structure, and the ability to modify their surface chemistry. As a contribution to advance this field, this concept article highlights the significance of understanding the chemical mechanism that underlies the experimental Raman spectra of chemisorbed molecules onto 2D materials' surfaces. Therefore, the article discusses recent advancements in fabricating substrates using 2D layered materials and the synergic effects of using their metallic composites for SERS applications. Additionally, it provides a new perspective on using Raman imaging in developing 2D materials as analytical platforms for Raman spectroscopy, an exciting emerging research area with significant potential.
Collapse
Affiliation(s)
- Beatriz Pinto de Sousa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Jiang L, Liu H, Wang B, Zhang W, Wang J, Xiong Y. Selective SERS Detection of TATB Explosives Based on Hydroxy-Terminal Nanodiamond-Multilayer Graphene Substrate. ACS OMEGA 2024; 9:22166-22174. [PMID: 38799344 PMCID: PMC11112555 DOI: 10.1021/acsomega.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Selective surface-enhanced Raman scattering (SERS) detection of target explosives with good reproducibility is very important for monitoring soldiers' health and ecological environment. Here, the specific charge transfer pathway was constructed between a stable nanodiamond-multilayer graphene (MGD) film substrate and the target explosives. Two-step wet chemical oxidation methods of H2O2 (30%) and HNO3 (65%) solutions were used to regulate the terminal structure of MGD films. The experimental results showed that the hydroxyl (-OH) functional groups are successfully modified on the surface of MGD thin films, and the MGD-OH substrates having good selectivity for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) explosive in mixed solutions of the TATB, 2,2-dinitroethene-1,1-diamine, 2,4,6-trinitrotoluene, and 1,3,5-trinitroperhydro-1,3,5-triazine explosives compared with MGD substrates were demonstrated. Finally, first-principles density functional theory simulations revealed that the SERS enhancement of the MGD-OH substrate is mainly attributed to the transferred electrons between the -NO2 groups of TATB and the -OH groups of the MGD-OH substrate.
Collapse
Affiliation(s)
- Lin Jiang
- State
Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science & Technology, Mianyang 621010, China
- School
of Materials & Chemistry, Southwest
University of Science & Technology, Mianyang 621010, China
| | - Huiqiang Liu
- School
of Materials & Chemistry, Southwest
University of Science & Technology, Mianyang 621010, China
| | - Bing Wang
- School
of Materials & Chemistry, Southwest
University of Science & Technology, Mianyang 621010, China
| | - Wen Zhang
- State
Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jian Wang
- Joint
Laboratory for Extreme Conditions Matter Properties, School of Mathematics
and Physics, Southwest University of Science
and Technology, Mianyang 621010, Sichuan, China
| | - Ying Xiong
- State
Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science & Technology, Mianyang 621010, China
- School
of Materials & Chemistry, Southwest
University of Science & Technology, Mianyang 621010, China
| |
Collapse
|
8
|
Tang X, Hao Q, Hou X, Lan L, Li M, Yao L, Zhao X, Ni Z, Fan X, Qiu T. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312348. [PMID: 38302855 DOI: 10.1002/adma.202312348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive surface analysis technique that is widely used in chemical sensing, bioanalysis, and environmental monitoring. The design of the SERS substrates is crucial for obtaining high-quality SERS signals. Recently, 2D transition metal dichalcogenides (2D TMDs) have emerged as high-performance SERS substrates due to their superior stability, ease of fabrication, biocompatibility, controllable doping, and tunable bandgaps and excitons. In this review, a systematic overview of the latest advancements in 2D TMDs SERS substrates is provided. This review comprehensively summarizes the candidate 2D TMDs SERS materials, elucidates their working principles for SERS, explores the strategies to optimize their SERS performance, and highlights their practical applications. Particularly delved into are the material engineering strategies, including defect engineering, alloy engineering, thickness engineering, and heterojunction engineering. Additionally, the challenges and future prospects associated with the development of 2D TMDs SERS substrates are discussed, outlining potential directions that may lead to significant breakthroughs in practical applications.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Leilei Lan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, 232001, China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Zhang N, Zhang K, Zou M, Maniyara RA, Bowen TA, Schrecengost JR, Jain A, Zhou D, Dong C, Yu Z, Liu H, Giebink NC, Robinson JA, Hu W, Huang S, Terrones M. Tuning the Fermi Level of Graphene by Two-Dimensional Metals for Raman Detection of Molecules. ACS NANO 2024; 18:8876-8884. [PMID: 38497598 DOI: 10.1021/acsnano.3c12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Graphene-enhanced Raman scattering (GERS) offers great opportunities to achieve optical sensing with a high uniformity and superior molecular selectivity. The GERS mechanism relies on charge transfer between molecules and graphene, which is difficult to manipulate by varying the band alignment between graphene and the molecules. In this work, we synthesized a few atomic layers of metal termed two-dimensional (2D) metal to precisely and deterministically modify the graphene Fermi level. Using copper phthalocyanine (CuPc) as a representative molecule, we demonstrated that tuning the Fermi level can significantly improve the signal enhancement and molecular selectivity of GERS. Specifically, aligning the Fermi level of graphene closer to the highest occupied molecular orbital (HOMO) of CuPc results in a more pronounced Raman enhancement. Density functional theory (DFT) calculations of the charge density distribution reproduce the enhanced charge transfer between CuPc molecules and graphene with a modulated Fermi level. Extending our investigation to other molecules such as rhodamine 6G, rhodamine B, crystal violet, and F16CuPc, we showed that 2D metals enabled Fermi level tuning, thus improving GERS detection for molecules and contributing to an enhanced molecular selectivity. This underscores the potential of utilizing 2D metals for the precise control and optimization of GERS applications, which will benefit the development of highly sensitive, specific, and reliable sensors.
