1
|
Xiao D, Tang Y, Zhang W, Hu P, Wang K. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170774. [PMID: 38340853 DOI: 10.1016/j.scitotenv.2024.170774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The chemical properties of bedrock play a crucial role in shaping the communities of soil and root-associated arbuscular mycorrhizal fungi (AMF). We investigate AMF community composition and diversity in bulk soil, rhizosphere soil, and roots in karst and non-karst forests. Chemical properties of bedrock of the calcium oxide (CaO) and ratio of calcium oxide and magnesium oxide (Ca/Mg), soil pH, and exchangeable Ca2+ were higher in karst carbonate rocks compared to non-karst clastic rocks. Conversely, bedrock phosphorus content (P-rock), silicon dioxide (SiO2) content, and tree diversity exhibited an opposing trend. AMF abundance was higher in non-karst clastic rocks than in karst carbonate rocks. Stronger interspecific interactions among AMF taxa occurred in the bulk soil and rhizosphere soil of non-karst clastic rocks compared to karst carbonate rocks. AMF abundance and diversity were higher in rhizosphere soil and roots, attributed to increasing nutrient availability when compared to the bulk soil. A more complex network within AMF taxa was observed in rhizosphere soil and roots compared to bulk soil due to an increase in AMF abundance and diversity in rhizosphere soil and roots. Comparing non-karst clastic rocks, karst carbonate rocks increased soil nitrogen (N) and P levels, which can be attributed to the elevated content of soil Ca2+ and Mg2+ content, facilitated by the high CaO content and Ca/Mg ratio in the bedrock of karst forests. However, the thicker soil layer exhibited higher soil nutrient storage, resulting in greater tree diversity in non-karst forests. These findings suggest that high tree richness may increase root biomass and secretion of root exudates in non-karst regions, thereby enhancing the abundance of AMF and their interspecies interactions. Consequently, the diverse bedrock properties that drive variations in soil properties, nutrients, and plant diversity can impact AMF communities, ultimately promoting plant growth and contributing to vegetation recovery.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Yixin Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Wuhan Geomatics Institute, Wuhan 430022, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| |
Collapse
|
2
|
Munroe JS. Relation between regional drought and mountain dust deposition revealed by a 10-year record from an alpine critical zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156999. [PMID: 35777573 DOI: 10.1016/j.scitotenv.2022.156999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Mineral dust was collected with a network of passive samplers in the Uinta Mountains (Utah, USA) over a 10-year period to evaluate the relation between regional drought and dust deposition. A total of 72 samples from eight collectors were analyzed for flux, grain size distribution, mineralogy, geochemistry, and their Sr and Nd isotopic fingerprint. The dust is primarily very fine silt, with an average median grain size of 11.6 μm. The clay minerals illite and kaolinite are common in the dust, along with quartz, potassium feldspar, and plagioclase. The most abundant elements (after Si) are Al > Fe > K > Ca > Mg > Ti. The trace elements Cd, Sn, Sb, Zn, Cu, As, and Pb are present at abundances greatly in excess of normal levels in upper crustal rocks. Dust fluxes average 14.4 mg/m2/day, generally decrease at higher elevations and toward the eastern end of the range, and are significantly higher in summer. Annual fluxes range from 1.4 to 5.8 g/m2/yr with a decadal average of 3.4 g/m2/yr. Rates of dust deposition are significantly correlated with regional drought severity from the Standardized Precipitation-Evapotranspiration Index (SPEI) for the southwestern US over 2, 3, and 6-month time scales. Previous work has demonstrated a connection between drought in the southwestern US and the abundance of fine (PM2.5) material aloft. This work is the first to use long-term monitoring of annual dust deposition to confirm that the flux of silt-sized dust to mountain ecosystems is significantly correlated with regional drought severity.
Collapse
Affiliation(s)
- Jeffrey S Munroe
- Geology Department, Middlebury College, Middlebury, VT 05753, USA.
| |
Collapse
|
3
|
Maltz MR, Carey CJ, Freund HL, Botthoff JK, Hart SC, Stajich JE, Aarons SM, Aciego SM, Blakowski M, Dove NC, Barnes ME, Pombubpa N, Aronson EL. Landscape Topography and Regional Drought Alters Dust Microbiomes in the Sierra Nevada of California. Front Microbiol 2022; 13:856454. [PMID: 35836417 PMCID: PMC9274194 DOI: 10.3389/fmicb.2022.856454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.
Collapse
Affiliation(s)
- Mia R. Maltz
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
- BREATHE Center, University of California, Riverside, Riverside, CA, United States
| | - Chelsea J. Carey
- Point Blue Conservation Sciences, Petaluma, CA, United States
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Hannah L. Freund
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Jon K. Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephen C. Hart
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Department of Life and Environmental Sciences, University of California, Merced, Merced, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Sarah M. Aarons
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Sarah M. Aciego
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY, United States
- Noctilucent Aviation, Bridgeport, TX, United States
| | - Molly Blakowski
- Department of Watershed Science, Utah State University, Logan, UT, United States
| | - Nicholas C. Dove
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Morgan E. Barnes
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
- Pacific Northwest National Laboratory, Biological Sciences, Richland, WA, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emma L. Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
- BREATHE Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Weathering Intensity and Presence of Vegetation Are Key Controls on Soil Phosphorus Concentrations: Implications for Past and Future Terrestrial Ecosystems. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) is an essential limiting nutrient in marine and terrestrial ecosystems. Understanding the natural and anthropogenic influence on P concentration in soils is critical for predicting how its distribution in soils may shift as climate changes. While it is known that P is sourced from bedrock weathering, relationships between weathering, P, and other soil-forming factors have not been quantified at continental scales, limiting our ability to predict large-scale changes in P concentrations. Additionally, while we know that Fe oxide-associated P is an important P phase in terrestrial environments, the range in and controls on soil Fe concentrations and species (e.g., Fe in oxides, labile Fe) are poorly constrained. Here, we explore the relationships between soil P and Fe concentrations, soil order, climate, and vegetation in over 5000 soils, and Fe speciation in ca. 400 soils. Weathering intensity has a nuanced control on P concentrations in soils, with P concentrations peaking at intermediate weathering intensities (Chemical Index of Alteration, CIA~60). The presence of vegetation (but not plant functional types) affected soils’ ability to accumulate P. Contrary to expectations, P was not more strongly associated with Fe in oxides than other Fe phases. These results are useful both for predicting changes in potential P fluxes from soils to rivers under climate change and for reconstructing changes in terrestrial nutrient limitations in Earth’s past. In particular, soils’ tendency to accumulate more P with the presence of vegetation suggests that biogeochemical models invoking the evolution and spread of land plants as a driver for increased P fluxes in the geological record may need to be revisited.