Collapse
Affiliation(s)
- Na Zhang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Min Zou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Rinu Abraham Maniyara
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Timothy Andrew Bowen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jonathon Ray Schrecengost
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Arpit Jain
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Ge Y, Yang Y, Zhu Y, Yuan M, Sun L, Jiang D, Liu X, Zhang Q, Zhang J, Wang Y. 2D TiS 2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302410. [PMID: 37635113 DOI: 10.1002/smll.202302410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Herein, a hybrid substrate for surface-enhanced Raman scattering (SERS) is fabricated, which couples localized surface plasmon resonance (LSPR), charge transfer (CT) resonance, and molecular resonance. Exfoliated 2D TiS2 nanosheets with semimetallic properties accelerate the CT with the tested analytes, inducing a remarkable chemical mechanism enhancement. In addition, the LSPR effect is coupled with a concave gold array located underneath the thin TiS2 nanosheet, providing a strong electromagnetic enhancement. The concave gold array is prepared by etching silicone nanospheres assembled on larger polystyrene nanospheres, followed by depositing a gold layer. The LSPR intensity near the gold layer can be adjusted by changing the layer thickness to couple the molecular and CT resonances, in order to maximize the SERS enhancement. The best SERS performance is recorded on TiS2-nanosheet-coated plasmonic substrates, with a detectable methylene blue concentration down to 10-13 m and an enhancement factor of 2.1 × 109 and this concentration is several orders of magnitude lower than that of the TiS2 nanosheet (10-11 m) and plasmonic substrates (10-9 m). The present hybrid substrate with triple-coupled resonance further shows significant advantages in the label-free monitoring of curcumin (a widely applied drug for treating multiple cancers and inflammations) in serum and urine.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yajie Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Meiling Yuan
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Liangbin Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Danfeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Jinyi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| |
Collapse
|
11
|
Verma AK, Singh J, Nguyen-Tri P. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10969-10983. [PMID: 38355426 DOI: 10.1021/acsami.3c17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The interaction of graphene with metals initiates charge-transfer interaction-induced chemical enhancements, which critically depend on the doping effect from deposited metallic configurations. In this paper, we have explored the gold nanoparticle-decorated monolayer graphene nanosheets for the large graphene-induced Raman enhancement of adsorbed analytes, indicating the surface-enhanced Raman spectroscopy (SERS) capabilities of metal-doped graphene (G-SERS). Here, the systematically sputtered Au thickness optimization procedure revealed noticeable modifications in the graphene Raman spectra and photoluminescence (PL) background quenching, which indicated favorable charge transfer through n-type doping of chemical vapor deposition-grown graphene nanosheets. The highly consistent, individually distributed morphology of the gold nanoislands over graphene nanosheets depicted a reproducibly uniform G-SERS signal with excellent relative standard deviation values (<5%), resulting in the strongest Raman intensity enhancement factors of ∼108 (MB) (methylene blue) and 107 (DPA) (2,6-pyridinedicarboxylic acid) composed of the weakest PL background. The combined charge-transfer-induced chemical enhancement and electromagnetic enhancement from individual Au nanoislands result in a lowering of detectability down to 10-16 M (MB) and 10-11 M (DPA) concentrations with efficient time-dependent signal stability. Additionally, the GAu demonstrated its effective (∼94.4%) photocatalytic degradation capabilities by decomposing MB dye molecules from a concentration of 1 μM to 2.52 fM within 60 min. Therefore, the prominent charge-transfer contribution through controlled Au decoration over graphene nanosheets provides a potential strategy for fabricating superior SERS sensors and photocatalysts exhibiting adequate signal consistency, stability, and photodegradation efficiency through overcoming the limitations of the traditional sensing platforms.
Collapse
Affiliation(s)
- Ashwani Kumar Verma
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jaspal Singh
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
12
|
Yu H, Sun H, Ma J, Han B, Wang R, Ma Y, Lou G, Song Y. Resonance-Assisted Surface-Enhanced Raman Spectroscopy Amplification on Hierarchical Rose-Shaped MoS 2/Au Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:380-388. [PMID: 38153039 DOI: 10.1021/acs.langmuir.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive trace detection technique in recent decades, yet its exceptional performance remains elusive in semiconductor materials due to the intricate and ambiguous nature of the SERS mechanism. Herein, we have synthesized MoS2 nanoflowers (NFs) decorated with Au nanoparticles (NPs) by hydrothermal and redox methods to explore the size-dependence SERS effect. This strategy enhances the interactions between the substrate and molecules, resulting in exceptional uniformity and reproducibility. Compared to the unadorned Au nanoparticles (NPs), the decoration of Au NPs induces an n-type effect on MoS2, resulting in a significant enhancement of the SERS effect. This augmentation empowers MoS2 to achieve a low limit of detection concentration of 2.1 × 10-9 M for crystal violet (CV) molecules and the enhancement factor (EF) is about 8.52 × 106. The time-stability for a duration of 20 days was carried out, revealing that the Raman intensity of CV on the MoS2/Au-6 substrate only exhibited a reduction of 24.36% after undergoing aging for 20 days. The proposed mechanism for SERS primarily stems from the synergistic interplay among the resonance of CV molecules, local surface plasma resonance (LSPR) of Au NPs, and the dual-step charge transfer enhancement. This research offers comprehensive insights into SERS enhancement and provides guidance for the molecular design of highly sensitive SERS systems.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Huanhuan Sun
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Ma
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Boyang Han
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Rensheng Wang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yun Ma
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gang Lou
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yanping Song
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Kammoun H, Ossonon BD, Tavares AC. Nitrogen-Doped Graphene Materials with High Electrical Conductivity Produced by Electrochemical Exfoliation of Graphite Foil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:123. [PMID: 38202578 PMCID: PMC10780345 DOI: 10.3390/nano14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Nitrogen-doped graphene-based materials are of utmost importance in sensing and energy conversion devices due to their unique physicochemical properties. However, the presence of defects such as pyrrolic nitrogen and oxygenated functional groups reduces their electrical conductivity. Herein, a two-step approach based on the electrochemical exfoliation of graphite foils in aqueous mixed electrolytes followed by thermal reduction at 900 °C is used to prepare high-quality few layers of N-doped graphene-based materials. The exfoliations were conducted in 0.1 M (NH4)2SO4 or H2SO4 and HNO3 (5 mM or 0.1 M) electrolytes mixtures and the HNO3 vol% varied. Chemical analysis demonstrated that the as-prepared graphene oxides contain nitro and amine groups. Thermal reduction is needed for substitutional N-doping. Nitrogen and oxygen surface concentrations vary between 0.23-0.96% and 3-8%, respectively. Exfoliation in (NH4)2SO4 and/or 5 mM HNO3 favors the formation of pyridinic-N (10-40% of the total N), whereas 1 M HNO3 favors the formation of graphitic-N (≈60%). The electrical conductivity ranges between 166-2705 Scm-1. Raman spectroscopy revealed a low density of defects (ID/IG ratio between 0.1 and 0.7) and that most samples are composed of mono-to-bilayer graphene-based materials (IG/I2D integrated intensities ratio). Structural and compositional stability of selected samples after storage in air for three months is demonstrated. These results confirm the high quality of the synthesized undoped and N-doped graphene-type materials.
Collapse
Affiliation(s)
| | | | - Ana C. Tavares
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (H.K.); (B.D.O.)
| |
Collapse
|
14
|
Wang H, An G, Xu S, Xu Q. Fe and Cu Intercalations Enhance SERS of MoO 3 through Different Mechanistic Pathways. Chemistry 2023:e202303391. [PMID: 38116857 DOI: 10.1002/chem.202303391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Surface Enhanced Raman spectroscopy (SERS) is a molecular-specific analytical technique with various applications. Although electromagnetic (EM) and chemical (CM) mechanisms have been proposed to be the main origins of SERS, exploring highly sensitive SERS substrates with well-defined mechanistic pathways remains challenging. Since surface and electronic structures of substrates were crucial for SERS activity, zero-valent transition metals (Fe and Cu) were intercalated into MoO3 to modulate its surface and electronic structures, leading to unexceptional high enhancement factors (1.0×108 and 1.1×1010 for Fe-MoO3 and Cu-MoO3 , respectively) with decent reproducibility and stability. Interestingly, different mechanistic pathways (CM and EM) were proposed for Fe-MoO3 and Cu-MoO3 according to mechanistic investigations. The different mechanisms of Fe-MoO3 and Cu-MoO3 were rationalized by the electronic structures of the intercalated Fe(0) and Cu(0), which modulates the surface and electronic structures of Fe-MoO3 and Cu-MoO3 to differentiate their SERS mechanisms.
Collapse
Affiliation(s)
- Hengan Wang
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Guangyu An
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Song Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Prof. Qun Xu, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
15
|
Weng S, Chu W, Zhu H, Li J, Dong R, Niu R, Yang J, Zhang C, Li Z, Yang L. Near-Neighbor Electron Orbital Coupling Effect of Single-Atomic-Layer Au Cluster Intercalated Bilayer 2H-TaS 2 for Surface Enhanced Raman Scattering Sensing. J Phys Chem Lett 2023; 14:8477-8484. [PMID: 37721451 DOI: 10.1021/acs.jpclett.3c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
It is difficult to perfectly analyze the enhancement mechanism of two-dimensional (2D) materials and their combination with precious metals as surface enhanced Raman scattering (SERS) substrates using chemical enhancement mechanisms. Here, we propose a new mentality based on the coupling effect of neighboring electron orbitals to elucidate the electromagnetic field enhancement mechanism of single-atom-layer Au clusters embedded in double-layer 2H-TaS2 for SRES sensing. The insertion of Au atoms into the 2H-TaS2 interlayer was verified by XRD, AFM, and HRTEM, and a SERS signal enhancement of 2 orders of magnitude was obtained compared to the pure 2H-TaS2. XPS and micro-UV/vis-NIR spectra indicate that the outer electrons of neighboring Au and 2H-TaS2 overlap and migrate from Au to 2H-TaS2. First-principles calculations suggest strong electronic coupling between Au and 2H-TaS2. This study offers insights into SERS enhancement in nonprecious metal compounds and guides the development of new SERS substrates.
Collapse
Affiliation(s)
- Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenjun Chu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Huaze Zhu
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Yang
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
16
|
Feng G, Suzuki N, Zhang Q, Li J, Inose T, Taemaitree F, K M MS, Toyouchi S, Fujita Y, Hirai K, Uji-I H. A light-mediated covalently patterned graphene substrate for graphene-enhanced Raman scattering (GERS). Chem Commun (Camb) 2023; 59:11417-11420. [PMID: 37671408 DOI: 10.1039/d3cc03304j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We report covalently patterned graphene with acetic acid as a new potential candidate for graphene-enhanced Raman scattering (GERS). Rhodamine 6G molecules in direct contact with the covalently modified region show an enormous enhancement (∼25 times) compared to the pristine region at 532 nm excitation. The GERS enhancement with respect to the layer thickness of the probed molecule, excitation wavelength, and covalently attached groups is discussed.
Collapse
Affiliation(s)
- Guilin Feng
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Nozomu Suzuki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Jiangtao Li
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Farsai Taemaitree
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan
| | - Muhammed Shameem K M
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Shuichi Toyouchi
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kenji Hirai
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
17
|
Liang C, Sun K, Chen M, Xu P. Crystal-Phase Engineering of Two-Dimensional Transition-Metal Dichalcogenides for Surface-Enhanced Raman Scattering: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11946-11953. [PMID: 37590920 DOI: 10.1021/acs.langmuir.3c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising materials for surface-enhanced Raman scattering (SERS) due to their unique electronic, optical, and mechanical properties. In this Perspective, we briefly introduce the fundamental properties, crystal-phase configurations, and phase transition strategies of TMDs materials. We then discuss the importance of the crystal phase in determining the SERS effect of TMDs, highlighting recent advances in phase-engineering approaches to affording remarkable SERS performance. By considering the current challenges and future directions for improving the crystal-phase engineering of TMDs in SERS, we also offer new insights into the design and synthesis of more promising TMD-based SERS substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kexin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
18
|
Ying Y, Tang Z, Liu Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. NANOSCALE 2023. [PMID: 37335252 DOI: 10.1039/d3nr01456h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful and non-invasive spectroscopic technique that can provide rich and specific chemical fingerprint information for various target molecules through effective SERS substrates. In view of the strong dependence of the SERS signals on the properties of the SERS substrates, design, exploration, and construction of novel SERS-active nanomaterials with low cost and excellent performance as the SERS substrates have always been the foundation and the top priority for the development and application of the SERS technology. This review specifically focuses on the extensive progress made in the SERS-active nanomaterials and their enhancement mechanism since the first discovery of SERS on the nanostructured plasmonic metal substrates. The design principles, unique functions, and influencing factors on the SERS signals of different types of SERS-active nanomaterials are highlighted, and insight into their future challenge and development trends is also suggested. It is highly expected that this review could benefit a complete understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to further development and wider application of the SERS technology.
Collapse
Affiliation(s)
- Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Lv Q, Tan J, Wang Z, Gu P, Liu H, Yu L, Wei Y, Gan L, Liu B, Li J, Kang F, Cheng HM, Xiong Q, Lv R. Ultrafast charge transfer in mixed-dimensional WO 3-x nanowire/WSe 2 heterostructures for attomolar-level molecular sensing. Nat Commun 2023; 14:2717. [PMID: 37169769 PMCID: PMC10175504 DOI: 10.1038/s41467-023-38198-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Developing efficient noble-metal-free surface-enhanced Raman scattering (SERS) substrates and unveiling the underlying mechanism is crucial for ultrasensitive molecular sensing. Herein, we report a facile synthesis of mixed-dimensional heterostructures via oxygen plasma treatments of two-dimensional (2D) materials. As a proof-of-concept, 1D/2D WO3-x/WSe2 heterostructures with good controllability and reproducibility are synthesized, in which 1D WO3-x nanowire patterns are laterally arranged along the three-fold symmetric directions of 2D WSe2. The WO3-x/WSe2 heterostructures exhibited high molecular sensitivity, with a limit of detection of 5 × 10-18 M and an enhancement factor of 5.0 × 1011 for methylene blue molecules, even in mixed solutions. We associate the ultrasensitive performance to the efficient charge transfer induced by the unique structures of 1D WO3-x nanowires and the effective interlayer coupling of the heterostructures. We observed a charge transfer timescale of around 1.0 picosecond via ultrafast transient spectroscopy. Our work provides an alternative strategy for the synthesis of 1D nanostructures from 2D materials and offers insights on the role of ultrafast charge transfer mechanisms in plasmon-free SERS-based molecular sensing.
Collapse
Affiliation(s)
- Qian Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhijie Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Peng Gu
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Lingxiao Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yinping Wei
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lin Gan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jia Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Feiyu Kang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Yang Z, Jiang L, Zhao W, Shi B, Qu X, Zheng Y, Zhou P. Nb 2C MXene self-assembled Au nanoparticles simultaneously based on electromagnetic enhancement and charge transfer for surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122843. [PMID: 37207571 DOI: 10.1016/j.saa.2023.122843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Recent years, two-dimensional transition metal carbonitrides (MXene) have attracted much attention in the field of surface-enhanced Raman scattering (SERS). However, the relatively low enhancement of MXene is a major challenge. Herein, Nb2C-Au NPs nanocomposites were prepared by electrostatic self-assembly method, which have a synergistically conjugated SERS effect. The EM hot spots of Nb2C-Au NPs are significantly enlarged and expanded, while the surface Fermi level is decreased. This synergistic effect could improve the SERS performance of the system. Consequently, for the dye molecules CV and MeB, the detection limits reach 10-10 M and 10-9 M, respectively, while for biomolecule adenine, the detection limit is as low as 5 × 10-8 M. The results also show the good concentration-dependent linearity, uniformity, reproducibility and stability of SERS substrate. Nb2C-Au NPs could be a fast, sensitive and stable SERS platform for label-free and non-destructive detection. This work may expand the application of MXene based materials in the field of SERS.