Collapse
|
5
|
Dawson TE, Hahm WJ, Crutchfield-Peters K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. THE NEW PHYTOLOGIST 2020; 226:666-671. [PMID: 31912507 DOI: 10.1111/nph.16410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The emergence of critical zone (CZ) science has provided an integrative platform for investigating plant ecophysiology in the context of landscape evolution, weathering and hydrology. The CZ lies between the top of the vegetation canopy and fresh, chemically unaltered bedrock and plays a pivotal role in sustaining life. We consider what the CZ perspective has recently brought to the study of plant ecophysiology. We specifically highlight novel research demonstrating the importance of the deeper subsurface for plant water and nutrient relations. We also point to knowledge gaps and research opportunities, emphasising, in particular, greater focus on the roles of deep, nonsoil resources and how those resources influence and coevolve with plants as a frontier of plant ecophysiological research.
Collapse
Affiliation(s)
- Todd E Dawson
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - W Jesse Hahm
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, 94720, USA
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
6
|
O'Day PA, Nwosu UG, Barnes ME, Hart SC, Berhe AA, Christensen JN, Williams KH. Phosphorus Speciation in Atmospherically Deposited Particulate Matter and Implications for Terrestrial Ecosystem Productivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4984-4994. [PMID: 32181661 DOI: 10.1021/acs.est.9b06150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical forms of phosphorus (P) in airborne particulate matter (PM) are poorly known and do not correlate with solubility or extraction measurements commonly used to infer speciation. We used P X-ray absorption near-edge structure (XANES) and 31P nuclear magnetic resonance (NMR) spectroscopies to determine P species in PM collected at four mountain sites (Colorado and California). Organic P species dominated samples from high elevations, with organic P estimated at 65-100% of total P in bulk samples by XANES and 79-88% in extracted fractions (62-84% of total P) by NMR regardless of particle size (≥10 or 1-10 μm). Phosphorus monoester and diester organic species were dominant and present in about equal proportions, with low fractions of inorganic P species. By comparison, PM from low elevation contained mixtures of organic and inorganic P, with organic P estimated at 30-60% of total P. Intercontinental PM transport determined from radiogenic lead (Pb) isotopes varied from 0 to 59% (mean 37%) Asian-sourced Pb at high elevation, whereas stronger regional PM inputs were found at low elevation. Airborne flux of bioavailable P to high-elevation ecosystems may be twice as high as estimated by global models, which will disproportionately affect net primary productivity.
Collapse
Affiliation(s)
- Peggy A O'Day
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Ugwumsinachi G Nwosu
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Morgan E Barnes
- Environmental Systems Graduate Group, University of California, Merced, California 95343, United States
| | - Stephen C Hart
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Asmeret Asefaw Berhe
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - John N Christensen
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Rocky Mountain Biological Lab, Gothic, Colorado 81225, United States
| |
Collapse
|
7
|
Hayes JL, Riebe CS, Holbrook WS, Flinchum BA, Hartsough PC. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. SCIENCE ADVANCES 2019; 5:eaao0834. [PMID: 31555724 PMCID: PMC6750914 DOI: 10.1126/sciadv.aao0834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Weathering in the critical zone causes volumetric strain and mass loss, thereby creating subsurface porosity that is vital to overlying ecosystems. We used geochemical and geophysical measurements to quantify the relative importance of volumetric strain and mass loss---the physical and chemical components of porosity---in weathering of granitic saprolite of the southern Sierra Nevada, California, USA. Porosity and strain decrease with depth and imply that saprolite more than doubles in volume during exhumation to the surface by erosion. Chemical depletion is relatively uniform, indicating that changes in porosity are dominated by processes that cause strain with little mass loss. Strain-induced porosity production at our site may arise from root wedging, biotite weathering, frost cracking, and the opening of fractures under ambient topographic stresses. Our analysis challenges the conventional view that volumetric strain can be assumed to be negligible as a porosity-producing mechanism in saprolite.
Collapse
Affiliation(s)
- Jorden L. Hayes
- Department of Earth Sciences, Dickinson College, Carlisle, PA 17013, USA
- Wyoming Center for Environmental Hydrology and Geophysics, Laramie, WY 82071, USA
| | - Clifford S. Riebe
- Wyoming Center for Environmental Hydrology and Geophysics, Laramie, WY 82071, USA
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
| | - W. Steven Holbrook
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Brady A. Flinchum
- Wyoming Center for Environmental Hydrology and Geophysics, Laramie, WY 82071, USA
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter C. Hartsough
- Department of Land, Air, and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
8
|
|