Collapse
Affiliation(s)
- Ziheng Yang
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Li Jiang
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Weidan Zhao
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Boya Shi
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Xiangwen Qu
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yekai Zheng
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Pengwei Zhou
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
21
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Jin J, Guo Z, Fan D, Zhao B. Spotting the driving forces for SERS of two-dimensional nanomaterials. MATERIALS HORIZONS 2023; 10:1087-1104. [PMID: 36629521 DOI: 10.1039/d2mh01241c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, two-dimensional (2D) layered nanomaterials have become promising candidates for surface-enhanced Raman scattering (SERS) substrates due to their unique characteristics of ultrathin layer structure, outstanding optical properties and good biocompatibility, significantly contributing to remarkable SERS sensitivity, stability, and compatibility. Unlike traditional SERS substrates, 2D nanomaterials possess unparalleled layer-dependent, phase transition induced and anisotropic optical properties, which as driving forces significantly promote the SERS performance and development, as well as greatly enrich the SERS substrates and provide versatile resources for SERS research. For a profound understanding of the SERS effect of 2D nanomaterials, a review concentrating on these driving forces for SERS enhancement on 2D nanomaterials is written here for the first time, which strongly emphasizes the importance and influence of these driving forces on the SERS effect of 2D nanomaterials, including their intrinsic physical and chemical properties and external influencing factors. Moreover, the essential mechanisms of these driving forces for the SERS effect are also elaborated systematically. Finally, the challenges and future perspectives of SERS substrates based on 2D nanomaterials are concluded. This review will provide guiding principles and strategies for designing highly sensitive 2D nanomaterial SERS substrates and extending their potential applications based on SERS.
Collapse
Affiliation(s)
- Jing Jin
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhinan Guo
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dianyuan Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
23
|
An T, Wen J, Dong Z, Zhang Y, Zhang J, Qin F, Wang Y, Zhao X. Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis. SENSORS (BASEL, SWITZERLAND) 2022; 23:445. [PMID: 36617043 PMCID: PMC9824517 DOI: 10.3390/s23010445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics has been widely utilized in enhanced molecularspectroscopy or mediated chemical reaction, which has major applications in the field of enhancing sensing and enables opportunities in developing healthcare monitoring. This review presents an updated overview of the recent exciting advances of plasmonic biosensors in the healthcare area. Manufacturing, enhancements and applications of plasmonic biosensors are discussed, with particular focus on nanolisted main preparation methods of various nanostructures, such as chemical synthesis, lithography, nanosphere lithography, nanoimprint lithography, etc., and describing their respective advances and challenges from practical applications of plasmon biosensors. Based on these sensing structures, different types of plasmonic biosensors are summarized regarding detecting cancer biomarkers, body fluid, temperature, gas and COVID-19. Last, the existing challenges and prospects of plasmonic biosensors combined with machine learning, mega data analysis and prediction are surveyed.
Collapse
Affiliation(s)
- Tongge An
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Shangyu Institute of Science and Engineering, Hangzhou Dianzi University, Shaoxing 312000, China
| | - Zhichao Dong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jian Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Faxiang Qin
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
24
|
Zhou T, Xu C, Ren W. Grain-Boundary-Induced Ultrasensitive Molecular Detection of Graphene Film. NANO LETTERS 2022; 22:9380-9388. [PMID: 36455614 DOI: 10.1021/acs.nanolett.2c03218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene has been considered a promising platform for molecular detection due to the graphene-enhanced Raman scattering (GERS) effect. However, the GERS performance of pristine graphene is limited by a low chemically active surface and insufficient density of states (DOS). Although diverse defects have been introduced, it remains a great challenge to improve the enhancement performance. Here, we show that graphene grain boundaries (GBs) possess stronger adsorption capacity and more abundant DOS. Thus, GERS performance increases with the atomic percentage of GBs, which makes nanocrystalline graphene (NG) film a superior GERS substrate. For R6G as a probe molecule, a low detection limit of 3 × 10-10 M was achieved. Utilizing the high chemical activity of GBs, we also fabricated NG film decorated with Au particles using a one-step quenching strategy, and this hybrid film exhibits an extremely low limit of detection down to 5 × 10-11 M, outperforming all the reported graphene-based systems.
Collapse
Affiliation(s)
- Tianya Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| | - Chuan Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| |
Collapse
|
25
|
Ji C, Lu J, Shan B, Li F, Zhao X, Yu J, Xu S, Man B, Zhang C, Li Z. The Origin of Mo 2C Films for Surface-Enhanced Raman Scattering Analysis: Electromagnetic or Chemical Enhancement? J Phys Chem Lett 2022; 13:8864-8871. [PMID: 36125003 DOI: 10.1021/acs.jpclett.2c02392] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The relatively weak Raman enhanced factors of semiconductor-based substrate limit its further application in surface-enhanced Raman scattering (SERS). Here, a kind of two-dimensional (2D) semimetal material, molybdenum carbide (Mo2C) film, is prepared via a chemical vapor deposition (CVD) method, and the origin of SERS is investigated for the first time. The detection limits of the prepared Mo2C films for crystal violet (CV) and rhodamine 6G (R6G) molecules are low at 10-6 M and 10-8 M, respectively. Our detailed theoretical analysis, based on density functional theory and the finite element method, demonstrates that the enhancement of the 2D Mo2C film is indeed CM in nature rather than the EM effects. Besides, the basic doping strategies are proposed to further optimize the SERS sensitivity of Mo2C for Fermi level regulation. We believe this work will provide a helpful guide for developing a highly sensitive semimetal SERS substrate.
Collapse
Affiliation(s)
- Chang Ji
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Jinxuan Lu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Baojie Shan
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Fengrui Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiaofei Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P.R. China
| | - Baoyuan Man
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
26
|
Liang C, Lu ZA, Zheng M, Chen M, Zhang Y, Zhang B, Zhang J, Xu P. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering. NANO LETTERS 2022; 22:6590-6598. [PMID: 35969868 DOI: 10.1021/acs.nanolett.2c01825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, with two-dimensional (2D) borocarbonitride (BCN) as a metal- and plasmon-free surface-enhanced Raman scattering (SERS) platform, we demonstrate a band structure engineering strategy to facilitate the charge transfer process for an enhanced SERS response. Especially, when the conduction band of the BCN substrate is tuned to align with the LUMO of the target molecule, remarkable SERS performance is achieved, ascribed to the borrowing effect from the vibronic coupling of resonances through the Herzberg-Teller coupling term. Meanwhile, fluorescence quenching is achieved due to the efficient charge transfer between the BCN substrate and target molecule. Consequently, BCN can accurately detect 20 kinds of trace chemical and bioactive analytes. Moreover, BCN exhibits excellent thermal and chemical stability, which can not only withstand high-temperature (300 °C) heating in the air but also resist long-term corrosion in harsh acid (pH = 0, HCl) and base (pH = 14, NaOH). This work provides new insight into band structure engineering in promoting the SERS performance of plasmon- and metal-free semiconductor substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zi-Ang Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
27
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Ge Y, Wang F, Yang Y, Xu Y, Ye Y, Cai Y, Zhang Q, Cai S, Jiang D, Liu X, Liedberg B, Mao J, Wang Y. Atomically Thin TaSe 2 Film as a High-Performance Substrate for Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107027. [PMID: 35246940 DOI: 10.1002/smll.202107027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An atomically thin TaSe2 sample, approximately containing two to three layers of TaSe2 nanosheets with a diameter of 2.5 cm is prepared here for the first time and applied on the detection of various Raman-active molecules. It achieves a limit of detection of 10-10 m for rhodamine 6G molecules. The excellent surface-enhanced Raman scattering (SERS) performance and underlying mechanism of TaSe2 are revealed using spectrum analysis and density functional theory. The large adsorption energy and the abundance of filled electrons close to the Fermi level are found to play important roles in the chemical enhancement mechanism. Moreover, the TaSe2 film enables highly sensitive detection of bilirubin in serum and urine samples, highlighting the potential of using 2D SERS substrates for applications in clinical diagnosis, for example, in the diagnosis of jaundice caused by excess bilirubin in newborn children.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Fei Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yi Xu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ying Ye
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yu Cai
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Shengying Cai
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - DanFeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
29
|
He Z, Rong T, Li Y, Ma J, Li Q, Wu F, Wang Y, Wang F. Two-Dimensional TiVC Solid-Solution MXene as Surface-Enhanced Raman Scattering Substrate. ACS NANO 2022; 16:4072-4083. [PMID: 35179019 DOI: 10.1021/acsnano.1c09736] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) MXenes are attractive candidates as surface-enhanced Raman scattering (SERS) substrates because of their metallic conductivity and abundant surface terminations. Herein, we report the facile synthesis of bimetallic solid-solution TiVC (MXene) and its application in SERS. The few-layered MXene nanosheets with high crystallinity were successfully prepared using a one-step chemical etching method without ultrasonic and organic solvent intercalation steps. SERS activity of the as-prepared MXene was investigated by fabricating free-standing TiVC film as the substrate. A SERS enhancement factor of 1012 and femtomolar-level detection limit were confirmed using rhodamine 6G as a model dye with 532 nm excitation. The fluorescent signal of the rhodamine 6G dye was effectively quenched, making the SERS spectrum clearly distinguishable. Furthermore, we demonstrate that the TiVC-analyte system with ultrahigh sensitivity is dominated by the chemical mechanism (CM) based on the experimental and simulation results. The abundant density of states near the Fermi level of the TiVC and the strong interaction between the TiVC and analyte promote the intermolecular charge transfer resonance in the TiVC-analyte complex, resulting in significant Raman enhancement. Additionally, several other probe molecules were used for SERS detection to further verify CM-based selectivity enhancement on the TiVC substrates. This work provides guidance for the facile synthesis of 2D MXene and its application in ultrasensitive SERS detection.
Collapse
Affiliation(s)
- Zhiquan He
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Tengda Rong
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Junjie Ma
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanshui Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Furong Wu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuhang Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengping Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Thakkar S, De Luca L, Gaspa S, Mariani A, Garroni S, Iacomini A, Stagi L, Innocenzi P, Malfatti L. Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection. ACS OMEGA 2022; 7:5670-5678. [PMID: 35224328 PMCID: PMC8867560 DOI: 10.1021/acsomega.1c04863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Graphene-enhanced Raman scattering (GERS) produces enhancement of the Raman signal, which is based on chemical rather than electromagnetic mechanism such as in the surface-enhanced Raman scattering. Graphene oxide, amino- and guanidine-functionalized graphene oxide, exfoliated graphene, and commercial graphene nanoplatelets have been used to investigate the GERS response with the change of graphene properties. Different graphene nanostructures have been embedded into organic-inorganic microporous films to build a platform for the fast and sensitive detection of pesticides in water. The graphene nanostructures vary in the number of layers, lateral size, degree of oxidation, and surface functionalization. The GERS performances of the graphene nanostructures cast on silicon substrates and embedded in the nanocomposite films have been comparatively evaluated. After casting a few droplets of the pesticide aqueous solution on the graphene nanostructures, the Raman band enhancements of the analytes have been measured. In the nanocomposite films, the characteristic Raman bands originating from pesticides such as paraoxon, parathion, and glyphosate could be traced at concentrations below 10-7, 10-5, and 10-4 M, respectively. The results show that the surface functionalization reduces the GERS effect because it increases the ratio between the sp3 carbon and sp2 carbon. On the other hand, the comparison among different types of graphenes shows that the monolayers are more efficient than the few-layer nanostructures in enhancing the Raman signal.
Collapse
Affiliation(s)
- Swapneel Thakkar
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| | - Lidia De Luca
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Silvia Gaspa
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Alberto Mariani
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sebastiano Garroni
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Antonio Iacomini
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Luigi Stagi
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Plinio Innocenzi
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| | - Luca Malfatti
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| |
Collapse
|
31
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
32
|
Mandado M, Ramos-Berdullas N. Confinement on the optical response in h-BNCs: Towards highly efficient SERS-active 2D substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120451. [PMID: 34627018 DOI: 10.1016/j.saa.2021.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Several experimental and theoretical studies have shown that 2D hybrid structures formed by boron, nitrogen and carbon atoms (h-BNCs) possess a highly tunable linear and non-linear optical responses. Recent advances towards the controlled synthesis of these unique structures have motivated an important number of experimental and theoretical work. In this work, the confinement on the optical response induced by boron-nitride (BN) strings in h-BNC 2D structures is investigated using time-dependent density functional theory (TDDFT) and electron density response properties. The number of surrounding BN strings (NBN) necessary to "isolate" the optical modes of a carbon nanoisland (nanographene) from the remaining substrate has been characterized in two different nanoisland models: benzene and pyrene. It was found that for NBN ≥ 3 the excitation wavelengths of the optically active modes remain constant and the changes in the transition densities, the ground to excited state density differences and their associated electron deformation orbitals are negligible and strongly confined within the carbon nanoisland. Using a water molecule as model system, Raman enhancement factors of 10 [6] for the water vibrational modes are obtained when these electromagnetic "hot spots" are activated by an external electromagnetic field. The high tunability of the optical absorption bands of nanographenes through changes in size and morphology makes h-BNCs be perfect materials to construct platforms for surface enhancement Raman spectroscopy (SERS) for a wide range of laser sources.
Collapse
Affiliation(s)
- Marcos Mandado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | - Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
33
|
Song G, Cong S, Zhao Z. Defect engineering in semiconductor-based SERS. Chem Sci 2022; 13:1210-1224. [PMID: 35222907 PMCID: PMC8809400 DOI: 10.1039/d1sc05940h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Semiconductor-based surface enhanced Raman spectroscopy (SERS) platforms take advantage of the multifaceted tunability of semiconductor materials to realize specialized sensing demands in a wide range of applications. However, until quite recently, semiconductor-based SERS materials have generally exhibited low activity compared to conventional noble metal substrates, with enhancement factors (EF) typically reaching 103, confining the study of semiconductor-based SERS to purely academic settings. In recent years, defect engineering has been proposed to effectively improve the SERS activity of semiconductor materials. Defective semiconductors can now achieve noble-metal-comparable SERS enhancement and exceedingly low, nano-molar detection concentrations towards certain molecules. The reason for such success is that defect engineering effectively harnesses the complex enhancement mechanisms behind the SERS phenomenon by purposefully tailoring many physicochemical parameters of semiconductors. In this perspective, we introduce the main defect engineering approaches used in SERS-activation, and discuss in depth the electromagnetic and chemical enhancement mechanisms (EM and CM, respectively) that are influenced by these defect engineering methods. We also introduce the applications that have been reported for defective semiconductor-based SERS platforms. With this perspective we aim to meet the imperative demand for a summary on the recent developments of SERS material design based on defect engineering of semiconductors, and highlight the attractive research and application prospects for semiconductor-based SERS.
Collapse
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Gusu Laboratory of Materials Suzhou 215123 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
| |
Collapse
|
34
|
Zhou L, Pusey-Nazzaro L, Ren G, Chen L, Liu L, Zhang W, Yang L, Zhou J, Han J. Photoactive Control of Surface-Enhanced Raman Scattering with Reduced Graphene Oxide in Gas Atmosphere. ACS NANO 2022; 16:577-587. [PMID: 34927434 DOI: 10.1021/acsnano.1c07695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrahigh sensitive detection technique for a variety of research fields. Both electromagnetic and chemical enhancement mechanisms are generally considered to contribute simultaneously to SERS signals. However, it is difficult to actively control the enhancement of SERS signals after the substrate is fabricated, since tuning one or both of the aforementioned enhancement mechanisms remains an experimental challenge. Here, we propose a method for actively implementing the photoinduced modulation of SERS signals, which is that under UV irradiation, the Fermi level of graphene can be dynamically modulated due to the adsorption and desorption of gas molecules. The method is validated in gas atmospheres of O2, CO2, N2, and air and also demonstrate its generality by different analytes. In addition, the method was successfully applied to the trace detection of pesticides on fruit peels in air environment, which show its practical implications in sensing.
Collapse
Affiliation(s)
- Lu Zhou
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Lauren Pusey-Nazzaro
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Guanhua Ren
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ligang Chen
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Liyuan Liu
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wentao Zhang
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Li Yang
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
35
|
Luo W, Xiong W, Han Y, Yan X, Mai L. Application of two-dimensional layered materials in surface-enhanced Raman spectroscopy (SERS). Phys Chem Chem Phys 2022; 24:26398-26412. [DOI: 10.1039/d2cp03650a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
2D materials are promising SERS substrates. Seven feasible strategies to improve the SERS performance of 2D substrate materials are summarized. The prospect of future progress in SERS and possible challenges of 2D layered materials are put forwarded.
Collapse
Affiliation(s)
- Wen Luo
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, P. R. China
| | - Weiwei Xiong
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Yuenan Han
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Xin Yan
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 Hubei, China
| |
Collapse
|
36
|
Dobrik G, Nemes-Incze P, Majérus B, Süle P, Vancsó P, Piszter G, Menyhárd M, Kalas B, Petrik P, Henrard L, Tapasztó L. Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons. NATURE NANOTECHNOLOGY 2022; 17:61-66. [PMID: 34782777 DOI: 10.1038/s41565-021-01007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
Quantum confinement of the charge carriers of graphene is an effective way to engineer its properties. This is commonly realized through physical edges that are associated with the deterioration of mobility and strong suppression of plasmon resonances. Here, we demonstrate a simple, large-area, edge-free nanostructuring technique, based on amplifying random nanoscale structural corrugations to a level where they efficiently confine charge carriers, without inducing significant inter-valley scattering. This soft confinement allows the low-loss lateral ultra-confinement of graphene plasmons, scaling up their resonance frequency from the native terahertz to the commercially relevant visible range. Visible graphene plasmons localized into nanocorrugations mediate much stronger light-matter interactions (Raman enhancement) than previously achieved with graphene, enabling the detection of specific molecules from femtomolar solutions or ambient air. Moreover, nanocorrugated graphene sheets also support propagating visible plasmon modes, as revealed by scanning near-field optical microscopy observation of their interference patterns.
Collapse
Affiliation(s)
- Gergely Dobrik
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Péter Nemes-Incze
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Bruno Majérus
- Department of Physics, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | - Péter Süle
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Péter Vancsó
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Miklós Menyhárd
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Benjámin Kalas
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Péter Petrik
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Luc Henrard
- Department of Physics, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | - Levente Tapasztó
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
37
|
Zhou Z, Deng J, Zhang X, Chen J, Liu J, Wang Z. Theoretical design of SnS 2-graphene heterojunctions with vacancy and impurity defects for multi-purpose photoelectric devices. Phys Chem Chem Phys 2021; 24:966-974. [PMID: 34914818 DOI: 10.1039/d1cp04552k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnS2 with atomic thickness has attracted extensive attention in the field of photocatalysis due to its special physicochemical properties, suitable band gap, low cost and low environmental toxicity. However, the application of SnS2 in the field of optoelectronics is restricted by its low photocatalytic efficiency and carrier mobility. In this study, vacancies and transition metal atoms are introduced into a SnS2 monolayer to modulate its physicochemical properties. Meanwhile, the SnS2 monolayer modified by vacancies and transition metal atoms is combined with graphene to form a heterostructure, which promotes the separation of photogenerated electron-hole pairs. The results of theoretical calculations show that the SnS2/graphene heterojunction can promote the separation of photogenerated carriers in intrinsic monolayer SnS2, and improve the photocatalytic efficiency and carrier mobility. The modification of Sn vacancies and Fe, Co atoms not only expands the visible light response range of the SnS2/graphene heterojunction, but also introduces magnetism, which is expected to be applied in spin optoelectronic materials. In this work, defects, doping and heterojunction assembly are rationally integrated, which provides a new idea for the design and development of spin optoelectronic devices based on monolayer SnS2.
Collapse
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jianjun Deng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Xingchen Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jinglong Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jia Liu
- No. 24 Research Institute, China Electronics Technology Group Corporation, Chongqing 401332, China
| | - Zhiyong Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
38
|
Ghopry SA, Sadeghi SM, Berrie CL, Wu JZ. MoS2 Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2021; 11:bios11120477. [PMID: 34940234 PMCID: PMC8699280 DOI: 10.3390/bios11120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.
Collapse
Affiliation(s)
- Samar Ali Ghopry
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.G.); (J.Z.W.)
| | - Seyed M. Sadeghi
- Department of Physics, The University of Alabama, Huntsville, AL 35899, USA;
| | - Cindy L. Berrie
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Judy Z. Wu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (S.A.G.); (J.Z.W.)
| |
Collapse
|
39
|
Malard LM, Lafeta L, Cunha RS, Nadas R, Gadelha A, Cançado LG, Jorio A. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys Chem Chem Phys 2021; 23:23428-23444. [PMID: 34651627 DOI: 10.1039/d1cp03240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy has been established as a valuable tool to study and characterize two-dimensional (2D) systems, but it exhibits two drawbacks: a relatively weak signal response and a limited spatial resolution. Recently, advanced Raman spectroscopy techniques, such as coherent anti-Stokes spectroscopy (CARS), stimulated Raman scattering (SRS) and tip-enhanced Raman spectroscopy (TERS), have been shown to overcome these two limitations. In this article, we review how useful physical information can be retrieved from different 2D materials using these three advanced Raman spectroscopy and imaging techniques, discussing results on graphene, hexagonal boron-nitride, and transition metal di- and mono-chalcogenides, thus providing perspectives for future work in this early-stage field of research, including similar studies on unexplored 2D systems and open questions.
Collapse
Affiliation(s)
- Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Lucas Lafeta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Renan S Cunha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Rafael Nadas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Andreij Gadelha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Luiz Gustavo Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Ado Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| |
Collapse
|
40
|
Ma Z, Tian Z, Li X, You C, Wang Y, Mei Y, Di Z. Self-Rolling of Monolayer Graphene for Ultrasensitive Molecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49146-49152. [PMID: 34617726 DOI: 10.1021/acsami.1c12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The controllable manipulation of graphene to create three-dimensional (3D) structures is an intriguing approach for favorably tuning its properties and creating new types of 3D devices. However, due to extremely low bending stiffnesses, it is rather challenging to construct monolayer graphene into stable 3D structures. Here, we demonstrate the stable formation of monolayer graphene microtubes with accompanying pre-patterned strain layers. The diameter of graphene microtubes can be effectively tuned by changing the thickness of the strain layers. Benefiting from a high surface-to-volume ratio of the tubular geometry, the 3D geometry leads to a prominent Raman enhancement, which was further applied to molecular sensing. The R6G molecules on graphene microtubes can be detected even for a concentration as low as 10-11 M. We believe that this method can be a generalized way to realize the 3D tubular structure of other 2D materials.
Collapse
Affiliation(s)
- Zhe Ma
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziao Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xing Li
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Chunyu You
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yalan Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
41
|
Nair S, Gao J, Otto C, Duits MH, Mugele F. Ultrasensitive Detection and In Situ Imaging of Analytes on Graphene Oxide Analogues Using Enhanced Raman Spectroscopy. Anal Chem 2021; 93:12966-12972. [PMID: 34517698 PMCID: PMC8482369 DOI: 10.1021/acs.analchem.1c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 12/04/2022]
Abstract
We demonstrate how algorithm-improved confocal Raman microscopy (ai-CRM), in combination with chemical enhancement by two-dimensional substrates, can be used as an ultrasensitive detection method for rhodamine (R6G) molecules adsorbed from aqueous solutions. After developing a protocol for laser-induced reduction of graphene oxide, followed by noninvasive Raman imaging, a limit of detection (LOD) of 5 × 10-10 M R6G was achieved using ai-CRM. An equivalent subnanomolar LOD was also achieved on another graphene oxide analogue -UV/ozone-oxidized graphene. These record-breaking detection capabilities also enabled us to study the adsorption kinetics and image the spatial distribution of the adsorbed R6G. These findings indicate a strong potential for algorithm-improved graphene-enhanced Raman spectroscopy as a facile method for detecting, imaging, and quantifying trace amounts of adsorbing molecules on a variety of 2D substrates.
Collapse
Affiliation(s)
- Sachin Nair
- Physics
of Complex Fluids Group and MESA+ Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Jun Gao
- Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Laoshan
District, Qingdao, 266101, P. R. China
| | - Cees Otto
- Medical
Cell Bio Physics Group and TechMed Centre, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Michael H.G. Duits
- Physics
of Complex Fluids Group and MESA+ Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Frieder Mugele
- Physics
of Complex Fluids Group and MESA+ Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
42
|
Tegegne WA, Su WN, Beyene AB, Huang WH, Tsai MC, Hwang BJ. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater 2021; 131:62-79. [PMID: 34237423 DOI: 10.1016/j.actbio.2021.06.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
The use of Graphene based materials, such as graphene oxide (GO), in biosensing applications is gaining significant interest, due to high signal output, with strong potential for high industrial growth rate. Graphene's excellent conduction and mechanical properties (such as toughness and elasticity) coupled with high reactivity to chemical molecules are some of its appealing properties. The presence of ripples on the surface (whether indigenous or induced) represents another property/variable that provide enormous potential if harnessed properly. In this article, we review the current knowledge regarding the use of graphene for biosensing. We discuss briefly the general topic of using graphene for biosensing applications with special emphasis on wearable graphene-based biosensors. The intrinsic ripples of graphene and their effect on graphene biosensing capabilities are thoroughly discussed. We dedicate a section also for the manipulation of intrinsic ripples. Then we review the use of Graphene oxide (GO) in biosensing and discuss the effect of ripples on its properties. We present a review of the current biosensor devices made out of GO for detection of different molecular targets. Finally, we present some thoughts for future perspectives and opportunities of this field. STATEMENT OF SIGNIFICANCE: Biosensors are tools that detect the presence and amount of a chemical substance, such as pregnancy tests and glucose monitoring devices. They are general portable, have short response times and are sensitive, making them highly effective. Gold and silver are used in biosensors and more recently, graphene. Graphene is sheets of carbon atoms and is the only two-dimensional crystal in nature. It has unique features allowing its effective use in biosensing applications, including the presence of ripples (non-flat areas that give it its electronic properties). The last comprehensive review of this topic was published in 2016. This paper reviews the current knowledge of graphene based biosensors, with a focus on ripples and their effect on graphene biosensing capabilities.
Collapse
|
44
|
High-performance detection of p-nitroaniline on defect-graphene SERS substrate utilizing molecular imprinting technique. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang M, Gu Z, Zhang J, Zhang D, Zhang H, Yang Z, Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J Mater Chem B 2021; 9:5195-5220. [PMID: 34128039 DOI: 10.1039/d1tb00410g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioimaging and biosensing have garnered interest in early cancer diagnosis due to the ability of gaining in-depth insights into cellular functions and providing a wide range of diagnostic parameters. Emerging 2D materials of multielement MXenes and monoelement black phosphorous nanosheets (BPNSs) with unique intrinsic physicochemical properties such as a tunable bandgap and layer-dependent fluorescence, high carrier mobility and transport anisotropy, efficient fluorescence quenching capability, desirable light absorption and thermoelastic properties, and excellent biocompatibility and biosafety properties provide promising nano-platforms for bioimaging and biosensing applications. In view of the growing attention on the rising stars of the post-graphene age in the progress of bioimaging and biosensing, and their common feature characteristics as well as complementarity for constructing complexes, the main objective of this review is to reveal the recent advances in the design of MXene or BPNS based nanoplatforms in the field of bioimaging and biosensing. The preparation and surface functionalization methods, biosafety, and other important aspects of bioimaging and biosensing applications of MXenes and BPNSs have been assessed systematically, along with highlighting the main challenges in further biomedical application. The review not only focuses on the advancements in 2D materials for use in bioimaging and biosensing but also assesses the possibility of their future potential in bioapplications.
Collapse
Affiliation(s)
- Meina Huang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. and South China Normal University, Shanwei 516625, China
| | - Zhenyu Gu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jianguo Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dan Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Yang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Junle Qu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
47
|
Jiang J, Liu H, Li X, Chen Y, Gu C, Wei G, Zhou J, Jiang T. Nonmetallic SERS-based immunosensor byintegrating MoS 2 nanoflower and nanosheet towards the direct serum detection of carbohydrate antigen 19-9. Biosens Bioelectron 2021; 193:113481. [PMID: 34252705 DOI: 10.1016/j.bios.2021.113481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Recently, nonmetallic substrates have stimulated great interest in surface-enhanced Raman scattering (SERS)-based immunoassay owing to their good uniformity, stability, and biocompatibility. In this context, a novel nonmetallic SERS-based immunoassay mediated by two-dimensional molybdenum disulfide (MoS2) was delivered for the sensitive and specific monitoring of carbohydrate antigen 19-9 (CA19-9). The effective enrichment of molecules on the large active surfaces of MoS2 as well as potential 532-nm laser-induced charge transfer resonances between them engendered desirable enhancement factor values at the level of 105. Intriguingly, a sandwich immunocomplex combined MoS2 nanoflower and nanosheet exhibited not only a wide linear range from 5 × 10-4 to 1 × 102 IU·mL-1 but also a limit of detection as low as 3.43 × 10-4 IU·mL-1 towards CA19-9. More meaningful, the analytical result for clinical patient serum sample was basically compared with the conventional chemiluminescent immunoassay. Such a novel nonmetallic SERS-based immunosensor with desirable biocompatibility and sensitivity is promising for clinical diagnosis.
Collapse
Affiliation(s)
- Jiamin Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Hongmei Liu
- Institute of Solid State Physics, Shanxi Datong University, Datong, 037009, Shanxi, P. R. China
| | - Xiuting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Ying Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Weiyang University Park, Xian, 710021, Shanxi, P. R. China
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China.
| |
Collapse
|
48
|
Liu S, Li J, Wang H, Tao Q, Zhong L, Lu X. Broadband Raman scattering enhancement with reduced heat generation in a dielectric-metal hybrid nanocavity. OPTICS EXPRESS 2021; 29:20092-20104. [PMID: 34266106 DOI: 10.1364/oe.430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The strongly localized electric field achieved in metallic nanoparticles (NPs) and nanostructures are commonly employed to realize surface-enhanced Raman scattering. However, the heat originating from the Ohmic loss of metals may lead to the damage of the analyzed molecules, which severely limits the practical applications of pure-metallic nanostructures. Here, we propose a dielectric-metallic hybrid nanocavity placing silicon (Si) NPs onto a gold (Au) film to realize broadband Raman scattering enhancement with significantly reduced heat generation. Our results reveal that the heat generation is dramatically reduced in the hybrid nanocavity as compared with its pure-metallic counterpart while a significantly enhanced electric field is maintained. We demonstrate numerically and experimentally that the optical resonances, which arise from the coherent coupling of the electric and magnetic dipoles excited inside the Si NP with their mirror images arisen from the Au film, can be employed to enhance the excitation and radiation of Raman signals, respectively. We find that the enhancement in the radiation of Raman signals plays a crucial role in enhancing the total Raman scattering. We also show that the hybrid nanocavity acts as a nano-antenna which effectively radiates Raman signals into the far-field. These findings indicate the advantages of such hybrid nanocavities in temperature-sensitive Raman scattering characterization and supply new strategies for designing nanoscale photonic devices of other functionalities with hybrid nanocavities.
Collapse
|
49
|
Sun H, Yao M, Liu S, Song Y, Shen F, Dong J, Yao Z, Zhao B, Liu B. SERS Selective Enhancement on Monolayer MoS 2 Enabled by a Pressure-Induced Shift from Resonance to Charge Transfer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26551-26560. [PMID: 34034484 DOI: 10.1021/acsami.1c02845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a newly emerging approach for surface-enhanced Raman spectroscopy (SERS), pressure-induced SERS (PI-SERS) has been attracting increasing interest for its applications in Raman signal enhancement at extreme conditions. However, how to efficiently realize the PI-SERS enhancement and elucidate the corresponding mechanism remain open questions. Herein, we demonstrate the PI-SERS enhancement up to 8.04 GPa using monolayer molybdenum disulfide (ML-MoS2) as a SERS substrate and three organic molecules with similar energy levels but different symmetries as probes. The combined theory and experiment results show that a pressure-induced increase in the Fermi level of the ML-MoS2 substrate and a decrease in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap of probe molecules lead to a transition from the multiple resonance-related SERS enhancement to charge transfer (CT)-dominated PI-SERS selective enhancement, depending on the incident laser energy and the pressure applied. Such PI-SERS selective enhancement has been discussed in the framework of CT-induced strengthening of electron-phonon coupling, as well as a possible match of the structural symmetries between probe molecules and the substrate. This study provides deep insights into our understanding of PI-SERS enhancement, and the revealed mechanism can be extended to other molecules for SERS at extreme conditions.
Collapse
Affiliation(s)
- Huanhuan Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Mingguang Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yanping Song
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Fangren Shen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Dong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Zhen Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supermolecular Structure and Materials, Jilin University, Changchun 130012, P. R. China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
50
|
Polydopamine-Mediated Ag and ZnO as an Active and Recyclable SERS Substrate for Rhodamine B with Significantly Improved Enhancement Factor and Efficient Photocatalytic Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We demonstrate the development of an active multicomponent Ag/PDA/ZnO@GMF surface-enhanced Raman scattering (SERS) substrate via introducing bio-inspired polydopamine (PDA) in between a noble metal (AgNPs) and ZnO nanorods. The insertion of PDA enabled efficient charge redistribution between metal and semiconductor through their aromatic cores. The substrate exhibited a high enhancement factor (EF) of 1010 for the organic pollutant dye Rhodamine B (RhB). Subsequent exposure of a RhB-loaded substrate to an external UV light source developed an efficient pathway for RhB degradation and replenished the substrate for multiple usage cycles with remarkable photostability. Thus, enhanced performance of the substrate in terms of light-harvesting capability and high charge-separation efficiency was observed. In addition, the much larger surface area of the branched ZnO nanostructures served as a template for PDA assisted synthesis and controlled deposition of AgNPs, which further improved the SERS effect. Our work seeks to understand the contributions of the noble metal and semiconductor components and the synergistic effects of combining them with a facile charge transport medium to enable the fabrication of highly efficient SERS substrates for use in industrial and environmental applications.
Collapse
|